Laplace hyperfunctions from the viewpoint of Čech-Dolbeault cohomology

By

Kohei Umeta*

Abstract

In this note, we introduce Laplace hyperfunctions from the view point of Čech-Dolbeault cohomology. Furthermore, we construct a Laplace transformation for a Čech-Dolbeault representation of a Laplace hyperfunction.

§1. Introduction

Recently, T. Suwa [12] and N. Honda [1] study the theory of Sato's hyperfunctions from the viewpoint of the Čech-Dolbeault cohomology. In their studies, a hyperfunction on \mathbb{R}^n can be represented by a pair (τ_1, τ_{01}) , where τ_1 is a (0, n)-form of C^{∞} -coefficients on \mathbb{C}^n and τ_{01} is (0, n - 1)-form of a C^{∞} -coefficients on $\mathbb{C}^n \setminus \mathbb{R}^n$. The one of advantages for such a presentation is that we can employ, in the theory of hyperfunctions, the similar techniques as those in the C^{∞} category such as the partition of unity.

H. Komatsu ([5]-[11]) introduced the theory of Laplace hyperfunctions of one variable in order to consider the Laplace transform of a hyperfunction. The theory of Laplace hyperfunctions in several variables has been established by the author and N. Honda ([3],[4]). As we did in the hyperfunction theory, it is quite natural to study a Laplace hyperfunction from the viewpoint of the Čech-Dolbeault cohomology. In this note, we first describe a Laplace hyperfunction as a pair of C^{∞} forms of exponential growth order at ∞ by using Čech-Dolbeault cohomology. Then, we define a Laplace transformation of a Čech-Dolbeault representative of a Laplace hyperfunction and its inverse Laplace

²⁰¹⁰ Mathematics Subject Classification(s): Primary 32A45; Secondary 44A10.

Key Words: Laplace transformation, Laplace hyperfunctions.

^{*}Department of General Education, College of Science and Technology, Nihon University, Chiba 274-8501, Japan.

e-mail: umeta.kouhei@nihon-u.ac.jp

transformation in our settings. For details, we refer the reader to the forthcoming paper [2].

At the end of this section, the author would like to express my gratitude to Professor Tatsuo Suwa and Professor Naofumi Honda for the valuable advises.

§2. Laplace hyperfunctions of a Čech-Dolbeault representation

Let $n \in \mathbb{N}$ and let M be an n-dimensional \mathbb{R} -vector space, and let E be a complexification $M \otimes_{\mathbb{R}} \mathbb{C}$ of M. We denote by E^{\times} (resp. M^{\times}) the set $E \setminus 0$ (resp. $M \setminus 0$) and by \mathbb{R}_+ the set of positive real numbers. Let \mathbb{D}_E (resp. \mathbb{D}_M) be the radial compacitication $E \sqcup E^{\times}/\mathbb{R}_+$ (resp. $M \sqcup M^{\times}/\mathbb{R}_+$) of E (resp. M). We set $M_{\infty} := \mathbb{D}_M \setminus M$ and $E_{\infty} = \mathbb{D}_E \setminus E$. For a subset $T \subset \mathbb{D}_E$, the subset $N_{\infty}(T)$ in E_{∞} is defined by

$$N_{\infty}(T) := E_{\infty} \setminus \overline{(E \setminus T)},$$

where the closure is taken in \mathbb{D}_E . Let U be an open subset in E. We also the open subset \widehat{U} in \mathbb{D}_E by

$$\widehat{U} := U \cup N_{\infty}(U).$$

We sometimes write \widehat{U} instead of \widehat{U} .

Let V be an open subset in \mathbb{D}_E and f a measurable function on $V \cap E$. We say that f is of exponential type (at ∞) on V if, for any compact subset K in V, there exists $H_K > 0$ such that $|\exp(-H_K|z|) f(z)|$ is essentially bounded on $K \cap E$. Let $\mathcal{Q}_{\mathbb{D}_E}(V)$ designate the set of C^{∞} functions on $V \cap E$ whose higher derivatives are of exponential type. We denote by $\mathcal{Q}_{\mathbb{D}_E}$ the associated sheaf on \mathbb{D}_E of the presheaf $\{\mathcal{Q}_{\mathbb{D}_E}(V)\}_V$ and by $\mathcal{Q}_{\mathbb{D}_E}^{p,q}$ the sheaf on \mathbb{D}_E of (p, q)-forms with coefficients in $\mathcal{Q}_{\mathbb{D}_E}$. Set

$$\mathscr{Q}^k_{\mathbb{D}_E} = \bigoplus_{p+q=k} \, \mathscr{Q}^{p,q}_{\mathbb{D}_E}$$

Now we define the de-Rham complex $\mathscr{Q}^{\bullet}_{\mathbb{D}_{F}}$ on \mathbb{D}_{E} with coefficients in $\mathscr{Q}_{\mathbb{D}_{E}}$ by

$$0 \longrightarrow \mathscr{Q}^{0}_{\mathbb{D}_{E}} \xrightarrow{d} \mathscr{Q}^{1}_{\mathbb{D}_{E}} \xrightarrow{d} \dots \xrightarrow{d} \mathscr{Q}^{2n}_{\mathbb{D}_{E}} \longrightarrow 0,$$

and the Dolbeault complex $\mathscr{Q}_{\mathbb{D}_E}^{p,\bullet}$ on \mathbb{D}_E by

$$0 \longrightarrow \mathscr{Q}_{\mathbb{D}_E}^{p,0} \xrightarrow{\bar{\partial}} \mathscr{Q}_{\mathbb{D}_E}^{p,1} \xrightarrow{\bar{\partial}} \dots \xrightarrow{\bar{\partial}} \mathscr{Q}_{\mathbb{D}_E}^{p,n} \longrightarrow 0.$$

Let $\mathscr{O}_{\mathbb{D}_E}^{\exp}$ denote the sheaf of holomorphic functions of exponential type (at ∞) on \mathbb{D}_E .

We have the following proposition and theorem.

Proposition 2.1. Both the canonical morphisms of complexes below are quasi-isomorphic:

$$\mathbb{C}_{\mathbb{D}_E} \longrightarrow \mathscr{Q}^{\bullet}_{\mathbb{D}_E}, \qquad \mathscr{O}^{\exp,(p)}_{\mathbb{D}_E} \longrightarrow \mathscr{Q}^{p,\bullet}_{\mathbb{D}_E}.$$

Theorem 2.2. Assume that $V \cap E$ is Stein and that V is regular at ∞ . Then we have the quasi-isomorphism

$$\mathscr{O}^{\mathrm{exp},(p)}_{\mathbb{D}_E}(V) \longrightarrow \mathscr{Q}^{p,\bullet}_{\mathbb{D}_E}(V).$$

We have the edge of the wedge theorem for holomorphic functions of exponential type.

Theorem 2.3 ([3], Theorem 3.12). The complexes $\mathbf{R}\Gamma_{\mathbb{D}_M}(\mathscr{O}_{\mathbb{D}_E}^{\exp,(p)})$ and $\mathbf{R}\Gamma_{\mathbb{D}_M}(\mathbb{Z}_{\mathbb{D}_E})$ are concentrated in degree *n*. Furthermore, $\mathrm{H}^n_{\mathbb{D}_M}(\mathbb{Z}_{\mathbb{D}_E})$ is isomorphic to $\mathbb{Z}_{\mathbb{D}_M}$.

Define

$$\mathscr{B}^{\mathrm{exp},(p)}_{\mathbb{D}_{M}} := \mathrm{H}^{n}_{\mathbb{D}_{M}}(\mathscr{O}^{\mathrm{exp},(p)}_{\mathbb{D}_{E}}) \otimes_{\mathbb{Z}_{\mathbb{D}_{M}}} or_{\mathbb{D}_{E}/\mathbb{D}_{M}};$$
$$or_{\mathbb{D}_{E}/\mathbb{D}_{M}} := \mathrm{H}^{n}_{\mathbb{D}_{M}}(\mathbb{Z}_{\mathbb{D}_{E}}).$$

By Theorem 2.3, we have

$$\mathscr{B}^{\exp,(p)}_{\mathbb{D}_{M}}(\Omega) = \mathrm{H}^{n}_{\mathbb{D}_{M}}(V; \mathscr{O}^{\exp,(p)}_{\mathbb{D}_{E}}) \otimes_{\mathbb{Z}_{\mathbb{D}_{M}}(\Omega)} \mathrm{H}^{n}_{\mathbb{D}_{M}}(V; \mathbb{Z}_{\mathbb{D}_{E}})$$

for any open subset Ω in \mathbb{D}_M . Here V is an open subset in \mathbb{D}_E with $V \cap \mathbb{D}_M = \Omega$.

We can construct the boundary value map in a functorial way.

Theorem 2.4. Let U be an open subset in \mathbb{D}_E which satisfies $\mathbb{D}_M \subset \overline{U}$. Assume that U is cohomologically trivial in \mathbb{D}_E . Then we have the boundary value map

$$b_U: \mathscr{O}_{\mathbb{D}_E}^{\exp}(U) \longrightarrow \mathscr{B}_{\mathbb{D}_M}^{\exp}(\mathbb{D}_M).$$

Set $V_0 = \mathbb{D}_E \setminus \mathbb{D}_M$, $V_1 = \mathbb{D}_E$ and $V_{01} = V_0 \cap V_1$. Then define the coverings

$$\mathcal{V} = \{V_0, V_1\}, \qquad \mathcal{V}' = \{V_{01}\}.$$

Let $\mathscr{Q}_{\mathbb{D}_E}^{p,\bullet}(\mathcal{V},\mathcal{V}')$ denote the Čech-Dolbeault complex to the pair $(\mathcal{V},\mathcal{V}')$ of coverings with coefficients in $\mathscr{Q}_{\mathbb{D}_E}$, i.e.,

$$0 \longrightarrow \mathscr{Q}^{p,0}_{\mathbb{D}_E}(\mathcal{V}, \mathcal{V}') \xrightarrow{\overline{\vartheta}} \mathscr{Q}^{p,1}_{\mathbb{D}_E}(\mathcal{V}, \mathcal{V}') \xrightarrow{\overline{\vartheta}} \dots \xrightarrow{\overline{\vartheta}} \mathscr{Q}^{p,n}_{\mathbb{D}_E}(\mathcal{V}, \mathcal{V}') \longrightarrow 0.$$

Here

$$\mathscr{Q}^{p,k}_{\mathbb{D}_E}(\mathcal{V},\mathcal{V}') = \mathscr{Q}^{p,k}_{\mathbb{D}_E}(V_1) \oplus \mathscr{Q}^{p,k-1}_{\mathbb{D}_E}(V_{01}),$$

$$\overline{\vartheta}(\xi_1,\,\xi_{01})=(\overline{\partial}\xi_1,\,\xi_1|_{V_{01}}-\overline{\partial}\xi_{01}).$$

Let $\mathscr{Q}^{\bullet}_{\mathbb{D}_{E}}(\mathcal{V}, \mathcal{V}')$ denote the Čech - de-Rham complex to the pair $(\mathcal{V}, \mathcal{V}')$ of coverings with coefficients in $\mathscr{Q}_{\mathbb{D}_{E}}$.

$$0 \longrightarrow \mathscr{Q}^0_{\mathbb{D}_E}(\mathcal{V}, \mathcal{V}') \xrightarrow{D} \mathscr{Q}^1_{\mathbb{D}_E}(\mathcal{V}, \mathcal{V}') \xrightarrow{D} \dots \xrightarrow{D} \mathscr{Q}^{2n}_{\mathbb{D}_E}(\mathcal{V}, \mathcal{V}') \longrightarrow 0,$$

where D is used to denote the differential of this complex.

Theorem 2.5. We have the canonical quasi-isomorphisms:

$$\mathbf{R}\Gamma_{\mathbb{D}_M}(\mathbb{D}_E; \mathscr{O}_{\mathbb{D}_E}^{\exp,(p)}) \simeq \mathscr{Q}_{\mathbb{D}_E}^{p,\bullet}(\mathcal{V}, \mathcal{V}'), \qquad \mathbf{R}\Gamma_{\mathbb{D}_M}(\mathbb{D}_E; \mathbb{C}_{\mathbb{D}_E}) \simeq \mathscr{Q}_{\mathbb{D}_E}^{\bullet}(\mathcal{V}, \mathcal{V}').$$

In what follows, we constantly use the notations below:

$$\mathrm{H}^{p,k}_{\overline{\vartheta},\mathscr{Q}}(\mathcal{V},\,\mathcal{V}'):=\mathrm{H}^{k}(\mathscr{Q}^{p,\bullet}_{\mathbb{D}_{E}}(\mathcal{V},\,\mathcal{V}')),\qquad\mathrm{H}^{k}_{D,\mathscr{Q}}(\mathcal{V},\,\mathcal{V}'):=\mathrm{H}^{k}(\mathscr{Q}^{\bullet}_{\mathbb{D}_{E}}(\mathcal{V},\,\mathcal{V}')).$$

Hence we have

$$\mathscr{B}^{\mathrm{exp},(p)}_{\mathbb{D}_{M}}(\mathbb{D}_{M}) \simeq \mathrm{H}^{p,n}_{\overline{\vartheta},\mathscr{Q}}(\mathcal{V},\,\mathcal{V}') \,\otimes_{\mathbb{Z}_{\mathbb{D}_{M}}(\mathbb{D}_{M})} \, or_{\mathbb{D}_{M}/\mathbb{D}_{E}}(\mathbb{D}_{M}).$$

§3. Laplace transformation

Let $(z_1 = x_1 + \sqrt{-1}y, \dots, z_n = x_n + \sqrt{-1}y_n)$ be the coordinates system of E. We fix the orientation of M and E so that $\{dx_1, dx_2, \dots, dx_n\}$ gives the positive orientation on M, and $\{dy_1, \dots, dy_n, dx_1, \dots, dx_n\}$ give the one on E. Let M^* and E^* be dual vector spaces of M and E respectively. Then we also define the radial compactification \mathbb{D}_{M^*} (resp. \mathbb{D}_{E^*}) of M^* (resp. E^*).

Let Ω be an open subset in \mathbb{D}_{E^*} and f a holomorphic function on Ω . We say that f is of infra-exponential type (at ∞) on Ω if, for any compact set $K \subset \Omega$ and any $\epsilon > 0$, there exists C > 0 such that

$$|f(\zeta)| \le Ce^{\epsilon|\zeta|} \qquad (\zeta \in K \cap E^*).$$

Let $\mathscr{O}_{\mathbb{D}_{E^*}}^{\inf}$ designate the set of holomorphic functions of infra-exponential type on \mathbb{D}_E . and let $\mathscr{A}_{\mathbb{D}_M}^{\exp}$ denote the sheaf of real analytic functions of exponential type. Let j: $M \to \mathbb{D}_M$ be the canonical inclusion. The sheaf $\mathscr{V}_{\mathbb{D}_M}^{\exp}$ of real analytic volumes of exponential type is given by

$$\mathscr{V}_{\mathbb{D}_{M}}^{\exp} = \left. \mathscr{O}_{\mathbb{D}_{E}}^{\exp,(n)} \right|_{\mathbb{D}_{M}} \otimes_{\mathbb{Z}_{\mathbb{D}_{M}}} or_{\mathbb{D}_{M}}.$$

Here $or_{\mathbb{D}_M} := j_* or_M$.

Definition 3.1. Let D be a subset in \mathbb{D}_E and non-zero $\zeta_0 \in E_{\infty}^*$. We say that D is properly contained in a half space (of \mathbb{D}_E) with direction ζ_0 if there exists a point $a \in E$ such that

(3.1)
$$\overline{D} \setminus \{a\} \subset \widehat{\{z \in E; \operatorname{Re}\langle z - a, \zeta_0 \rangle > 0\}}.$$

holds. In the similar way, for $\xi_0 \in M^*_{\infty}$, we say that a subset D in \mathbb{D}_M is properly contained in a half space (of \mathbb{D}_M) of direction ξ_0 if if there exists a point $a \in M$ such that

(3.2)
$$\overline{D} \setminus \{a\} \subset \widehat{\{x \in M; \langle x - a, \xi_0 \rangle > 0\}}.$$

Let K be a closed subset in \mathbb{D}_M properly contained in a half space of \mathbb{D}_M with direction $\xi_0 \in M^*_{\infty}$ and V its open neighborhood of K in \mathbb{D}_E . Set $U := \mathbb{D}_M \cap V$ and

$$\mathcal{V}_K := \{ V_0 := V \setminus K, V_1 := V \}, \qquad \mathcal{V}'_K := \{ V_0 \}.$$

Then we have

$$\Gamma_{K}(U; \mathscr{B}_{\mathbb{D}_{M}}^{\exp} \otimes_{\mathscr{A}_{\mathbb{D}_{M}}^{\exp}} \mathscr{V}_{\mathbb{D}_{M}}^{\exp}) \simeq \mathrm{H}_{\overline{\vartheta}, \mathscr{Q}}^{n, n}(\mathcal{V}_{K}, \mathcal{V}_{K}') \underset{\mathbb{Z}_{\mathbb{D}_{M}}(U)}{\otimes} or_{\mathbb{D}_{M}/\mathbb{D}_{E}}(U) \underset{\mathbb{Z}_{\mathbb{E}_{M}}(U)}{\otimes} or_{M}(U \cap M).$$

Let $u \otimes a_{\mathbb{D}_M/\mathbb{D}_E} \otimes a_M \in \Gamma_K(U; \mathscr{B}_{\mathbb{D}_M}^{exp} \otimes_{\mathscr{A}_{\mathbb{D}_M}^{exp}} \mathscr{V}_{\mathbb{D}_M}^{exp})$, and let $\nu = (\nu_1, \nu_{01}) \in \mathscr{Q}_{\mathbb{D}_E}^{n,n}(\mathcal{V}_K, \mathcal{V}_K')$ be a representative of u, i.e., $u = [\nu]$. For this element, we define the Laplace transformation as follows.

Definition 3.2. The Laplace transformation of u is defined by

$$L(u)(\zeta) := \int_D e^{-z\zeta} \nu_1 - \int_{\partial D} e^{-z\zeta} \nu_{01},$$

where D is a contractible open subset in \mathbb{D}_E with (partially) smooth boundary such that $K \subset D \subset \overline{D} \subset V$ and it is properly contained in a half space of \mathbb{D}_E with direction ξ_0 .

Note that L(u) is independent of the choices of a representative ν of u and D of the integral. Let Γ be a proper closed cone in M and $a \in M$. We denote by $\Gamma^{\circ} \subset E^*$ the dual open cone of Γ in E^* . Assume that $K = \overline{\{a\} + \Gamma}$. Then we have the following proposition.

Proposition 3.3. $e^{a\zeta}L(u)$ belongs to $\mathscr{O}_{\mathbb{D}_{E^*}}^{\inf}(N_{\infty}(\Gamma^{\circ})).$

§4. Inverse transformation

To construct a inverse Laplace transformation, we prepare some definitions. Let T be a real analytic manifold and set

$$Y := T \times \mathbb{D}_E, \qquad Y_{\infty} = T \times (\mathbb{D}_E \setminus E).$$

We denote by $p_T: Y \to T$ (resp. $p_{\mathbb{D}_E}: Y \to \mathbb{D}_E$) the canonical projection to T (resp. \mathbb{D}_E).

Let W be an open subset Y and f(t, z) a measurable function on $W \setminus Y_{\infty}$. We say that f(t, z) is of exponential type on W if, for any compact subset K in W, there exists $H_K > 0$ such that $|\exp(-H_K|z|) f(t, z)|$ is essentially bounded on $K \setminus Y_{\infty}$.

Now we introduce the set $\mathscr{LQ}_Y(W)$ consisting of a measurable function f(t, z) on $W \setminus Y_{\infty}$ which satisfies the following conditions:

- 1. For almost every t_0 in $p_T(W)$, $f(t_0, z)$ is a C^{∞} function of the variables z on $(p_T^{-1}(t_0) \cap W) \setminus Y^{\infty}$.
- 2. Any higher derivative of f(t, z) with respect to the variables z is of exponential type on W.

Let \mathscr{LQ}_Y^k denotes the sheaf on Y of k-forms with respect to the variables in \mathbb{D}_E , and let us define the de-Rham complex \mathscr{LQ}_Y^{\bullet} by

$$0 \longrightarrow \mathscr{L}\mathscr{Q}_Y^0 \xrightarrow{d_{\mathbb{D}_E}} \mathscr{L}\mathscr{Q}_Y^1 \xrightarrow{d_{\mathbb{D}_E}} \dots \xrightarrow{d_{\mathbb{D}_E}} \mathscr{L}\mathscr{Q}_Y^{2n} \longrightarrow 0,$$

where $d_{\mathbb{D}_E}$ is the differential on \mathbb{D}_E . We denote by $\mathscr{L}^{\infty}_{loc,T}$ the sheaf of L^{∞}_{loc} -functions on T. We have the following two propositions.

Proposition 4.1. We have the quasi-isomorphism

$$p_T^{-1}\mathscr{L}^{\infty}_{loc,T} \longrightarrow \mathscr{L}\mathscr{Q}^{\bullet}_Y.$$

Proposition 4.2. The complex $\mathbf{R}\Gamma_{p_{\mathbb{D}_{E}}^{-1}(\mathbb{D}_{M})}(p_{T}^{-1}\mathscr{L}_{loc,T}^{\infty})$ is concentrated in degree n, and we have the canonical isomorphism

$$\tilde{p}_T^{-1}\mathscr{L}^{\infty}_{loc,T} \otimes_{\mathbb{Z}_Y} or_{p_{\mathbb{L}_E}^{-1}(\mathbb{D}_M)/Y} \longrightarrow \mathrm{H}^n_{p_{\mathbb{D}_E}^{-1}(\mathbb{D}_M)}(p_T^{-1}\mathscr{L}^{\infty}_{loc,T}),$$

where $\tilde{p}_T : p_{\mathbb{D}_E}^{-1}(\mathbb{D}_M) = T \times \mathbb{D}_M \to T$ is the canonical projection.

Let Γ be an \mathbb{R}_+ -conic proper open subset in M and $a \in M$. Let $f \in e^{-a\zeta} \mathscr{O}_{\mathbb{D}_{r^*}}^{\inf}(N_{\infty}(\Gamma^{\circ}))$. Then, by the definition, we can easily see:

1. There exists a continuous function $\psi : (N_{\infty}(\Gamma^{\circ}) \cap M_{\infty}^{*}) \times [0, \infty) \to \mathbb{R}_{\geq 0}$ such that, for each $\xi_{*} \in (N_{\infty}(\Gamma^{\circ}) \cap M_{\infty}^{*})$, the function $\psi(\xi_{*}, t)$ is an infra-linear function of the variable t and f is holomorphic on an open subset $W \cap E^{*}$, where (4.1)

$$W := \widehat{} \{ \zeta = t\xi_* + \sqrt{-1}\eta; \, \eta \in M^* \setminus \{0\}, \, \xi_* \in (N_{\infty}(\Gamma^{\circ}) \cap M_{\infty}^*), \, t > \psi(\xi_*, |\eta|) \}$$

Here we identify M_{∞}^* with $S^{n-1} \subset M^*$.

2. There exists a continuous infra-linear function $\varphi(t)$ on $[0,\infty)$ such that

(4.2)
$$|f(\zeta)| \le e^{-\operatorname{Re}(a\zeta) + \varphi(|\zeta|)} \qquad (\zeta \in W \cap E^*).$$

We also define an *n*-dimensional chain in E^* by

$$\gamma^* := \{ \zeta = \xi + \sqrt{-1}\eta \in E^*; \ \eta \in M^* \setminus \{0\}, \ \xi = \psi_{\xi_0}(|\eta|) \, \xi_0 \},\$$

where ξ_0 is a unit vector in $N_{\infty}(\Gamma^{\circ}) \cap M_{\infty}^*$ and $\psi_{\xi_0}(t)$ is a continuous infra-linear function on $[0,\infty)$ with $\psi_{\xi_0}(t) > \psi(\xi_0,t)$ $(t \in [0,\infty))$. Set $T = S^{n-1}$ and $Y = S^{n-1} \times \mathbb{D}_E$. Define coverings

$$\mathcal{W} = \{ W_0 = Y \setminus p_{\mathbb{D}_E}^{-1}(\mathbb{D}_M), W_1 = Y \}, \qquad \mathcal{W}' = \{ W_0 \}.$$

Recall the isomorphisms

$$\begin{split} \Gamma(T;\,\mathscr{L}^{\infty}_{loc,T}) &= \Gamma(Y;\,\tilde{p}_{T}^{-1}\mathscr{L}^{\infty}_{loc,T}) \\ \xrightarrow{\sim} \mathrm{H}^{n}_{p_{\mathbb{L}_{E}}^{-1}(\mathbb{D}_{M})}(Y;\,p_{T}^{-1}\mathscr{L}^{\infty}_{loc,T}) = \mathrm{H}^{n}(\mathscr{L}\mathscr{Q}^{\bullet}_{Y}(\mathcal{W},\mathcal{W}')), \end{split}$$

and set

$$\Omega := \widehat{} \{ (\eta, z) \in S^{n-1} \times E; \, \langle \eta, \operatorname{Im} z \rangle > 0 \} \subset Y.$$

Let $j : \Omega \to Y$ be the canonical open inclusion. Then we can take a special $\omega = (\omega_1, \omega_{01}) \in \mathscr{LQ}_Y^n(\mathcal{W}, \mathcal{W}')$ satisfying the following conditions:

- 1. $D_{\mathbb{D}_E}\omega = 0$ and $[\omega]$ is the image of a constant function $1 \in \Gamma(T; \mathscr{L}^{\infty}_{loc,T})$ through the above isomorphisms.
- 2. We have

$$\operatorname{Supp}_{W_1}(\omega_1) \subset \Omega$$
, $\operatorname{Supp}_{W_{01}}(\omega_{01}) \subset \Omega$.

Now we define the inverse Laplace transformation.

Definition 4.3. The inverse Laplace transform L^{-1} is given by

$$L_{\omega}^{-1}(f) := \frac{\nu_{\mathbb{D}_{M}}}{(2\pi\sqrt{-1})^{n}} \Big(\int_{\gamma^{*}} f(\zeta) \,\rho(\omega_{1})(\frac{\eta}{|\eta|}, z) \, e^{\zeta z} \, d\zeta,$$
$$\int_{\gamma^{*}} f(\zeta) \,\rho(\omega_{01})(\frac{\eta}{|\eta|}, z) \, e^{\zeta z} \, d\zeta \Big).$$

Here $\zeta = \xi + \sqrt{-1}\eta$ and $\nu_{\mathbb{D}_M} = dz \otimes a_{\mathbb{D}_M/\mathbb{D}_E} \in \mathscr{V}_{\mathbb{D}_M}^{\exp}(\mathbb{D}_M)$, where $a_{\mathbb{D}_M/\mathbb{D}_E} \in or_{\mathbb{D}_M/\mathbb{D}_E}(\mathbb{D}_M)$ is determined by the orientation of γ^* through the isomorphism $or_{\sqrt{-1}M^*} \simeq or_{\mathbb{D}_M^*/\mathbb{D}_{E^*}} \simeq or_{\mathbb{D}_M/\mathbb{D}_E}$.

We have the following proposition.

Proposition 4.4. We have

- 1. The integration $L_{\omega}^{-1}(f)$ converges and it belongs to $\mathscr{Q}_{\mathbb{D}_{E}}^{n,n}(\mathcal{V},\mathcal{V}')\otimes\mathscr{V}_{\mathbb{D}_{M}}^{\exp}$. Furthermore, $\overline{\vartheta}(L_{\omega}^{-1}(f))=0$ holds.
- 2. $[L_{\omega}^{-1}(f)]$ does not depend on the choices of ω . It also independent of ξ_0 and ψ_{ξ_0} which appear in the definition of γ^* .
- 3. The support of $[L^{-1}(f)]$ is contained in $K := \overline{\{a\} + \Gamma} \subset \mathbb{D}_M$.

We have the Laplace inversion formula.

Theorem 4.5. We have

$$L \circ L^{-1} = \mathrm{id}, \qquad L^{-1} \circ L = \mathrm{id}.$$

References

- N. Honda, Hyperfunctions and Čech-Dolbeault cohomology in the microlocal point of view, in this volume.
- [2] N. Honda and K. Umeta, A Cech-Dolbeaulet construction of Laplace hyperfunctions, to appear.
- [3] N. Honda and K. Umeta, Laplace hyperfunctions in several variables, Journal of the Mathematical Society of Japan, Vol. 70 (2018), 111-139.
- [4] N. Honda and K. Umeta, On the sheaf of Laplace hyperfunctions with holomorphic parameters, J. Math. Sci. Univ. Tokyo, 19 (2012), 559-586.
- [5] H. Komatsu, Laplace transforms of hyperfunctions: A new foundation of the Heaviside calculus, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 34 (1987), 805-820.
- [6] _____ Laplace transforms of hyperfunctions: another foundation of the Heaviside operational calculus, Generalized functions, convergence structures, and their applications (Proc. Internat. Conf., Dubrovnik, 1987; B. Stanković, editor), Plenum Press, New York (1988), 57-70.
- [7] _____ Operational calculus, hyperfunctions and ultradistributions, Algebraic analysis (M. Sato Sixtieth Birthday Vols.), Vol. I, Academic Press, New York (1988), 357-372.
- [8] _____ Operational calculus and semi-groups of operators, Functional analysis and related topics (Proc. Internat. Conf. in Memory of K. Yoshida, Kyoto, 1991), Lecture Notes in Math., vol. 1540, Springer-Verlag, Berlin (1993), 213-234.
- [9] _____, Multipliers for Laplace hyperfunctions a justification of Heaviside's rules, Proceedings of the Steklov Institute of Mathematics, **203** (1994), 323-333.
- [10] _____, Solution of differential equations by means of Laplace hyperfunctions, Structure of Solutions of Differential Equations (1996), 227-252.
- [11] _____ An introduction to ultra-distributions, Iwanami Kiso Sûgaku (1978) in Japanese.
- [12] T. Suwa, Relative Dolbeault cohomology and Sato hyperfunctions, in this volume.