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Abstract

We present a brief review on curvelets while describing their related topics in efficient

representations for a nlultivariate f.unction. Starting tronl the approxiulation theory by a

franle in a Hilbert space, we attelnpt to construct a f.anlily of curvelets and to show that

it fornls a tight t.ranle. A short introduction of other multiscale multidirectional methods,

1lamely, ridgelets, shearlets and contourlets, is also presented.

1 Efficient Representations for an Image

In neuropsychological studies, the importance of directional sensitivity in the efficient

processing of natural images by the human brain has been a major finding, as in a seminal

study by Field and Olshausen in Nature [41]. Research on efficient representations of
images has also been conducted in both the fields of applied mathematics and electrical

engineering, especially computational harmonic analysis and signal processing.

As a typical example, wavelet systems are widely used for a range of image processing

tasks, as well as in other scientific fields. For additional details on wavelets and their

applications, see [51, 38]. Despite their popularity, however, wavelet‐based approaches
are not very effective when dealing with multivariate data, i.e., an image in \mathbb{R}^{2} , that

contains singularities along curved edges due to their support (see Figure 1).
This problem had been recognized in the early filter bank literature, and, in order to

tackle this obstacle, a number of directional wavelet‐based approaches have been pro‐

posed, including the steerable pyramid (Simoncelli et al. [46]), directional filter banks
(Bamberger and Smith [3]), nonseparable multidimensional wavelets (Kovačevič and Vet‐
terli [30]),  2D directional wavelets (Antoine et al. [1]), and complex wavelets (Kingsbury
[29]).

However, even though they frequently outperform standard wavelets in some applica‐

tions, none of these methods provides optimally sparse approximations of multivariate

data that have anisotropic features. The fundamental reason for this failure is that these

approaches are not truly multidimensional extensions of the waveıet approach.
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Figure 1: Representations of a curved edge by a wavelet (left) and an ideal lnethod (right).

A breakthrough occurred with the introduction of curvelets by Candès and Donoho in

2004 [10]. This approach has brought about significant developments in this field and
has established a new kind of multiscale method, called geometric multiscale analysis.

The decade from 2000 to 2010 saw developments in geometric multiscale analysis, as

well as several other developments in directional wavelets in multidimensions, which are

referred to as  X‐lets, including bandelets [42, 43], brushlets [40], contourlets [21], curvelets
[10, 11, 12], directionlets [54], framelets [20], grouplets [39], ridgelets [7, 8], shearlets [31],
and wedgelets [22]. We will not, however, introduce all types of  X‐lets here, but for a
brief introduction of X lets, please see [37].

Contents

In this paper, we focus on curvelets and their related topics. There are two generations

of curvelets. The first‐generation curvelets is developed in a continuous domain with

multiscale filtering and a block ridgelet transform on each bandpass image [9], whereas
the second‐generation curvelets are constructed by direct  2D frequency partitioning based

on polar coordinates without the ridgelet transform [10]. Although a well‐written review
paper has been published by Ma and Plonka [37], they concentrated primarily on second‐
generation curvelets. This paper is intended to include a much wider range of topics

regarding all generations of curvelets.

This paper is organized as follows. In Sections 2 and 3, we introduce an approximation

theory and a frame theory, respectively, because curvelets form a tight frame. Section

4 introduces ridgelets, which are used in the construction of first‐generation curvelets.

Sections 5 and 6 introduce first‐ and second‐generation curvelets. respectively, and their

applications. Finally, we mention other multidirectional wavelets, namely, shearlets and

contourlets, in Section 7.
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2 Approximation Theory

We begin with a classical approximation theory for a function in a Hilbert space. In

particular, we consider  L^{2}(\mathbb{R}^{2}) throughout this paper. Let  \{\phi_{m}\}_{m=1}^{\infty} be an orthonormal

basis of  L^{2}(\mathbb{R}^{2}) . For all  f\in L^{2}(\mathbb{R}^{2}) , we have the expansion

 f= \sum_{m=1}^{\infty}\langle f, \phi_{m}\}\phi_{m} , (1)

where  \langle f,  g \rangle=\int_{R^{2}}f(x)\overline{g(x)}dx is an inner product, and  \overline{z} is the complex conjugate of

 z . The norm is defined as  \Vert f\Vert=\{f,  f\rangle^{1/2} . This expansion gives an exact reconstruction

of  f in the  L^{2} sense, but, for some computations, it is convenient to consider a linear

approximation with the finite sum:

 f]_{1I}= \sum_{rn=1}^{M}\langle f, \phi_{m}\rangle\phi_{\gamma\eta},
which is referred to as the  \Lambda I‐term linear approximation of  f . In general, this expansion

produces an approximation error  \Vert f-f_{M}\Vert^{2} , which depends on M. Since  \{\phi_{m}\}_{m=1}^{\infty} is an

orthonormal basis of  L^{2}(\mathbb{R}^{2}) , the resulting approximation error  \Vert f-f_{11I}\Vert^{2} is written as

the sum of the remaining coefficients:

  \Vert f-f_{M}\Vert^{2}=\sum_{m=M+1}^{\infty}|\langle f, \phi_{m}
\rangle\phi_{m}|^{2}
While the quality of  f_{J^{1},I} depends on properties of the basis function  \{\phi_{m}\}_{m=1}^{M} , the best

approximation that minimizes  \Vert f-fl1I\Vert^{2} is obtained by selecting the  M largest terms

of the coefficients  |\{f, \phi_{m}\}| by a threshold  T_{\Lambda J}>0 , which is referred to as the nonlinear

approximation of  f :

 f_{\Lambda J}= \sum_{m\in I_{\Lambda f}}\langle f, \phi_{m}\rangle\phi_{m},
where  I_{J1I}=\{m\in \mathbb{N} : |\langle f, \phi_{m}\rangle|>T_{1\downarrow l}\} . The approximation error immediately follows

from   \Vert f-f_{\Lambda I}\Vert^{2}=\sum_{m\not\in J_{\Lambda f}}\langle f,  \phi_{m}\rangle\phi_{m} . For some applications, such as image compression,

we want to have a sparse representation of  f . In general, if an image  f is uniformly

regular, i.e.,  f\in C^{\alpha} , and if a wavelet  \psi has   p>\alpha vanishing moments, then there exists
a constant  C>0 such that

 \Vert f-f_{\Lambda l}\Vert^{2}\leq CM^{-\alpha}, \lrcorner \mathfrak{h}
Iarrow\infty,

where we assumed that  f_{I\backslash l} is obtained by the best  \lrcorner\lambda l wavelet terms. This is a fairly

good approximation rate and is the reason why a wavelet system is known to provide an
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optimally sparse approximation of a function, as compared with traditional Fourier‐based
methods.

However, if an image has discontinuities along outside curves, the best  M‐term wavelet
approximation fails as

 \Vert f-f_{M}\Vert^{2}\leq Cl\downarrow I^{-1}, JIarrow\infty.

However, a wavelet series is better than the Fourier series because the Fourier approxi‐

mation achieves only  \Vert f-f_{M}\Vert^{2}\leq CM^{-1/2} as   Marrow\infty . When we consider an adaptive

approach that selects terms from an overcomplete correction of basis functions, the best

approximation rate is known to be

 \Vert f-f_{M}\Vert^{2}\leq CM^{-2}, f1Iarrow\infty

for an image  f that has curve singularities (see [9]).
The Fourier and wavelet approximations both use fixed transforms and are thus non‐

adaptive approaches. Curvelets are also nonadaptive, but, surprisingly, they achieve

 \Vert f-f_{M}\Vert^{2}\leq CM^{-2}(\log M)^{3} Marrow\infty.

This is optimal in the sense that no other nonadaptive representation can yield a smaller

asymptotic error with the same number of terms. In fact, curvelets also essentially provide

optimally sparse representations of Fourier integral operators [13, 14].
On the other hand, the bandlet method, as proposed by Pennec and Mallat [42, 43], is

a powerful tool for representing smooth edges. The bandlet system achieves an optimal

approximation estimate for an image that contains curved edges beyond  C^{2} , namely,

 C^{\kappa},  \kappa>2 :

 \Vert f-f_{\Lambda I}\Vert^{2}\leq CM^{-\kappa}, Marrow\infty.

However, this method requires an extra edge detection stage, followed by an adaptive

representation, and therefore is categorized as an adaptive approach.

3 Frame Theory

A curvelet system is a tight frame of  L^{2}(\mathbb{R}^{2}) . Frame theory was first introduced in the

mid‐20th century by Duffin and Schaeffer [24] and was then revived by Daubechies in
the  1990s[19] . A sequence  \{\varphi_{m}\}_{m=1}^{\infty} in  L^{2}(\mathbb{R}^{2}) is called a frame for  L^{2}(\mathbb{R}^{2}) if, for all

 f\in L^{2}(\mathbb{R}^{2}) , there exist two constants   0<A\leq B<\infty such that

 A \Vert f\Vert^{2}\leq\sum_{m={\imath}}^{\infty}|\langle f, 
\varphi_{\gamma\gamma\iota}\rangle|^{2}\leq B\Vert f\Vert^{2},
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where  A and  B are called frame bounds.

In the case of  A=B , a frame  \{\varphi_{m}\}_{m=1}^{\infty} is called a tight frame, which satisfies, for all

 f\in L^{2}(\mathbb{R}^{2}) ,

  \sum_{m=1}^{\infty}|\{f, \varphi_{m}\rangle|^{2}=A\Vert f\Vert^{2}
This implies that we have an expansion

 f= \frac{1}{A}\sum_{m={\imath}}^{\infty}\langle f, \varphi_{m}
\rangle\varphi_{m} , (2)

which is similar to the orthonormal expansion (1). Thus, the tight frame has a remarkable
property that it can recover  f from the coefficients  \langle f,  \varphi_{m}\rangle in the  L^{2} sense, and thus (2)
is referred to as the perfect reconstruction property of a frame.

A tight frame with the frame bounds  A=1 is also called a Parseval frame. Obviously,
we have

 f= \sum_{m=1}^{\infty}\{f, \varphi_{m}\rangle\varphi_{m} , (3)

and

  \sum_{m=1}^{\infty}|\{f, \varphi_{m}\}|^{2}=\Vert f\Vert^{2}
As shown above, a tight/Parseval frame is very similar to an orthogonal/orthonormal

basis. In fact, if a Parseval frame  \{\varphi_{m}\}_{m\in M} satisfies  \Vert\varphi_{m}\Vert=1 for all  m\in l1I , then

 \{\varphi_{m}\}_{m\in M} becomes an orthonormal basis. It immediately follows that an orthonormal

basis  \{\varphi_{m}\}_{m\in M} itself is also a Parseval frame. The crucial difference between a tight frame

and an orthogonal basis is that a tight frame does not need to be linearly independent,

whereas an orthogonal basis is linearly independent. This means that a frame has some

redundancy.

While the expansion of  f into a Parseval frame (3) is similar to the orthonormal expan‐
sion (1), there are several ways to reconstruct  f due to the redundancy. The redundancy
is sometimes an obstacle from the point of view of the sparse representation of  f , but the

frame expansion is very useful in practice because one can calculate the coefficients by

using the inner product  \langle f,  \varphi_{m}\rangle , as in the case of the orthogonal expansion. Furthermore,

the power of redundancy in a wavelet frame yields the following:

 \bullet Wavelet frames can be much more directionally selective for image processing than

standard orthogonal or biorthogonal wavelets.

 e Wavelet frames can become shift invariant, whereas an orthogonal or biorthogonal
wavelet transform does not become shift invariant.
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 e Wavelet frames are less sensitive to the erasure of coefficients, which is required for

some applications such as denoising.

Based on these advantages, most multidimensional directional wavelets have redundancy

and, therefore, are successfully used to analyze the directional components of multivariate
functions.

4 Ridgelets

As described in the previous scctions, a curvelet family is a tight frame that provides

an optimal sparse approximation for the class of  2D piecewise smooth functions with
 C^{2} singularity curves and achieves  O(M^{-2}(\log\Lambda I)^{3}) . Before introducing curvelets, let

us introduce ridgelets [7, 8], as proposed by Candès and Donoho, which are key to the
construction of first‐generation curvelets.

Definition 4.1. Let  \gamma=(\cos\theta, \sin\theta)\in \mathbb{S}^{1} and   x\cdot\gamma=x_{1}\cos\theta+x_{2}\sin\theta . For each scale

 a>0 , each position  b\in \mathbb{R} , and each orientation  \theta\in[0,2\pi ), the ridgelet transform for
 f\in L^{2}(\mathbb{R}^{2}) is defined by

  \mathcal{R}\mathcal{D}[f](a, b, \gamma)=\{f, \psi_{a,b,\gamma}\rangle=\frac{1}
{\sqrt{a}}\int_{R^{2}}f(x)\psi(\frac{x\cdot\gamma-b}{a})dx,
where

  \psi_{a,b,\gamma}(x)=\frac{1}{\sqrt{a}}\psi(\frac{x\cdot\gamma-b}{a})
is called a  \gamma idgelet.

Remark 4.2. A ridgelet  \psi_{a,b,\gamma} :  \mathbb{R}^{2}arrow \mathbb{R} is oriented at angle  \theta . For a given  \theta , a ridgelet

is constant along ridge lines :  \gamma\cdot x=x_{1}\cos\theta+x_{2}\sin\theta . Transverse to these ridges is a

normal wavelet  \psi :  \mathbb{R}arrow \mathbb{R} (see Figure 2).

For  f\in L^{1}(\mathbb{R}^{2})\cap L^{2}(\mathbb{R}^{2}) , the inversion formula of the ridgelet transform is given by

 f(x)= \frac{1}{K_{\psi,\eta}}\int_{S^{1}}\int_{R}\int_{R_{+}}\mathcal{R}
\mathcal{D}[f](a, b, \gamma)\eta_{a,b,\gamma}(x)\frac{dadbd\gamma}{a^{3}},
if a constant  K_{\psi,\eta} exists:

 K_{\psi,\eta}= \int_{R^{2}}\frac{\hat{\psi}(\xi)\overline{\hat{\eta}(\xi)}}
{|\xi|^{2}}d\xi<\infty,
where

  \hat{f}(\xi)=\int_{R^{d}}f(x)e^{-i\xi x}dx
is the Fourier transform of  f\in L^{2}(\mathbb{R}^{d}) .
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(a):  \theta=0 (b):  \theta=\pi/4

Figure 2: Exampıes of ridgeıets.

If ridgelets  \psi and  \eta are normalized such that  K_{\psi,\eta}=1 and  \psi=\eta , then the Parseval
relation shows that

 1 f\Vert^{2}=\frac{1}{4\pi}\int_{S^{1}}\int_{R}\int_{\mathbb{R}+}|\mathcal{R}
\mathcal{D}[f](a, b, \gamma)|^{2}\frac{d\alpha dbd\gamma}{a^{3}}.
Remark 4.3. The ridgelet transform is essentially the combination of the  1D continuous

wavelet transform and the Radon transform.

With a wavelet  \psi_{a,b}(x)=a^{-1/2}\psi((x-b)/a) we define the continuous wavelet transform

(CWT)  \mathcal{W}_{\psi}[f] of  f\in L^{2}(\mathbb{R}) as

  \mathcal{W}_{\psi}[f](a, b)=\langle f, \psi_{a,b}\}=\frac{1}{\sqrt{a}}
\int_{\mathbb{R}}f(x)\psi(\frac{x-b}{a})dx.
The Radon transform for a bivariate function  f is the collection of line integrals indexed

by  (p, \theta)\in \mathbb{R}\cross[0,2\pi) , which is given by

  \mathcal{R}[f](p, \theta)=\int_{R}f(p\cos\theta-t\sin\theta, p\sin\theta+t\cos
\theta)dt.
This can be rewritten in much simpler form using the Dirac delta function:

  \mathcal{R}[f](p, \theta)=\int_{R^{2}}f(x)\delta(x_{1}\cos\theta+x_{2}
\sin\theta-p)dx.
Similar to the case of ridgelets, we further rewrite the Radon transform as

  \mathcal{R}[f](p, \gamma)=\int_{\mathbb{R}^{2}}f(x)\delta(x\cdot\gamma-p)dx.
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Original image Filtering dgelet

 \nearrow

Figure 3: Key concept of the first‐generation curvelet transform.

Then, we derive the relation between the CWT and the Radon transform as follows:

 \mathcal{R}\mathcal{D}[f](a, b, \gamma)=\mathcal{W}_{\psi}[\mathcal{R}[f](p, 
\gamma)](a, b)

 = \frac{1}{\sqrt{a}}\int_{R}\{\int_{\mathbb{R}^{2}}f(x)\delta(x\cdot\gamma-p)dx
\}\psi(\frac{p-b}{a})dp
 = \frac{1}{\sqrt{a}}\int_{\mathbb{R}^{2}}f(x)\{\int_{\mathbb{R}}
\delta(x\cdot\gamma-p)\overline{\psi(\frac{p-b}{\alpha})}dp\}dx
 = \frac{1}{\sqrt{a}}\int_{R^{2}}f(x)\psi(\frac{x\cdot\gamma-b}{a})dx=\{f, \psi_
{a,b,\gamma}\}.

5 First‐Generation Curvelets

The ridgelet transform is optimal for representing straight‐line singularities. Unfortu‐

nately, global straight‐line singularities are rarely observed in real applications. In order

to analyze local line or curve singularities, it is natural to consider part of an image and

then to apply the ridgelet transform to the obtained subimages. The key concept is that

edges  \approx ridges at very fine scale. This block, or windowed ridgelet‐based transform, is

referred to as the first‐generation curvelet transform, which can be realized as follows:

Step 1) Multiscale filtering (subband decomposition).

Step 2) Block partitioning with a window function.

Step 3) Block ridgelet transform.

A diagram of the first‐generation curvelet transform is shown in Figure 3.

Remark 5.1. At the subband decomposition stage, a nonstandard scaling ratio, referred

to as a parabolic scaling law, is used:  width\approx length^{2}.
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As described previously, this anisotropic geometric wavelet transform is an improved

version of the ridgelet transform for an image that contains curve singularities. However,

the first‐generation curvelet transform has some drawbacks:

Block‐based transform

1. The approximated curvelet images have blocking effects because the first‐generation
curvelet transform is a block‐based transform.

2. In order to reduce the blocking effects, we need good overlapping window functions,

which increases the redundancy. This dilemma must be considered as long as the
block‐based transform is used.

Complexity and redundancy

1. The curvelet construction is very complicated because this construction involves a
seven‐index structure.

2. The parabolic scaling ratio  width\approx length^{2} is not exactly true.

3. Since ridgelets are defined in polar coordinates, the implementation of the curvelet

transform for discrete images on rectangular coordinates is very challenging.

4. There are many ways to implement the digital curvelet transform to solve the imple‐

mentation problem, but these methods require overcomplete systems and thus are

highly redundant (see [47]).

Consequently, the first‐generation curvelet transform is very limited in certain applica‐
tions.

6 Second‐Generation Curvelets

One of the boldest decisions in developing second‐generation curvelets is that they do not

use ridgelets. This makes the structure of the curvelet transform substantially simpler.

The construction is based on a rotation‐based  2D frequency partitioning technique, hold‐

ing the parabolic scaling law, width  \approx length2. As a result, we can expect to capture
more detailed directional components of a bivariate function for finer scales compared

with the standard  2D wavelet transform (see Figure 4).
We mention that multiwavelets can also realize finer frequency partitioning and have

been successfully used in multidirectional analysis of images [2], but they do not have
such parabolic scaling properties. The parabolic scaling allows to analyze more detailed

directional components as the scale level increases, and this special anisotropic scaling

law characterizes curvelets and is effective in some applications.
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 rightarrow^{\sim 2^{j}}

(a): Curvelet (b): Wavelet

Figure 4:  2D frequency tiling.

In this section, we shall construct the second‐generation curvelets followed by [12, 37].
While there exists continuous curvelets and discrete curvelets, we only deal with the

discrete curvelets that have discrete parameters for a scale, rotation and shift.

6.1 1D Orthonormal Wavelets

First, let us recall the standard 1D orthonormal wavelets. A family of wavelets is generated

by a dilation and translation of a wavelet function  \psi\in L^{2}(\mathbb{R}) :

 \{\psi_{j,k}(x)=2^{j/2}\psi(2^{j}x-k)\}_{j,kEZ}.

The conditions for a wavelet  \psi\in L^{2}(\mathbb{R}) such that a family of wavelets  \{\psi_{j,k}\}_{j,k\in Z} forms

an orthonormal basis of  L^{2}(\mathbb{R}) are given by

  \sum_{J^{\backslash }\in Z}|\hat{\psi}(2^{j}\xi)|^{2}=1 , (4)

  \sum_{j=0}^{\infty}|\hat{\psi}(2^{j}\xi)|^{2}\hat{\psi}(2^{j}(\xi+2\pi(2m+1)))
=0, m\in \mathbb{Z} , (5)

which yields a typical wavelet property   \hat{\psi}(0)=\int_{R}\psi(x)dx=0.
Condition (4) is that for a Parseval frame and is called the partition of unity, whereas

(5) ensures the orthogonality of a frame. The curvelet construction begins by focusing on
the partition of unity (4) in  \mathbb{R}^{2} while giving up the orthogonality (5). In the case of one
dimension, the partition of unity (4) means that dyadic dilation of one fixed function  \hat{\psi}
gives a tiling of the frequency domain  \mathbb{R}\backslash \{0\} . However, this tiling is not unique for two
dimensions, because the plane  \mathbb{R}^{2} has a directional degree of freedom.
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6.2 Window Functions

Let us now consider the  2D version of the partition of unity with window functions in the

frequency domain represented by polar coordinates  (r, \omega) , where  r=|\xi|=\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} and

 \omega=\arctan\xi_{2}/\xi_{1} . We introduce a pair of smooth, nonnegative, real‐valued  C^{\infty} window

functions, namely, a radial window  W(r) for a scale  j , and an angular window  V(t) for

an angle  \omega . The support of these functions are supp W  \subset (1/2, 2) and supp V  \subset[-1, 1].
Both windows satisfy the following conditions, which are referred to as the admissibility
conditions:

  \sum_{j\in Z}|W(2^{-j}r)|^{2}=1, r>0 , (6)

  \sum_{\ell\in Z}|V(t-\ell)|^{2}=1, t\in \mathbb{R} . (7)

Definition 6.1. For  r\geq 0 and  \omega\in[0,2\pi ), a wedge window  U_{j}(r, \omega),  j\geq 0 is defined in
the frequency domain as

 U_{j}(r,  \omega)=2^{-3j/4}W(2^{-j}r)V(\frac{N_{j}\omega}{2\pi}) ,

where  N_{j}=4\cdot 2^{\lfloor j/2\rfloor} is the number of wedges at each scale  j and  \lfloor x\rfloor is the integer part
of  x.

A wedge window  U_{j} is localized in a polar wedge, and its support is defined as the
support of  W and  V . Note that several different definitions of  U_{j} can be found in the

literature. For examples, the ceiling function   \lceil x\rceil=\min\{n\in \mathbb{Z}|n\geq x\} is used in stead
of the floor function   \lfloor x\rfloor=\max\{n\in \mathbb{Z}|n\leq x\}.

Definition 6.2. We define a basic (mother) curvelet as  \hat{\phi}_{j,0,0}(\xi)=U_{j}(\xi) . With its inverse
Fourier transform, a family of curvelets are generated by a collection of waveforms  \phi_{j,k,\ell}\in
 L^{2}(\mathbb{R}^{2}) defined as

 \phi_{j,k,\ell}(x)=\phi_{j,0,0}(R_{\theta_{3}p}(x-x_{k}^{(j,\ell)})) ,

where

 \bullet  R_{\theta} is the clockwise rotation matrix by  \theta , and  R_{-\theta}=R_{\theta}^{T} is the anticlockwise one.

 \bullet  x_{k}^{(j,p)}=R_{-\theta_{j}p}(k_{1}2^{-j}, k_{2}2^{-j/2}) is a shift parameter with parabolic scaling.

 \bullet  \theta_{j,\ell}=2^{-\lfloor j/2\rfloor}l\pi/2 for  0\leq\ell<N_{j} is the equidistant sequence of rotation angles.

Remark 6.3. In this definition of curvelets,  \phi_{j,k\sim,\ell} becomes a complex‐valued function.
One can obtain real‐valued curvelets by  U_{j}(r, \theta)+U_{j}(r, \theta+\pi) .
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The discrete curvelet transform is simply written as the inner product between a function

 f\in L^{2}(\mathbb{R}^{2}) and a curvelet element  \phi_{j,k,\ell} :

 c_{j,k,\ell=} \langle f, \phi_{j,k,\ell}\rangle=\int_{R^{2}}f(x)\overline{\phi_
{j,k,\ell}(x)}dx,
where the sequence  \{c_{j,k,\ell}|j\geq 0, k\in \mathbb{Z}^{2},0\leq l\leq N_{j}\} is called the curvelet coefficient.

In general, the curvelet transform is implemented in the frequency domain. When the

Parseval’s identity is applied to the above inner product, it is convenient to write the

curvelet transform in the frequency domain as

  \langle f, \phi_{j,k,p}\}=\int_{R^{2}}f(x)\overline{\phi_{j,k,\ell}(x)}dx
 = \frac{1}{(2\pi)^{2}}\int_{R^{2}}\hat{f}(\xi)\overline{\hat{\phi}_{\dot{j}},k,
p(\xi)}d\xi
 = \frac{1}{(2\pi)^{2}}\int_{R^{2}}\hat{f}(\xi)\hat{\phi}_{j0,0}(R_{\theta_{3}p}
\xi)e^{i\xi x_{A}^{(jp)}}d\xi
 = \frac{1}{(2\pi)^{2}}\int_{R^{2}}\hat{f}(\xi)U_{j}(R_{\theta_{j,\ell}}\xi)e^{i
\xi x_{k}^{(j^{\ell})}}.d\xi.

6.3 Partition of Unity

For such window functions that satisfy the admissibility conditions (6) and (7), we present
the following example.

Example 6.4. In [37], the Meyer type window functions are introduced, which are defined
 by

 W(r)=\{\begin{array}{ll}
\cos[\frac{\pi}{2}\nu(5-6r)] ,   2/3\leq r\leq 5/6,
1,   5/6\leq r\leq 4/3,
\cos[\frac{\pi}{2}\nu(3r-4)] ,   4/3\leq r\leq 5/3,
0,   otherwise,
\end{array}
and

 V(t)=\{\begin{array}{ll}
1,   |t|\leq {\imath}/3,
\cos[\frac{\pi}{2}\nu(3|t|-1)] ,   1/3\leq|t|\leq 2/3,
0,   otherwise,
\end{array}
where  \nu is a smooth function such that

 \nu(x)=\{\begin{array}{l}
0, x\leq 0,
1, x\geq 1,
\end{array} and  \nu(x)+\nu(1-x)=1.

19



20

Figure 5: Exalnple of window functions  W(r) and  V(t) .

The smoothness of the wedge window  U_{j} depends on the smoothness of both radial and

angular windows  W and  V . One can design the smoothness by using polynomials for  \nu.

Figure 5 shows the above window functions  W and  V . Here, we set  \nu as a third‐order

polynomial:  \nu(x)=3x^{2}-2x^{3}.
With these window functions, we have the following observation for the  2D partition of

unity [37].

Proposition 6.5. Let  D=\{r(\cos\omega, \sin\omega)\in \mathbb{R}^{2}|0\leq r\leq 1, 
0\leq\omega<2\pi)\} be a closed

unit disc. A set of polar wedges  U_{j} covers the frequency plane  \mathbb{R}^{2}\backslash \{D\} as

  \sum_{j\geq 0}\sum_{0\leq\ell<N_{j}}2^{3j/2}|U_{j}(r, \omega-\frac{2\pi p}
{N_{j}})|^{2}=1.
Proof According to the admissibility condition (7), for the tiling of a circular ring by the
wedge windows  U_{j} , we need   2\pi‐periodizations of the angular window  V that satisfies, for

all  \omega\in[0,2\pi) ,

  \sum_{0\leq\ell<N_{j}}|V(\frac{N_{j}}{2\pi}\{\omega-\frac{2\pi\ell}{N_{j}}\})
|^{2}=\sum_{0\leq\ell<N_{j}}|V(\frac{N_{j}}{2\pi}\omega-\ell)|^{2}=1.
Note that the case  \ell=0=N_{j} yields the same result due to the periodicity.

Substituting it to the sum of  U_{j} with respect to all scales  2^{-j},  j\geq 0 and all numbers of

rotation  0\leq\ell<N_{j} , we have

  \sum_{j\geq 0}\sum_{0\leq\ell<N_{j}}2^{3j/2}|U_{j}(r, \omega-\frac{2\pi\ell}
{N_{j}})|^{2}=\sum_{\prime,J\geq 0}\sum_{0\leq\ell<N_{j}}|W(2^{-j}r)
V(\frac{N_{j}}{2\pi}\omega-\ell)|^{2}
 = \sum_{j\geq 0}|W(2^{-g}r)|^{2}\sum_{0\leq\ell<N_{f}}|V(\frac{N_{j}}{2\pi}
\omega-\ell)|^{2}
 = \sum_{j\geq 0}|W(2^{-j}r)|^{2}
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Figure 6: Exatnples of curvelets. (a):  \hat{\phi}_{000}(\xi) . (b):   \sum_{0<<2}J\sum_{0\leq\ell<N},  2^{3j/2}|\hat{\phi}_{j,k\ell}(\xi)|^{2}

Thus, with the admissibility condition for the radial window (6) and supp W  \subset(1/2,2) ,
it holds that, for  r>1,

  \sum_{j\geq 0}|W(2^{-j}r)|^{2}=1.
 \square 

Remark 6.6. For complete coverage of the frequency plane, we need a low‐pass window

function  W_{0}(r) such that

 |W_{0}(r)|^{2}+ \sum_{j\geq 0}|W(2^{-j}r)|^{2}=1.
Proposition 6.5 implies that the partition of unity (4) for the curvelet family  \{\phi_{j,k_{)}p}|

 0\leq j<\infty,  k\in \mathbb{Z}^{2},0\leq\ell<N_{j}\} becomes

  \sum_{\dot{J}\geq 0}\sum_{0\leq\ell<N_{g}}2^{3j/2}|\hat{\phi}_{j,k,\ell}(\xi)
|^{2}=1, |\xi|>1 , (8)

where  \xi=r(\cos\omega, \sin\omega) and

  \hat{\phi}_{j,\ell,k}(\xi)=U_{j}(r, \omega-\frac{2\pi\ell}{N_{j}})e^{-
i\xi\cdot x_{k}^{(f^{\ell})}}=2^{-3j/4}W(2^{-j}r)V(\frac{N_{j}}{2\pi}\omega-
\ell)e^{-i\xi x_{k}^{(J^{p)}}}
Figure 6(a) shows a picture of the basic curvelet  \hat{\phi}_{0,0,0}(\xi) constructed by choosing the
window functions  W and  V given in Example 6.4. We illustrate the partition of unity (8)
for  0\leq j\leq 2 in Figure 6(b), which demonstrates how the collection of curvelet elements
tiles the entire frequency plane  \mathbb{R}^{2}.
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Theorem 6.7 (Candés and Donoho [12], Theorem 4.2). Let  \{\phi_{j,k,\ell}\}_{j,k,p} be a curvelet
family. For all  f\in L^{2}(\mathbb{R}^{2}) that satisfy  \hat{f}(\xi)=0(|\xi|<1) ,

 f= \sum_{j\geq 0}\sum_{k\in Z^{2}}\sum_{0\leq\ell<N_{j}}\langle f, \phi_{j,k,
\ell}\rangle\phi_{j,k,p} , (9)

and

  \Vert f\Vert^{2}=\sum_{j\geq 0}\sum_{k\in Z^{2}}\sum_{0\leq\ell<N_{j}}|\langle
f, \phi_{j,k,p}\}|^{2} (10)

The proof can be found in [11].
We can construct a coarse (father) curvelet for a low‐pass window function as

 \hat{\phi}_{j_{0}}(\xi)=2^{-jo}W_{j_{0}}(2^{-j_{0}}|\xi|) , \phi_{j_{0},k}(x)=
\phi_{jo}(x-2^{-jo}k) ,

where  W_{j_{0}},  j_{0}\geq 0 is a coarse radial window function such that

 |W_{j_{0}}(r)|^{2}+ \sum_{j\geq jo}|W(2^{-j}r)|^{2}=1 . (11)

The coarse curvelet  \phi_{jo} is a nondirectional element of the curvelet family. Such a function

that satisfies (11) is a  2D Meyer type scaling function.
With the “full family” of curvelets,

 \{\phi_{j_{0},k}|)0\geq 0, k\in \mathbb{Z}^{2}\}\cup\{\phi_{j,k,p}|j_{0}\leq j<
\infty, k\in \mathbb{Z}^{2},0\leq\ell<N_{j}\},

the reconstruction formula (9) and the Parseval relation (10) for all  f\in L^{2}(\mathbb{R}^{2}) may be
be formulated as follows:

 f= \sum_{j\geq j_{0}}\sum_{k\in Z^{2}}\sum_{0\leq l<N_{3}}(f, \phi_{j,k,\ell}
\rangle\phi_{j,k,\ell}+\sum_{k\in Z^{2}}\langle f, \phi_{j_{0},k}\rangle\phi_{j_
{0},k},
and

  \Vert f\Vert^{2}=\sum_{j\geq jo}\sum_{k\in Z^{2}}\sum_{0\leq\ell<N_{J}}
|\langle f, \phi_{j,k,p}\rangle|^{2}+\sum_{k\in Z^{2}}|\langle f, \phi_{j_{0},k}
\rangle|^{2}
6.4 Properties of Second‐Generation Curvelets

We summarize important properties of second‐generation curvelets as follows:

 \bullet Tight frame: Theorem 6.7 implies that a family of curvelets  \{\phi_{j,k.\ell}\}_{jk,\ell} generates a

Parseval frame of  L^{2}(\mathbb{R}^{2}) , which guarantees the exact reconstruction of  f\in L^{2}(\mathbb{R}^{2})
from the curvelet coefficients  \{f, \phi_{j,k,\ell}\} as in (9), and it provides energy preservation
 \Vert f\Vert^{2}=\Vert c_{j,k,p}\Vert^{2} as in (10).
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 e Support: The curvelet  \hat{\phi}_{j,k,p} has compact support because it is localized on the

wedge in the frequency domain. As a result,  \phi_{jk,\ell} cannot has compact support

and thus is an infinitely oscillating function. According to support of the window

functions  W and  V , the curvelet  \hat{\phi}_{j,k,\ell} is supported inside the polar wedge with

  2^{j-1}\leq r\leq 2j  + ı, and −   \frac{2^{-\lfloor j/2\rfloor}\pi(-1-\ell)}{2}\leq\omega\leq\frac{2^{-\lfloor j
/2\rfloor}\pi(-1-\ell)}{2},
which implies that support of curvelets is based on the parabolic scaling ratio de‐
scribed below.

 \bullet Parabolic scaling: Based on Definition 6.2, the curvelet  \phi_{j,k,\ell} has the anisotropy
scaling relation

 width\approx 2^{-j} , length  \approx 2^{-j/2}\Rightarrow width  =length^{2}

In the frequency domain, this relation becomes  width\approx 2^{j} and length  \approx 2^{j/2} . This

makes curvelets very long and needle‐shaped in a radial direction at a very fine scale.

Thus, the shape of a localized wedge window  U_{j} is similar to a brush, especially at
a very fine scale. As such, it is naturaı to refer to these windows as brushlets or

wedgelets, rather than curvelets, although both names have been proposed already

in [40, 22].

 \bullet Vanishing moments: Due to the anisotropy localization on the frequency plane,

the curvelet has anisotropic oscillatory behavior. For example,  \phi_{0,0,0}(x) is more

oscillatory in the  x_{1} direction than in the  x_{2} direction. Thus, for all  x_{2} , the curvelet

 \phi_{0,0,0}(x) has  p vanishing moments such that

  \int_{R}\phi_{0,0,0}(x_{1}, x_{2})x_{1}^{n} dx{\imath}=0, 0\leq n<p.
The same property also holds for rotated or shifted curvelets to which correct coor‐
dinates are taken.

6.5 Digital Curvelets

From the point of view of applications, there is still a problem with second‐generation
curvelets. Working in polar coordinates makes the curvelet construction very simple and

elegant in the continuous domain, but causes an implementation problem for handling

discrete images that are, in general, sampled on a rectangular grid.

The digitaı curvelet transform is thus considered to solve this problem. The idea is to

use shearing on the Cartesian coordinates, instead of rotation on the polar coordinates.
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(a) (b)

Figure 7:  2D frequency tiling. (a): Polar grid for the continuous dotnain. (b): Pseudo‐polar grid for the
discrete doutain.

This also provides an exact tiling of the frequency plane  \mathbb{R}^{2} based on concentric squares

with the parabolic scaling law (see Figure 7).
Suppose that  \hat{\phi}_{J^{0,0}}^{D}(\xi) is a Cartesian wedge that is localized on the region of the tiling.

Then, curvelets on the Cartesian coordinates are given by

 \phi_{j,k,\ell}^{D}(x)=\phi_{j,0,0}^{D}(S_{\overline{\theta}_{j}\ell}(x-
\tilde{x}_{k}^{(j,\ell)})) ,

where  S_{\overline{\theta}_{j}p} is a shear matrix

 S_{\overline{\theta}_{j}\ell}=(\begin{array}{lll}
1   -tan   \overline{\theta}_{j,\ell}
0   1   
\end{array}),
for equispaced slopes  \overline{\theta}_{j\ell} , and  \tilde{x}_{k}^{(j,k)}=S_{\overline{\theta}_{j\ell}}^{-{\imath}}  (k_{1}2^{-j}, k_{2}2^{-\lfloor j/2\rfloor}) represents the position of

 \phi_{j,k,\ell}^{D} . The curvelet coefficients are then computed by

 c_{jk\ell}^{D}= \{f, \phi_{\dot{j})}^{D}k,\ell\}=\int_{\mathbb{R}^{2}}f(x)
\overline{\phi_{j_{\backslash }k,p}^{D}(x)}dx=\frac{1}{(2\pi)^{2}}
\int_{\mathbb{R}^{2}}\hat{f}(\xi)\overline{\hat{\phi}_{j,k,\ell}^{D}(\xi)}d\xi.
While this discrete curvelet transform is the redundant transform, there is a fast com‐

putation aıgorithm available that achieves  O(N^{2}\log N) for a digital image  f\in \mathbb{R}^{N\cross N}[15].
Codes are available from CurveLab (http://curvelab. org).

6.6 Applications of Curvelets

Curvelets have a wide range of applications, not limited to image processing. The first‐

generation curvelet transform was applied for the first time to image denoising [47, 16] and
was then extended to other image processing tasks such as image contrast enhancement

[50] and astronomical image representation [48, 18].
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The second‐generation curvelet transform has also been successfully applied and shown

to be a very efficient tool for many applications in image processing, including the  3D case,

such as denoising [36, 44, 53], motion estimation and video tracking of geophysical flows
[33], morphological component analysis [5, 49], watermarking [55], deblurring [32], and
inpainting [28]. The applications of curvelets have been further extended to other scientific
fields, such as seismic data exploration [27, 23, 17], turbulent analysis in fluid mechanics
[4, 34, 35], solving partial differential equations (PDEs) [52], compressed sensing [45], and
reconstruction problem of tomography [25]. For details on each application, see [37].

7 Other Multidirectional Methods

In the remainder of this paper, we briefly note two multiscale multidirectional methods

similar to curvelets, namely, shearlets [31] and contourlets [21], both of which are tight
frames of  L^{2}(\mathbb{R}^{2}) .

7.1 Shearlets

After the proposal of curvelets, the shearlet, the concept of which is very similar to

second‐generation curvelets, was proposed. Shearlets are generated by scaling, shear, and

translation of a basic (mother) shearlet function. The shear operation is key because this
operation captures the direction of singularities of an image. Therefore, the discretized
second‐generation curvelet transform is very similar to the shearlet transform.

Let  A_{a}=(\begin{array}{ll}
a   0
0   \sqrt{a}
\end{array}),  a>0 be a dilation matrix, and let  S_{s}=(\begin{array}{ll}
1   s
0   1
\end{array}) ,  s\in \mathbb{R} be a

shearing matrix. The shearlets  \psi_{a,6},k is then defined as

 \psi_{a,s,k}(x)=a^{-3/4}\psi(A_{a}^{-1}S_{s}^{-1}(x-k))=a^{-3/4}\psi( 
(\begin{array}{ll}
1/a   -s/a
0   1/\sqrt{a}
\end{array})(x-k)) ,

where a shearlet function  \psi\in L^{2}(\mathbb{R}^{2}) is designed in the Fourier domain using the  2D

partition of unity with a dilated shearing operation. The shearlet transform  \mathcal{S}\mathcal{H}[f] of

 f\in L^{2}(\mathbb{R}^{2}) is defined as

 S\mathcal{H}[f](a, s, k)=\langle f, \psi_{a,s,k}\rangle.

Although this is a continuous integral transform, fast and discrete algorithms are also

available (see [26]).
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(a) (b)

Figure 8:  \perp he contourlet transform. (a): one iteration. (b): two iterations.

7.2 Contourlets

A contourlet is based on a discrete setting design. The contourlet is a purely discrete filter

bank version of the curvelet framework. In the construction of contourlets, we need only

classical signal processing operators, such as convolution (filtering) and subsampling.  A

double‐iterated filter bank structure, called the contourlet filter bank, plays a central role

in the contourlet framework, which consists of two stages, the Laplacian pyramid (LP)
[6] and the directional filter bank (DFB) as follows:

Stage 1) In the LP stage, a  2D signal is decomposed into low‐pass and high‐pass compo‐
nents, whereas the low‐pass component is then subsampled by a factor of 2 for each
direction  x_{1} and  x_{2}.

Stage 2) In the next DFB stage, sharing is first applied to the high‐pass component
transformed by the LP. A fan filter is then applied it to obtain horizontally and ver‐

tically filtered signals. Finally, quincunx sampling, which performs discrete rotation

with angle  \pi/4 and subsampling by a factor of 2, is applied for each direction  x_{1} and

 x_{2}.

A sequence of these operations can be iterated until an arbitrary decomposition level

by setting the low‐pass component as a new input signal. Figure 8 illustrates the diagram
of the contourlet transform.

The contourlet transform has the following properties:

 e If both the LP and the DFB use perfect reconstruction filters, then the discrete

contourlet transform provides a frame of  \ell^{2}(\mathbb{Z}^{2}) .

 \bullet If the filters are orthonormal filters, then the frame becomes a Parseval frame.
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 e Since the  D\Gamma B is critically sampled, the total redundancy of the contourlet transform

up to a scale level of  J is less than 4/3:  1+ \sum_{j=1}^{J}(1/4)^{j}<4/3.

 \bullet Let  l_{j},  j=0,1 , . . . be a level of DFB at each pyramidal level  j of the LP. Basis

images of the contourlet transform have a support size of parabolic scaling ratio
 width\approx C2^{j} and length  \approx C2^{j+\iota_{j-2}}.

We finish this paper by pointing out the importance and influence that the contourlets

have on other multiscale multidirectional wavelets, such as curvelets and shearlets. Al‐

though the filter‐bank‐based discrete approach of contourlets for constructing a curvelet‐

like framework has an advantage in that a discrete setting provides fast and easy imple‐

mentations, a proper continuum theory is missing and its formulation is rather compli‐

cated. However, we note that contourlets are important for the following two reasons:

 e Discrete parabolic scaling: Discrete squared frequency partitioning with the
parabolic scaling law was perhaps first introduced in the contourlet transform.  A

similar structure was later used in second‐generation curvelets and shearlets.

 \bullet Shearing: A shearing‐based method in DFB to obtain directional components was

also used in second‐generation curvelets and shearlets.
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