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Laplace hyperfunctions from the viewpoint of
Čech‐Dolbeault cohomology

By

KOHEI UMETA *

Abstract

In this note. we introduce Laplace hyperfunctions from the view point of Čech‐Dolbeault
cohomology. Furthermore, we construct a Laplace transformation for a Čech‐Dolbeault repre‐
sentation of a Laplace hyperfunction.

§1. Introduction

Recently, T. Suwa [12] and N. Honda [1] study the theory of Satois hyperfunctions
from the viewpoint of the Čech‐Dolbeault cohomology. In their studies, a hyperfunction
on  \mathbb{R}^{n} can be represented by a pair  (\tau_{1:}\tau_{01}) , where  \tau_{1} is  a(0, n) ‐form of  C^{\infty} ‐coefficients
on  \mathbb{C}^{n} and  \tau_{01} is  (0, n-1) ‐form of a  C^{\infty} ‐coefficients on  \mathbb{C}^{n}\backslash \mathbb{R}^{n} . The one of advantages
for such a presentation is that we can employ, in the theory of hyperfunctions, the

similar techniques as those in the  C^{\infty} category such as the partition of unity.

H. Komatsu ([5]‐[11]) introduced the theory of Laplace hyperfunctions of one variable
in order to consider the Laplace transform of a hyperfunction. The theory of Laplace

hyperfunctions in several variables has been established by the author and N. Honda

([3],[4]). As we did in the hyperfunction theory, it is quite natural to study a Laplace
hyperfunction from the viewpoint of the Čech‐Dolbeault cohomology. In this note, we
first describe a Laplace hyperfunction as a pair of  C^{\infty} forms of exponential growth order

at  \infty by using Čech‐Dolbeault cohomology. Then, we define a Laplace transformation
of a Čech‐Dolbeault representative of a Laplace hyperfunction and its inverse Laplace
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transformation in our settings. For details, we refer the reader to the forthcoming paper
[2].

At the end of this section, the author would like to express my gratitude to Professor
Tatsuo Suwa and Professor Naofumi Honda for the valuable advises.

§2. Laplace hyperfunctions of a Čech‐Dolbeault representation

Let  n\in \mathbb{N} and let  M be an  n‐dimensional  \mathbb{R}‐vector space, and let  E be a complex‐

ification  M\otimes_{R}\mathbb{C} of  M . We denote by  E^{\cross} (resp.  M^{\cross} ) the sct  E\backslash 0 (resp.  M\backslash 0 ) and
by  \mathbb{R}_{+} the set of positive real numbers. Let  \mathbb{D}_{E} (resp.  \mathbb{D}_{M} ) be the radial compacitfica‐
tion  EuE^{\cross}/\mathbb{R}_{+} (resp.  \lambda IuM^{\cross}/\mathbb{R}_{+} ) of  E (resp.  M ). We set  \Lambda I_{\infty}  :=\mathbb{D}_{M}\backslash M and
 E_{\infty}=\mathbb{D}_{E}\backslash E . For a subset  T\subset \mathbb{D}_{E} , the subset  N_{\infty}(T) in  E_{\infty} is defined by

 N_{\infty}(T):=E_{\infty}\backslash \overline{(E\backslash T)},

where the closure is taken in  \mathbb{D}_{E} . Let  U be an open subset in  E . We also the open
subset Û in  \mathbb{D}_{E} by

Û  :=U\cup N_{\infty}(U) .

We sometimes write  \wedge U instead of  \hat{U}.

Let  V be an open subset in  \mathbb{D}_{E} and  f a measurable function on  V\cap E . We say that
 f is of exponential type (at  \infty ) on  V if, for any compact subset  K in  V , there exists
 H_{K}>0 such that  |\exp(-H_{K}|z|)f(z)| is essentially bounded on  K\cap E . Let  \mathscr{R}_{\mathbb{D}_{E}}(V)
designate the set of  C^{\infty} functions on  V\cap E whose higher derivatives are of exponential

type. We denote by  \mathscr{R}_{\mathbb{D}_{E}} the associated sheaf on  \mathbb{D}_{E} of the presheaf  \{\mathscr{R}_{\mathbb{D}_{E}}(V)\}_{V} and
by  \mathscr{R}_{D_{E}}^{p,q} thc sheaf on  \mathbb{D}_{E} of  (p, q) ‐forms with coefficients in  \mathscr{R}_{\mathbb{D}_{E}} . Set

  \mathscr{R}_{D_{E}}^{k}=\bigoplus_{p+q=k}\mathscr{R}_{1D_{E}}^{p,q}.
Now we define the de‐Rham complex  \mathscr{R}_{\mathbb{D}_{E}} on  \mathbb{D}_{E} with coefficients in  \mathscr{R}_{D_{E}} by

 0arrow \mathscr{R}_{\mathbb{D}_{E}}^{0}arrow^{d}\mathscr{R}_{\mathbb{D}_{E}}
^{1}arrow^{d} . . .  arrow^{d}\mathscr{R}_{\mathbb{D}_{E}}^{2n}arrow 0,

and the Dolbeault complex  \mathscr{R}_{\mathbb{D}_{E}}^{p}’ on  \mathbb{D}_{E} by

 0arrow \mathscr{R}_{\mathbb{D}_{E}}^{p,0}arrow^{\partial}\mathscr{R}
_{\mathbb{D}_{E}}^{p.1}arrow^{\partial^{\overline{}}} . . .  arrow^{\partial^{\overline{}}}\mathscr{R}_{\mathbb{D}_{E}}^{p_{\backslash }n}
arrow 0.
Let  \mathscr{O}_{\mathbb{D}_{E}}^{\exp} denote the sheaf of holomorphic functions of exponential type (at  \infty ) on  \mathbb{D}_{E}.

We have the following proposition and theorem.
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Proposition 2.1. Both the canonical morphisms of complexes below are quasi‐isomorphic:

 \mathbb{C}_{D_{E}}arrow \mathscr{R}_{\mathbb{D}_{E}},  \mathscr{O}_{\mathbb{D}_{E}}^{exp,(p)}arrow \mathscr{R}_{\mathbb{D}_{E}}
^{p\prime}..

Theorem 2.2. Assume that  V\cap E is Stein and that  V is regular at  \infty . Then we

have the quasi‐isomorphism

 \mathscr{O}_{\mathbb{D}_{E}}^{\exp(p)}(V)arrow \mathscr{R}_{\mathbb{D}_{E}}^{p_
{:}}.(V) .

We have the edge of the wedge theorem for holomorphic functions of exponential

type.

Theorem 2.3 ([3], Theorem 3.12). The complexes  R\Gamma_{D_{M}}(\mathscr{O}_{D_{E}}^{exp,(p)}) and  R\Gamma_{\mathbb{D}_{M}}(\mathbb{Z}_{\mathbb{D}_{E}})
are concentrated in degree  n . Furthermore,  H_{D_{M}}^{n}(\mathbb{Z}_{\mathbb{D}_{E}}) is isomorphic to  \mathbb{Z}_{\mathbb{D}}..

Define

 \mathscr{B}_{D_{AI^{\backslash }}}^{\exp_{)}(p)}:=H_{D_{\Lambda I}}^{n}
(\mathscr{O}_{D_{E}}^{exp,(p)})\otimes_{\mathbb{Z}_{D_{AI}}}or_{\mathbb{D}_{E}
/\mathbb{D}_{\Lambda I}},
 or_{\mathbb{D}_{E/j}}:=H^{n}(\mathbb{Z}_{\mathbb{D}_{E}}) .

By Theorem 2.3, we have

 \mathscr{B}_{\mathbb{D}_{AI}}^{exp,(p)}(\Omega)=H_{\mathbb{D}_{I\backslash L}}^
{n}(V;\mathscr{O}_{\mathbb{D}_{E}}^{exp,(p)})\otimes_{Z_{D_{M}}(\Omega)}
H_{\mathbb{D}_{\Lambda I}}^{\tau\iota}(V;\mathbb{Z}_{\mathbb{D}_{E}})
for any open subset  \Omega in  \mathbb{D}_{l\backslash I} . Here  V is an open subset in  \mathbb{D}_{E} with  V\cap \mathbb{D}_{II}1=\Omega.

We can construct the boundary value map in a functorial way.

Theorem 2.4. Let  U be an open subset in  \mathbb{D}_{E} which satisfies  \mathbb{D}_{M}\subset\overline{U} . Assume

that  U is cohomologically trivial in  \mathbb{D}_{E} . Then we have the boundary value map

 b_{U}:0_{\mathbb{D}_{E}}^{\exp}(U)arrow \mathscr{B}_{\mathbb{D}_{M}}^{\exp}
(\mathbb{D}_{I1I}) .

Set  V_{0}=\mathbb{D}_{E}\backslash \mathbb{D}_{M},  V_{1}=\mathbb{D}_{E} and  V_{01}=V_{0}\cap V_{1} . Then define the coverings

 \mathcal{V}=\{V_{0}, V_{1}\}_{:} \mathcal{V}'=\{V_{01}\}.

Let  \mathscr{R}_{D_{E}}^{p}(\mathcal{V}, \mathcal{V}') denote the Čech‐Dolbeault complex to the pair  (\mathcal{V}, \mathcal{V}') of coverings
with coefficients in  \mathscr{R}_{\mathbb{D}_{E}} , i.e.,

 0arrow \mathscr{R}_{\mathbb{D}_{E}}^{p0}(\mathcal{V}, \mathcal{V}')
arrow^{\overline{}\vartheta}\mathscr{R}_{D_{E}}^{p,1}(V, \mathcal{V}')
arrow^{\overline{}\vartheta} . . .  arrow^{\overline{}\vartheta}\mathscr{R}_{J\supset_{E}}^{p_{71}\prime}.(\mathcal
{V}, \mathcal{V}')arrow 0.
Here

 \mathscr{R}_{\mathbb{D}_{E}}^{p,k}(\mathcal{V}, \mathcal{V}')=\mathscr{R}
_{\mathbb{D}_{E}}^{p,k}(V_{1})\oplus \mathscr{R}_{\mathbb{D}_{E}}
^{p_{\dot{\ovalbox{\tt\small REJECT}}}k-1}(V_{01}) ,
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 \overline{\vartheta}(\xi_{1}, \xi_{01})=(\overline{\partial}\xi_{1}, \xi_{1}
|_{V_{01}}-\overline{\partial}\xi_{01}) .

Let  \mathscr{R}_{\mathbb{D}_{E}}(\mathcal{V}, \mathcal{V}') denote the Čech ‐ de‐Rham complex to the pair  (\mathcal{V}, \mathcal{V}') of coverings
with coefficients in  \mathscr{R}_{\mathbb{D}_{E}}.

 0arrow \mathscr{R}_{\mathbb{D}_{E}}^{0}(\mathcal{V}, \mathcal{V}')arrow^{D}
\mathscr{R}_{\mathbb{D}_{E}}^{1}(\mathcal{V}, \mathcal{V}')arrow^{D} . . .  arrow^{D}\mathscr{R}_{D_{E}}^{2n}(\mathcal{V}, \mathcal{V}')arrow 0_{:}

where  D is used to denote the differential of this complex.

Theorem 2.5. We have the canonical quasi‐isomorphisms:

 R\Gamma_{\mathbb{D}_{M}}(\mathbb{D}_{E}\cdot. \mathscr{O}_{\mathbb{D}_{E}}
^{exp.(p)})\simeq 2_{\mathbb{D}_{E}}^{op\prime}.(\mathcal{V}, \mathcal{V}') , 
R\Gamma_{\mathbb{D}_{\Lambda I}}(\mathbb{D}_{E:}\cdot \mathbb{C}_{\mathbb{D}_{E}
})\simeq d_{\mathbb{D}_{E}}^{o}(\mathcal{V}, \mathcal{V}') .

In what follows, we constantly use the notations below:

 H_{\frac{p}{\vartheta}}^{k}(\mathcal{V}\mathscr{L}2' \mathcal{V}'):=H^{k}
(\mathscr{R}_{\mathbb{D}_{E}}^{p\prime}.(\mathcal{V}, \mathcal{V}')) , H_{D,
\mathscr{R}}^{k}(\mathcal{V}, \mathcal{V}'):=H^{k}(\mathscr{R}_{\mathbb{D}_{E}}(
\mathcal{V}, \mathcal{V}')) .

Hence we have

 \mathscr{B}_{\mathbb{D}_{M}}^{exp,(p)}(\mathbb{D}_{M})\simeq H_{\frac{p}
{\vartheta'}}^{n}\mathscr{R}(\mathcal{V}, \mathcal{V}')\otimes_{Z_{D_{M}}
(\mathbb{D}_{M})}or_{\mathbb{D}_{M}/\mathbb{D}_{E}}(\mathbb{D}_{M}) .

§3. Laplace transformation

Let  (z_{1}=x_{1}+\sqrt{-1}y, \cdot\cdot\cdot , z_{n}=x_{n}+\sqrt{-1}y_{n}) be the coordinates system of  E . We
fix the orientation of  M and  E so that  \{ dxı,  dx_{2} , . . . ,  dx_{n}\} gives the positive orientation
on  \mathbb{J}\ell , and  \{ dyı, . . . ,  dy_{n},  dx_{1} , . . . ,  dx_{n}\} give the one on  E . Let  M^{*} and  E^{*} be dual

vector spaces of  M and  E respectively. Then we also define the radial compactification
 \mathbb{D}_{M^{*}} (resp.  \mathbb{D}_{E^{*}} ) of  M^{*} (resp.  E^{*} ).

Let  \Omega be an open subset in  \mathbb{D}_{E^{*}} and  f a holomorphic function on  \Omega . We say that  f

is of infra‐exponential type (at  \infty ) on  \Omega if, for any compact set   K\subset\Omega and any  \epsilon>0,
there exists  C>0 such that

 |f(\zeta)|\leq Ce^{\epsilon|\zeta|} (\zeta\in K\cap E^{*}) .

Let  \mathscr{O}_{D_{E^{*}}}^{\inf} designate the set of holomorphic functions of infra‐exponential type on  \mathbb{D}_{E}.

and let  \mathscr{A}_{\mathbb{D}_{AI}}^{\exp} denote the sheaf of real analytic functions of exponential type. Let  j :
 M\mapsto \mathbb{D}_{M} be the canonical inclusion. The sheaf  \mathscr{V}_{\mathbb{D}_{hf}}^{\exp} of real analytic volumes of
exponential type is given by

 \mathscr{V}_{\mathbb{D}_{\Lambda I}}^{\exp}=\mathscr{O}_{\mathbb{D}_{E}}^{exp,
(n)}|_{D_{M}}\otimes z_{D_{\Lambda I}}or_{D_{AI}}.
Here  or_{\mathbb{D}_{M}}  :=j_{*}or_{M}.
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Definition 3.1. Let  D be a subset in  \mathbb{D}_{E} and non‐zero  \zeta_{0}\in E_{\infty}^{*} . We say that  D is
properly contained in a half space (of  \mathbb{D}_{E} ) with direction  \zeta_{0} if there exists a point  a\in E

such that

(3.1)  \overline{D}\backslash \{a\}\subset\wedge\{z\in E;{\rm Re}\langle z-a, 
\zeta_{0}\}>0\}.

holds. In the similar way, for  \xi_{0}\in M_{\infty}^{*} , we say that a subset  D in  \mathbb{D}_{M} is properly
contained in a half space (of  \mathbb{D}_{M} ) of direction  \xi_{0} if if therc exists a point  a\in M such
that

(3.2)  \overline{D}\backslash \{a\}\subset\sim\{x\in M;\langle x-a, \xi_{0}\rangle>0\}
.

Let  K be a closed subset in  \mathbb{D}_{M} properly contained in a half space of  \mathbb{D}_{M} with
direction  \xi_{0}\in M_{\infty}^{*} and  V its open neighborhood of  K in  \mathbb{D}_{E} . Set  U:=\mathbb{D}_{M}\cap V and

 \mathcal{V}_{K} :=\{V_{0} : =V\backslash K, V_{1} :=V\} , \mathcal{V}_{K}' :=
\{V_{0}\}.

Then we have

  \Gamma_{K}(U;\mathscr{B}_{D_{\lambda I}}^{\exp}\otimes_{\mathscr{A}_{D_{M}}
^{\exp}}\mathscr{V}_{D}^{\exp})\simeq H_{\frac{n}{\vartheta'}}^{n}(\mathcal{V}
_{K}1\backslash J,\mathscr{R}' \mathcal{V}_{K'})\bigotimes_{Z_{D_{M}}(U)}or_{D_{
\Lambda I/\mathbb{D}_{E}}}(U)\bigotimes_{\mathbb{Z}_{D_{M}}(U)}or_{\Lambda I}
(U\cap M) .

Let  u\otimes a_{ID_{M/\mathbb{D}_{E}}}\otimes a_{M}\in\Gamma_{K}(U;\mathscr{B}_{1D_
{\lambda I}}^{\exp}\otimes_{\mathscr{A}_{D_{M}}^{cxp}}\mathscr{V}_{ID_{AI}}
^{\exp}) , and let  \nu= (  \nu_{1} .  \nu0ı)  \in \mathscr{R}_{\mathbb{D}_{E}}^{n,n}(\mathcal{V}_{K}. \mathcal{V}_{K'})
be a representative of  u , i.e.,  u=[\nu] . For this element, we define the Lapıace transfor‐
mation as follows.

Definition 3.2. The Laplace transformation of  u is defined by

 L(u)( \zeta):=\int_{D}e^{-z\zeta}\nu_{1}-\int_{\partial D}e^{-z\zeta}\nu_{01}.
where  D is a contractibıe open subset in  \mathbb{D}_{E} with (partially) smooth boundary such
that  K\subset D\subset\overline{D}\subset V and it is properly contained in a half space of  \mathbb{D}_{E} with direction
 \xi_{0}.

Note that  L(u) is independent of the choices of a representative  \nu of  u and  D of the

integral. Let  \Gamma be a proper closed cone in  M and  a\in AI . We denote by  \Gamma^{\circ}\subset E^{*} the

dual open cone of  \Gamma in  E^{*} Assume that  K=\overline{\{a\}+\Gamma} . Then we have the following
proposition.

Proposition 3.3.  e^{a\zeta}L(u) belongs to  \mathscr{O}_{\mathbb{D}_{E^{*}}}^{\inf}(N_{\infty}(\Gamma^{\circ})) .

§4. Inverse transformation

To construct a inverse Laplace transformation, we prepare some definitions. Let  T

be a real analytic manifold and set

 Y:=T\cross \mathbb{D}_{E}, Y_{\infty}=T\cross(\mathbb{D}_{E}\backslash E) .
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We denote by  p_{T} :  Yarrow T (resp.  p_{1D_{E}} :  Yarrow \mathbb{D}_{E} ) the canonical projection to  T (resp.
 \mathbb{D}_{E}) .

Let  W be an open subset  Y and  f(t, z) a measurable function on  W\backslash Y_{\infty} . We say
that  f(t, z) is of exponential type on  W if, for any compact subset  K in  W , there exists
 H_{K}>0 such that  |\exp(-H_{K}|z|)f(t, z)| is essentially bounded on  K\backslash Y_{\infty},

Now we introduce the set  \mathscr{L}\mathscr{R}_{Y}(W) consisting of a measurable function  f(t_{:}z) on
 W\backslash Y_{\infty} which satisfies the following conditions:

1. For almost every  t_{0} in  p_{T}(W),  f(t_{0}, z) is a   c\propto function of the variables  z on

 (p_{T}^{-} {\imath} (t_{0})\cap W)\backslash Y^{\infty}
2. Any higher derivative of  f(t, z) with respect to the variables  z is of exponential type

on  W.

Let  \mathscr{L}\mathscr{R}_{Y}^{k} denotes the sheaf on  Y of  k‐forms with respect to the variables in  \mathbb{D}_{E} , and
let us define the de‐Rham complex  \mathscr{L}\mathscr{R}_{Y} by

 0arrow \mathscr{L}\mathscr{R}_{Y}^{0}harpoonup 5\mathscr{L}\mathscr{R}_{Y}^{1}-
3d_{D}d_{D} . . .  A^{d_{D}}\mathscr{L}\mathscr{R}_{Y}^{2n}arrow 0,
where  d_{\mathbb{D}_{E}} is the differential on  \mathbb{D}_{E} . We denote by  \mathscr{L}_{loc,T}^{\infty} the sheaf of  L_{loc}^{\infty} ‐functions on
 T . We have the following two propositions.

Proposition 4.1. We have the quasi‐isomorphism

 p_{T}^{-1}\mathscr{L}_{loc,T}^{\infty}arrow \mathscr{L}\mathscr{R}_{Y}.

Proposition 4.2. The complex  R\Gamma_{p_{D_{E}}^{-1}(D_{M})}(p_{T}^{-1}\mathscr{L}_{loc,T}^{\infty}) is concentrated in degree  n,

and we have the canonical isomorphism

 \tilde{p}_{T}^{-1}\mathscr{L}_{loc,T}^{\infty}\otimes_{\mathbb{Z}_{Y}}
or_{p_{\mathbb{E}_{E}}^{-{\imath}}(\mathbb{D}_{AT})/Y}arrow H_{p_{D_{E}}^{-
{\imath}}(\mathbb{D}_{M})}^{n}(p_{T}^{-1}\mathscr{L}_{loc,T}^{\infty}) ,

where  \overline{p}_{T} :  p_{\mathbb{D}_{E}}^{-1}(\mathbb{D}_{M})=T\cross \mathbb{D}_{M}arrow T is the canonical projection.

Let  \Gamma be an  \mathbb{R}_{+} ‐conic proper open subset in  M and  a\in ilI.

Let  f\in e^{-a\zeta}\mathscr{O}_{\mathbb{D}_{E^{*}}}^{\inf}(N_{\infty}(\Gamma^{o})) . Then, by the definition, we can easily see:

1. There exists a continuous function  \psi :  (N_{\infty}(\Gamma^{\circ})\cap j1I_{\infty}^{*})\cross[0, \infty )  arrow \mathbb{R}_{\geq 0} such that,
for each  \xi_{*}\in(N_{\infty}(\Gamma^{\circ})\cap M_{\infty}^{*}) , the function  \psi(\xi_{*_{\dot{\tau}}}t) is an infra‐linear function of

the variable  t and  f is holomorphic on an open subset  W\cap E^{*} , where
(4.1)

 W_{:=}^{\wedge}\{\zeta=t\xi_{*}+\sqrt{-1}\eta_{:}\eta\in M^{*}\backslash \{0\},
\xi_{*}\in(N_{\infty}(\Gamma^{\circ})\cap M_{\infty}^{*}), t>\psi(\xi_{*}, 
|\eta|)\}.
Here we identify  M_{\infty}^{*} with  S^{n-1}\subset M^{*}
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2. There exists a continuous infra‐linear function  \varphi(t) on  [0, \infty ) such that

(4.2)  |f(\zeta)|\leq e^{-{\rm Re}(a\zeta)+\varphi(|\zeta|)}  (\zeta\in W\cap E^{*}) .

We also define an  n‐dimensional chain in  E^{*} by

 \gamma^{*}:=\{\zeta=\xi+\sqrt{-1}\eta\in E^{*};\eta\in M^{*}\backslash \{0\}, 
\xi=\psi_{\xi_{0}}(|\eta|)\xi_{0}\},

where  \xi_{0} is a unit vector in  N_{\infty}(\Gamma^{\circ})\cap M_{\infty}^{*} and  \psi_{\xi_{0}}(t) is a continuous infra‐linear function

on  [0, \infty) with  \psi_{\xi_{0}}(t)>\psi(\xi_{0}, t)  (t\in[0, \infty)) . Set  T=S^{n-1} and  Y=S^{n-1}x\mathbb{D}_{E} . Definc

coverings

 \mathcal{W}=\{W_{0}=Y\backslash p_{\mathbb{P}_{E}}^{-1}(\mathbb{D}_{M})_{:}
W_{1}=Y\}, \mathcal{W}'=\{W_{0}\}.
Recall the isomorphisms

 \Gamma(T;\mathscr{L}_{loc,T}^{\infty})=\Gamma(Y;\overline{p}_{T}^{-1}
\mathscr{L}_{loc.T}^{\infty})

 arrow^{\sim}H_{p_{1D_{E}}^{-1}(\mathbb{D}_{\lambda f})}^{n}(Y;p_{T}^{-1}
\mathscr{L}_{loc.T}^{\infty})=H^{n}(\mathscr{L}\mathscr{R}_{Y}(\mathcal{W}, 
\mathcal{W}')) ,

and set

 \Omega :=-\{(\eta, z)\in S^{n-1}\cross E;\{\eta, {\rm Im} z\}>0\}\subset Y.

Let  j :  \Omegaarrow Y be the canonical open inclusion. Then we can take a special  \omega=

(  \omega_{1} ,  \omega0ı)  \in \mathscr{L}\mathscr{R}_{Y}^{n}(\mathcal{W}.\mathcal{W}')) satisfying the following conditions:

1.  D_{\mathbb{D}_{E}}\omega=0 and  [\omega] is the image of a constant function  1\in\Gamma(T;\mathscr{L}_{loc,T}^{\infty}) through the
above isomorphisms.

2. We have

 Supp_{W_{1}}(\omega_{1})\subset\Omega, Supp_{W_{01}}(\omega_{01})\subset\Omega.

Now we define the inverse Laplace transformation.

Definition 4.3. The inverse Laplace transform  L^{-1} is given by

 L_{\omega}^{-1}(f):= \frac{\nu_{\mathbb{D}_{M}}}{(2\pi\sqrt{-1})^{n}}
(\int_{\gamma^{*}}f(\zeta)\rho(\omega_{1})(\frac{\eta}{|\eta|}, z)e^{\zeta z}
d\zeta,
  \int_{\gamma^{*}}f(\zeta)\rho(\omega_{01})(\frac{\eta}{|\eta|}, z)e^{\zeta z}d
\zeta)

Here  \zeta=\xi+\sqrt{-1}\eta and  \nu_{D_{M}}=dz\otimes a_{\mathbb{D}_{M}/\mathbb{D}_{E}}\in \mathscr{V}_{\mathbb
{D}_{AI}}^{\exp}(\mathbb{D}_{M}) , where  a_{\mathbb{D}_{M}/\mathbb{D}_{E}}\in or_{\mathbb{D}_{AI}/\mathbb{D}_{E}}
(\mathbb{D}_{M})
is determined by the orientation of  \gamma^{*} through the isomorphism   or_{\sqrt{-1}hT^{*}}\simeq or_{\mathbb{D}..*f^{D_{E^{*}}}}\simeq

 or_{\mathbb{D}_{I\backslash \tau}}/\mathbb{D}_{E}.

We have the following proposition.
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Proposition 4.4. We have

1. The integration  L_{\omega}^{-1}(f) converges and it belongs to  \mathscr{R}_{\mathbb{D}_{E}}^{n,n}(\mathcal{V}, \mathcal{V}')\otimes 
\mathscr{V}_{ID_{M}}^{\exp} . Further‐

more,  \overline{\vartheta}(L_{\omega}^{-1}(f))=0 holds.

2.  [L_{\omega}^{-1}(f)] does not depend on the choices of  \omega . It also independent of  \xi_{0} and  \psi_{\xi_{0}}
which appear in the definition of  \gamma^{*}

3. The support of  [L^{-1}(f)] is contained in  K:=\overline{\{a\}+\Gamma}\subset \mathbb{D}_{M}.

We have the Laplace inversion formula.

Theorem 4.5. We have

 LoL^{-1}=id, L^{-1}oL=id.
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