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Movable Singularity and Blowup of Semi linear Wave
Equation

By

MasafumiYOSHINO*

Abstract

In this paper we shall show the blowup of the self‐similar radially symmetric solution of a
semi linear wave equation. The solution satisfies the semi linear Heun equation which is called
a profile equation. We construct a singular solution in terms of elliptic function and Birkhoff
normal form theory.

§1. Introduction

Let x=(x_{1}, \ldots, x_{n}),  n\geq 2 be the variable in  \mathbb{R}^{n} and  t\in \mathbb{R} . Consider the semi

linear wave equation with focusing nonlinearity

(ı.1)  U_{tt}-\triangle U-U^{3}=0,  U=U(x, t) ,  x\in \mathbb{R}^{\tau\iota},

where  U_{tt}=\partial^{2}U/\partial t^{2},  \triangle U=(\partial^{2}/\partial x_{1}^{2}+\cdots+\partial^{2}/\partial x_{n}
^{2})U . When we consider the blowup

of a solution, one often considers the self‐similar solution  U\equiv u_{\lambda}(x, t)  :=\lambda u(\lambda x, \lambda t) ,
 \lambda>0 . In this paper, we shall consider the self‐similar solution with radial symmetry

(1.2)  U :=(T-t)^{-1}u( \frac{r}{T-t})
where  T>0,  r^{2}=x_{1}^{2}+  \cdot\cdot\cdot  +x_{n}^{2} , and  u is a function of a single variable  y,  u=u(y) .
One can easily verify that  u satisfies the semi linear Heun equation

(1.3)  (1-y^{2}) \frac{d^{2}u}{dy^{2}}+(\frac{n-1}{y}-4y)\frac{du}{dy}-2u+u^{3}=0.
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The equation (1.3) is called a profile equation. It has four fixed regular singular points
at  y=0,  \pm 1,  \infty . By the movable singularity we mean the singularity  y\neq 0,  \pm 1,  \infty

which depends on the respective solution.

The blowup of the initial value problem of the semi linear wave equation has been

studied by many authors. In contrast with these results, our object in this paper is

to study the blowup phenomenon from the viewpoint of movable singularity of the

profile equation. Namely, we construct a solution of the profile equation with a movable

singularity at some point. This yields the existence of blowup solution of the semi linear

wave equation with singularities on the characteristic cone.

The idea of proof of the main theorem is to transform the corresponding Hamiltonian

system near the blowup point to a certain normal form by the similar argument as to

Birkhoff normal form theory. The full proof of the main theorem will be published
elsewhere.

This paper is organized as follows. In §2 we show the Birkhoff‐type reduction the‐

orem. In §3 we prove the existence of singular solution of the reduced profile equation

satisfying the requirements of the reduction theorem in §2. Then we state our result

concerning the existence of blowup solution of semi linear wave equation.

§2. Birkhoff reduction

Set  \overline{A}(y)=(1-y^{2})^{-1}(y^{-1}(n-1)-4y) and write (1.3) in

(2.l)   \frac{d^{2}u}{dy^{2}}+\~{A}  (y) \frac{du}{dy}-2 —ı -y^{2}u+ \frac{u^{3}}{1-y^{2}}=0.
We shall eliminate the term containing the first derivative of  u by introducing a new

unknown function  w with  u=\alpha w , where

(2.2)   \alpha(y)=\exp(-\frac{1}{2}\int_{y_{0}}^{y} \~{A}(s)ds) :

where  y_{0}\neq 0,  \pm 1,  \infty . The resultant equation is given by

(2.3)  w"+A(y)w+ \frac{\alpha^{2}}{1-y^{2}}w^{3}=0,
where

(2.4)  A(y)= \frac{1}{2} (-\~{A}\prime -\frac{\tilde{A}^{2}}{2}-\frac{4}{1-y^{2}})=
\frac{n-1}{2y^{2}(1-y^{2})^{2}}(\frac{3-n}{2}+y^{2})
By setting  w=q,  w'=p,  q_{1}=y and

(2.5)  B(q_{1}):= \frac{\alpha^{2}}{4(1-q_{1}^{2})},
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180 MOVABLE SINGULARITY AND BLOWUP

(2.3) is written in a Hamiltonian system with the Hamiltonian function  H(q_{1})

(2.6)  H(q_{1}):= \frac{1}{2}(p^{2}+A(q_{1})q^{2})+B(q_{1})q^{4}
Let  z_{0}\neq 0,  \pm 1 be such that  A(z_{0})B(z_{0})\neq 0 . Set  v= \frac{1}{2}(p^{2}+A(z_{0})q^{2}) . Let  q_{2} and

 p_{2} be the linear combinations of  q and  p such that  2v  :=p^{2}+A(z_{0})q^{2}=q_{2}p_{2} . Then we

have  B(z_{0})q^{4}=B(z_{0})(\beta q_{2}+\gamma p_{2})^{4} for some nonzero constants  \beta and  \gamma.  W^{\tau}e can write

the right‐hand side as the sum of  a(v)=cq_{2}^{2}p_{2}^{2} and the remaining ones uniquely, where
 c is a certain constant. We call  a(v) the resonance part. We have  H(q_{1})=v+a(v)+\overline{H}
for some  \overline{H}(q_{1}, q_{2}, p_{2}) which is a polynomial of  q_{2} and  p_{2}.

Consider the autonomous Hamiltonian  p_{1}+H(q_{1}) . Let  \overline{c} be a nonzero constant. We

shall transform  p_{1}+H(q_{1}) to  p_{1}+t'+a(v)+\overline{c}(q_{2}^{4}+p_{2}^{4})/4 formally. Indeed, we have

Theorem 2.1. There exists a formal symplectic transformation which transforms

 p_{1}+H to  p_{1}+v+a(v)+\overline{c}(q_{2}^{4}+p_{2}^{4})/4.

The proof is essentially  Birkhoff^{:}s reduction.

Next we shall give the meaning to the normal form given by Theorem 2.1. First we

introduce the homology equation.

Let  x=  ( qı,  \tilde{p}_{1},\overline{q}_{2},\overline{p}_{2}) and  y=(q_{1}, p_{1}, q_{2}, p_{2}) be the original and the transformed

variables, respectively. For simplicity we sometimes write  y=(y_{1}, \ldots, y_{4}) . We consider
the transformation  x=u(y) for some  u=(u_{1}\ldots. : u_{4}) . Define

(2.7)  R:=\chi_{H^{-}}, S:=\chi_{a(v)+\overline{c}(q_{2}^{4}+p_{2}^{4})/4},

where  \chi_{g} denotes the Hamiltonian vector field with Hamiltonian  g with respect to a

standard symplectic structure. Write  R=r(x) \frac{\partial}{\partial x} and  S=s(y) \frac{\partial}{\partial y}.
Define  \Lambda(y)=(1, 0, q_{2}/2, -p_{2}/2) . Thcn wc have

Lemma 2.2. Suppose that  u satisfy the homology equation

(2.8)  \Lambda(y)\nabla u+s(y)\nabla u=r(u)+\Lambda(u) .

Then, the transformation  x=u(y) maps the vector field  ( \Lambda(x)+r(x))\frac{\partial}{\partial x} to  (\Lambda(y)+

 s(y)) \frac{\partial}{\partial y}.

Proof.

(2.9)  ( \Lambda(x)+r(x))\frac{\partial}{\partial x}=(\Lambda(u)+r(u))(\nabla u)^{-1}
\frac{\partial}{\partial y}=(\Lambda(y)+s(y))\frac{\partial}{\partial y}.
 \square 
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We shall solve (2.8). Define

(2.10)  q_{2}=\alpha\zeta, p_{2}=\eta\zeta_{:}

where  \zeta is a complex parameter. Assume that  \alpha and  \eta satisfy

(2.11)  2c\alpha^{2}\eta^{2}(\eta-\alpha)+\overline{c}(\eta^{5}-\alpha^{5})\neq 0, \eta
+\alpha\neq 0.

Let  \eta_{0}>0 be given. Set  \rho=q_{2}+p_{2} and define

(2.12)  \Omega_{0} :=\{(\rho, q{\imath}) ||q_{1}-z_{0}|<\eta_{0}, |\rho|<\eta_{0}\}.

Then we have

Theorem 2.3. Suppose that  \alpha and  \eta satisfy (2.11). Then there exist6 an  \eta_{0}>0

such that if  p_{1} is in some neighborhood of the origin and  (q_{1}, q_{2_{・}}.p_{2}) is given by (2.10)
with  q_{2} and  p_{2} replaced by  q_{2}^{-1} and  p_{2}^{-1} , respectively, and  \zeta=(\alpha+\eta)^{-1}\rho,  (q_{1}, \rho)\in\Omega_{0},
then the vector field  ( \Lambda(x)+r(x))\frac{\partial}{\partial x} is transformed to  ( \Lambda(y)+s(y))\frac{\partial}{\partial y} by an analytic
change of coordinates.

§3. Movable singularity and blowup solution

In this section we shall construct a solution of (1.3) with movable singularity and
state our main result. In view of Theorem 2.3 we consider the Hamiltonian  p_{1}+q_{2}p_{2}+

 cq_{2}^{2}p_{2}^{2}+\overline{c}(q_{2}^{4}+p_{2}^{4}) , where  c\neq 0 and  \overline{c}\neq 0 are constants. By setting  q_{2}=q and  p_{2}=p

we consider the Hamiltonian

(3.1)   \overline{H} :=qp+\frac{\varepsilon}{2}q^{2}p^{2}-\frac{\eta}{8}(q^{2}-p^{2})^
{2},
where  \epsilon and  \eta\neq 0 are constants. Because  \overline{c} can be chosen arbitrarily, we may assume
 \epsilon\neq 0,  \epsilon+\eta\neq 0 without loss of generality. Suppose that  (q, p) is the solution of the

Hamiltonian system for  \overline{H} . Then there exists a constant  C_{2} such that  \overline{H}(q, p)\equiv C_{2}.
Define

(3.2)   \zeta=\frac{q+p}{2}, \xi=\frac{q-p}{2_{i}}.
Then we have

(3.3)  C_{2}= \overline{H}=(\zeta^{2}+\xi^{2})+\frac{\epsilon}{2}(\zeta^{2}+\xi^{2})
^{2}+2\eta\zeta^{2}\xi^{2}

 = \frac{\epsilon+\eta}{2}(\zeta^{2}+\xi^{2}+\frac{1}{\epsilon+\eta})^{2}-
\frac{1}{2(\epsilon+\eta)}-\frac{\eta}{2}(\zeta^{2}-\xi^{2})^{2}
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Hence we have

(3.4)  1= \frac{(\epsilon+\eta)^{2}}{A}(\zeta^{2}+\xi^{2}+\frac{1}{\epsilon+\eta})^{2}
-\frac{\eta(\epsilon+\eta)}{A}(\zeta^{2}-\xi^{2})^{2}
where  A=1+2C_{2}(\epsilon+\eta) . We determine  \theta=\theta(z) such that

(3.5)   \sin^{2}\theta=\frac{(\epsilon+\eta)^{2}}{A}(\zeta^{2}+\xi^{2}+\frac{1}
{\epsilon+\eta})^{2}, \cos^{2}\theta=-\frac{\eta(\epsilon+\eta)}{A}(\zeta^{2}-
\xi^{2})^{2}
Then, by (3.5) and simple computations we have

(3.6)  \zeta\equiv\zeta(z)=\sqrt{\frac{\sqrt{\frac{A(\epsilon+\eta)}{-\eta}}\cos\theta
+\sqrt{A}}{2(\epsilon+\eta)}}sın  \theta-1,

(3.7)  \xi\equiv\xi(z)

Set  X(z)=\sin?(z)+\eta\epsilon^{-1}/\sqrt{A} and define

(3.8)  \mathcal{A}=\sqrt{\mathcal{E}+\frac{i}{2}\sqrt{\mathcal{F}}}, \mathcal{B}=\sqrt
{\mathcal{E}-\frac{i}{2}\sqrt{\mathcal{F}}},
where

(3.9)   \mathcal{E}=\frac{1}{2(\epsilon+\eta)}(\sqrt{A}X(z)-\eta\epsilon^{-1}-1)
\backslash 
(3.10)   \mathcal{F}=\frac{A}{\eta(\epsilon+\eta)}(1-(X(z)-\eta\epsilon^{-1}/\sqrt{A})^
{2}) .

Then wc  \sec that  \zeta=\mathcal{A} and  \xi=\mathcal{B} . Therefore, by (3.2) we obtain

(3.ıl)  q(z)=\mathcal{A}+i\mathcal{B},  p(z)=\mathcal{A}-i\mathcal{B}.

Then we have

Lemma 3.1.  X(z) is an elliptic function.

In view of (3.11) we see that the solution has movable singularity given by the elliptic
function. By virtue of the parametrization via the eıliptic function, we shall construct

the blowup solution of (1.1) with singularities on some characteristic cone. Let  a(v) be
as in Theorem 2.1. Then we have

Theorem 3.2. Let  T>0 . Assume that  z_{0}\neq 0,  \pm 1 . Given a neighborhood  \Omega_{0} of  z_{0}.

Then there exist  z_{1}\in\Omega_{0} and a blowup solution  U of (1.1) such that  U blows up on the
set  z_{1}(T-t)=r,  r^{2}=x_{1}^{2}+\cdots+x_{n}^{2} ,  (t_{:}x)\in \mathbb{R}^{n+1}
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Proof. We shall look for  u in (1.2) such that  u satisfies (1.3) and has a movable
singularity. Indeed, we inake the reduction as in Theorem 2.3 to (1.3) and we obtain
the autonomous system. Indeed, the assumption (2.11) is the condition for  q_{2} and  p_{2},

which can be satisfied in view of the parametrization of singular solution in the above

by slight change of parameters.

Therefore we obtain a singular solution of (1.3) parametrized by the solution of the
autonomous equation. Next one can easily show that there is a local diffeomorphic

change of variables in some neighborhood of  z_{0} between the original variable  \tilde{q}_{1} and

 q_{1} . By expressing the singular solution in terms of the variable of (1.3) we obtain the
singular solution of (1.3). The location of singularity is clear in view of the definition
of a radially symmetric self‐similar solution.  \square 
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