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Laplace hyperfunctions from the viewpoint of
Cech-Dolbeault cohomology

By

Kouner UMETA*

Abstract

In this note. we introduce Laplace hyperfunctions from the view point of Cech-Dolbeault
cohomology. Furthermore, we construct a Laplace transformation for a Cech-Dolbeault repre-
sentation of a Laplace hyperfunction.

8§1. Introduction

Recently, T. Suwa [12] and N. Honda [1] study the theory of Sato’s hyperfunctions
from the viewpoint of the Cech-Dolbeault cohomology. In their studies, a hyperfunction
on R™ can be represented by a pair (71, 701), where 71 is a (0, n)-form of C*°-coefficients
on C" and 797 is (0,n — 1)-form of a C*°-coefficients on C™ \ R"™. The one of advantages
for such a presentation is that we can employ, in the theory of hyperfunctions, the
similar techniques as those in the C*° category such as the partition of unity.

H. Komatsu ([5]-[11]) introduced the theory of Laplace hyperfunctions of one variable
in order to consider the Laplace transform of a hyperfunction. The theory of Laplace
hyperfunctions in several variables has been established by the author and N. Honda
([3],[4]). As we did in the hyperfunction theory, it is quite natural to study a Laplace
hyperfunction from the viewpoint of the Cech-Dolbeault cohomology. In this note, we
first describe a Laplace hyperfunction as a pair of C'*° forms of exponential growth order
at 0o by using Cech-Dolbeault cohomology. Then, we define a Laplace transformation
of a Cech-Dolbeault representative of a Laplace hyperfunction and its inverse Laplace
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transformation in our settings. For details, we refer the reader to the forthcoming paper
[2].

At the end of this section, the author would like to express my gratitude to Professor
Tatsuo Suwa and Professor Naofumi Honda for the valuable advises.

§2. Laplace hyperfunctions of a Cech-Dolbeault representation

Let n € N and let M be an n-dimensional R-vector space, and let E be a complex-
ification M &g C of M. We denote by E* (resp. M*) the set E \ 0 (resp. M \ 0) and
by R, the set of positive real numbers. Let Dg (resp. Dys) be the radial compacitfica-
tion E U E*/Ry (resp. M U M*/R,) of E (resp. M). We set M., := Dy \ M and
E. =Dg \ E. For a subset T' C Dg, the subset No(T) in E is defined by

Noo(T) := Exs \ (E\T),

where the closure is taken in Dg. Let U be an open subset in E. We also the open
subset U in Dg by
U:=UUN4x(U).

We sometimes write “U instead of U.

Let V be an open subset in Dg and f a measurable function on V' N E. We say that
f is of exponential type (at o) on V if, for any compact subset K in V', there exists
Hpg > 0 such that |exp(—Hg|z|) f(2)| is essentially bounded on K N E. Let 2p, (V)
designate the set of C*° functions on V' N E whose higher derivatives are of exponential
type. We denote by 2y, the associated sheaf on Dg of the presheaf {2, (V)}y and
by 257 the sheaf on D of (p, q)-forms with coefficients in 2p . Set

ok _ oP-4q
25, = P <&

ptqg=k

Now we define the de-Rham complex 25 on Dg with coefficients in 2y by
0— 23 Lol 4. Lok o
and the Dolbeault complex 25* on Dg by
0— 280 2 opl 2, 0, gpn )
Let 017 denote the sheaf of holomorphic functions of exponential type (at oc) on Dpg.

We have the following proposition and theorem.
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Proposition 2.1. Both the canonical morphisms of complexes below are quasi-isomorphic:

Cp, — 23, O5>" — 28°.

Theorem 2.2. Assume that V N E is Stein and that V is regular at oo. Then we
have the quasi-isomorphism

PP (V) — 280 (V).

We have the edge of the wedge theorem for holomorphic functions of exponential
type.

Theorem 2.3 ([3], Theorem 3.12). The complezes RI’BM(ﬁE’:”(p)) and RT'p,, (Zp,)
are concentrated in degree n. Furthermore, Hy (Zpy) is isomorphic to Zp,,.

Define

exp,(p) ._ yyn exp,(p)
‘@DA[ T D (ﬁfﬁg ) ®ZIDM OTDE/DAI’

OTDg /By = g,u (Zpg)-
By Theorem 2.3, we have
250 P Q) =1 (V; o5 P)) ®z5,, (@) Hb,, (Vi Zpg)
for any open subset €2 in Dj;. Here V is an open subset in Dg with V N, = Q.

We can construct the boundary value map in a functorial way.

Theorem 2.4. Let U be an open subset in D which satisfies Dy C U. Assume
that U is cohomologically trivial in Dg. Then we have the boundary value map

bU : ﬁ]E);p(U) — f%g;f(DA[),
Set Vo = Dg \ Dar, V4 = Dg and Vo = Vo N Vi. Then define the coverings
V= {Vo, i}, V= {Voi}.

Let 25°(V, V') denote the Cech-Dolbeault complex to the pair (V, V') of coverings
with coefficients in 2y, i.e.,

0— 22°v, V) 5 22w, V) s T 9By, V) — 0.

Here
28RV, V) = 288 (V) & 285 Vo),
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91, &o1) = (061, Elvy, — Oor).

Let 28 (V, V') denote the Cech - de-Rham complex to the pair (V, V') of coverings
with coefficients in 2p,.

0— 25 Vv, V)25 a2b v,v) 2. 5o v) oo
where D is used to denote the differential of this complex.
Theorem 2.5. We have the canonical quasi-isomorphisms:
RIp, (Dp; 5> W) =~ 25°(V, V'),  RIp,, (Dg: Cp,) = 25 (V, V).
In what follows, we constantly use the notations below:
HES (0, V) = HA (2R (V. V), B o(V, V) = HYN (25, (V. V).
Hence we have

(%BJ:,(P) (]D)M) ~ H%’):;(V, V’) ®ZDM (Dar) OTDa/Dg (DM).

§3. Laplace transformation

Let (21 =21 +V—1y, -+, 2n =y + \/——_1yn) be the coordinates system of E. We
fix the orientation of M and F so that {dz1,dzs,...,dz,} gives the positive orientation
on M, and {dy,...,dy,,dz1,...,dz,} give the one on E. Let M* and E* be dual
vector spaces of M and E respectively. Then we also define the radial compactification
Dps+ (resp. Dg«) of M* (resp. E*).

Let © be an open subset in Dg- and f a holomorphic function on 2. We say that f
is of infra-exponential type (at co) on € if, for any compact set K C € and any ¢ > 0,
there exists C' > 0 such that

I£(O) < Cell (¢Ce KNEY).

Let ﬁg‘;* designate the set of holomorphic functions of infra-exponential type on Dg.
and let dgff’ denote the sheaf of real analytic functions of exponential type. Let j :
M < Dj; be the canonical inclusion. The sheaf 7/11361)\(1}) of real analytic volumes of
exponential type is given by

exp _  exp,(n) .
7/]]11\1 - ﬁDE D XZIL21\1 OTDps -

Here orp,, := j.orp;.
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Definition 3.1. Let D be a subset in Dg and non-zero (y € F* . We say that D is
properly contained in a half space (of Dg) with direction (j if there exists a point a € E
such that

(3.1) D\ {a} C “{z € E; Re(z — a, (o) > 0}.

holds. In the similar way, for {§s € M7, we say that a subset D in D, is properly
contained in a half space (of Dps) of direction &y if if there exists a point a € M such
that

(3.2) D\ {a} C “{x € M; (z —a, &) > 0}.

Let K be a closed subset in Dy, properly contained in a half space of D, with
direction &, € MZ and V its open neighborhood of K in Dg. Set U := Dy, NV and

Vi ={Vo =V \K, V; =V}, Vi :={Vo}.

Then we have

'k (U; @E’;i) ®g¢";e;\<; “/4];;1)) ~ Hg”;(VK, VKI> ) %U) OTDM/IDE(U) . ®(U) orp(UNM).
M =M

Car
be a representative of u, i.e., u = [v]. For this element, we define the Laplace transfor-

mation as follows.

Let u®ap,, /p, ®an € Tk (U; %g’jf’ood;:; VoF), and let v = (vy. vo1) € 257 (Vk. Vi)

Definition 3.2. The Laplace transformation of u is defined by

L(u)(¢) ;:/De—%yl—/a[)e*z%l.

where D is a contractible open subset in Dp with (partially) smooth boundary such
that K C D C D C V and it is properly contained in a half space of Dy with direction

€o-

Note that L(u) is independent of the choices of a representative v of u and D of the
integral. Let I' be a proper closed cone in M and a € M. We denote by I'° C E* the
dual open cone of I" in E*. Assume that K = {a} + . Then we have the following
proposition.

Proposition 3.3. ¢ L(u) belongs to OF! (Nu (I°)).

§4. Inverse transformation

To construct a inverse Laplace transformation, we prepare some definitions. Let T
be a real analytic manifold and set

YIZTXDE, YOC:TX(DE\E)
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We denote by pr : Y — T (resp. pr, : Y — Dg) the canonical projection to T (resp.
DEg).

Let W be an open subset Y and f(t,z) a measurable function on W \ Y,,. We say
that f(t, z) is of exponential type on W if, for any compact subset K in W, there exists
Hp > 0 such that |exp(—Hg |z|) f(t, z)| is essentially bounded on K \ Y.

Now we introduce the set £ 2y (W) consisting of a measurable function f(t.z) on
W\ Y which satisfies the following conditions:

1. For almost every to in pr(W), f(to,z) is a C°° function of the variables z on
(b7 (to) N W) \ Y.

2. Any higher derivative of f(t, z) with respect to the variables z is of exponential type
on W.

Let ffglf/ denotes the sheaf on Y of k-forms with respect to the variables in Dy, and
let us define the de-Rham complex £ 25, by
0 dp 1 dp dp 2n
0— 292y 529, 5. ... -8 29" 0,

where dp,, is the differential on Dg. We denote by _focT the sheaf of L} -functions on

T. We have the following two propositions.
Proposition 4.1. We have the quasi-isomorphism
Pl Lier — L2

Proposition 4.2. The complex RFPE;(DIW)(p;l"%g?LT) 18 concentrated in degree n,

and we have the canonical isomorphism
~—1 ¢poo —1 ¢poc
Pr "%oc,T ®zy OTpE; (Dar)/Y — H;L}E; (IDM)(pT ZOC,T)’
where pr : p]l_); (Dp) =T x Dpy — T is the canonical projection.
Let I' be an R -conic proper open subset in M and a € M.
Let f € e”* O (Noo(I°)). Then, by the definition, we can easily see:

1. There exists a continuous function ¢ : (N (I'°) N ML) x [0,00) — R>g such that,
for each & € (Noo(I'°) N M%), the function (&, t) is an infra-linear function of
the variable ¢ and f is holomorphic on an open subset W N E*, where
(4.1)

W="{¢=t6 +V-1pne M*\{0}, & € (N (T°) N M), t > (&, In))}

Here we identify M7 with S"~! C M*.
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2. There exists a continuous infra-linear function ¢(t) on [0, o) such that

(42) }f(C)| < e~ Re(aQ)+(I<]) (C ceWwWn E*).

We also define an n-dimensional chain in E* by
7= =E+V-Ine EYne MU\ {0}, £ = g (Inl) &},

where &g is a unit vector in N (I') M, and 9¢, (t) is a continuous infra-linear function
on [0, 00) with v¢, (t) > ¥(&o,t) (t € [0,00)). Set T = S* 1 and Y = S" ! x Dg. Define
coverings

W:{WOZY\[)E;(IDHM) W1 :Y}, WIZ{W()}
Recall the isomorphisms
(T £50r) =T(Y: pr' L350 1)
— HZE;(DI\I)(Y; P?i”z?fcr) = H”(XQQ(W,W/)),
and set
Q:="{(n,2) € S" ' x E; (n,Imz) >0} C Y.
Let j : @ — Y be the canonical open inclusion. Then we can take a special w =
(w1,wo1) € Z2¢(W.W')) satisfying the following conditions:

1. Dpyw = 0 and [w] is the image of a constant function 1 € T(T; £ 1) through the
above isomorphisms.
2. We have

Suppyy, (w1) € Q, Suppy,, (wo1) C Q.

Now we define the inverse Laplace transformation.

Definition 4.3. The inverse Laplace transform L~! is given by

SUf) = wi) (L, 2) €% d,
15 0) = i (1 Osten (2 g

| 5@ oo (2 )

Here ¢ = {++/~1nand vp,, = dz®ap,, /p, € ”Vﬁ‘{p(]D)M), where ap,, /p, € orp,,/n, (Dar)
is determined by the orientation of v* through the isomorphism OT /a1~ =2 OTD, v /D e =

OTDy; /D -

We have the following proposition.
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Proposition 4.4. We have

1. The integration L;*(f) converges and it belongs to 2" (V, V') ® ¥ F. Further-
more, 9(L;Y(f)) = 0 holds.

2. [L;Y(f)] does not depend on the choices of w. It also independent of & and v,
which appear in the definition of v*.

3. The support of [L~1(f)] is contained in K := {a} + T C Dyy;.

We have the Laplace inversion formula.
Theorem 4.5. We have

LoL '=id, L loL=id.
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