Application of Time-Frequency Analysis in Biomedical Signals and The Challenges

Hisashi Yoshida, Kazuhiro Ishida, Sho Kikkawa Department of Computational Systems Biology,

Kindai University

1 はじめに

時間-周波数解析は非定常な信号の解析に有用であり、通常は決定論的信号に対して行われることが多い。この時間-周波数分布が満たすべき条件として周辺分布条件や正値性条件が考えられる。時間-周波数表現はエネルギー分布であるから実数かつ正の値を持つと考えるのが妥当であり(正値性条件)、また、時間-周波数分布を周波数軸に沿って積分したものが信号の瞬時パワーとなり、時間軸に沿って積分したものは周波数エネルギースペクトルである(周辺分布条件)。しかしながら、これらの条件を満たす双線形な時間-周波数表現はないことが知られている。特に正値時間-周波数分布の実現は難しい。その為、妥協しながらいかに上手く推定するかといった取り組みがなされている。

最近、統計学で発展した Coplua 理論を用いた正値時間-周波数解析が提案された [1]。こ れを周辺分布に合うように結合分布(時間-周波数分布)を構成する手法を用いて、Cohen らが提案していた正値時間-周波数表現を構成する方法である。つまり、周辺分布である 信号の瞬時パワー分布と周波数エネルギースペクトルを決めることができれば、それに 基づいて結合分布である信号の時間-周波数表現が得られるわけである。仮に、信号 x(t)が決定論的信号であれば、その周辺分布は $|x(t)|^2$, $|X(f)|^2$ (但し、X(f)は x(t)のフーリ エ変換)と表現される。

このように Copula に基づく正値時間 – 周波数分布を利用するためには、周辺分布の良い推定は重要である。しかし、非定常確率過程とみなされる脳波などの生体信号の時間 – 周波数表現を得ようとする場合には、それに特有の問題を解決しながら解析を行わなければならない。つまり、確率過程における周辺分布は $E[|x(t)|^2]$, $E[|X(f)|^2]$ (但し、 $E[\cdot]$ は期待値、X(f) はx(t)のフーリエ変換)とする必要があり、平均操作を伴った推定問題がそこに存在する [2]。この平均操作を如何にして行うかが重要な研究課題である。

本報告では、時間周辺分布の推定法を新たに提案し、その有用性を確かめる。時間周辺 分布の推定法には"Wigner-Ville 分布を用いた包絡線検波法"を提案した。これは脳波な どの生体信号を AM 型の信号であると考え、その包絡線が真の時間周辺分布であるとし て検波を試みる方法である。また本提案手法と従来法である Complex Demodulation 法、 ならびに二乗検波法をコンピュータシミュレーションによって種々の SN 比で比較を行っ た結果も示す。周波数周辺分布推定には稿を改めて報告したい。

2 方法

決定論的過程であれば、原信号 x(t) の二乗 x²(t) が時間周辺分布である。しかし確率過 程であると考えた場合はそうではなく、何らかの平均操作が必要になる。例えば、全く同 じ実験条件で脳波や心電図などを測定したとしても雑音などが加わり、全く同じ測定結果 が得られることはない。本来であれば同一条件下で無限個のサンプルのアンサンブル平均 を取らなければ真の分布は得られない。しかし無限個のサンプルを用意することは不可能 であるため、平滑化などの推定法を用いるのが普通である。

ここでは脳波を想定し、原信号 x(t) を以下のような AM 変調型の信号として、その包 絡線 $\mu(t)$ が真の信号であると考える。ただし、n(t) は白色雑音である。

$$x(t) = a(t)\cos(2\pi f_0 t) \tag{1}$$

$$a(t) = \mu(t) + n(t) \tag{2}$$

加法雑音 n(t) が変調信号 x(t) にではなく、包絡線 a(t) に加わっていることが通常の包絡 線検波問題との大きな違いである。

2.0.1 Wigner-Ville 分布

Wigner-Ville 分布とは、双線形クラスに属される最も基本的な時間-周波数表現であり、 以下のように定義される。

$$WV(t,f) = \int x_A^*(t - \frac{\tau}{2}) x_A(t + \frac{\tau}{2}) e^{-j2\pi f t} dt$$
(3)

ここで、 $x_A(t)$ は原信号 x(t) の解析信号、 $x_A^*(t)$ は $x_A(t)$ の複素共役、 τ は時刻である。 Wigner-Ville 分布はある時刻 t から $\frac{\tau}{2}$ ずつ離れた信号の積(信号核)のフーリエ変換で表 される。

解析信号はH{·}をヒルベルト変換として

$$x_A(t) = x(t) + jH\{x(t)\}$$
(4)

と定義される。

Wigner-Ville 分布は周辺分布条件を満たすが、一般的に正値性は満たさない。

2.0.2 Wigner-Ville 分布による時間周辺分布推定法

本報告で提案する Wigner-Ville 分布による時間周辺分布推定法の手順は以下の通りである。

- 1. まず式 (1) のような AM 型信号を入力信号と考える (図1(a))。
- 2. この信号 x(t) の Wigner-Ville 分布 WV(t, f) を求める。これは同図(b)のように真 の信号 $W_{\mu\mu}(t, f - f_0)$ 、クロス項 $W_{n\mu}(t, f - \frac{f_0}{2}) + W_{\mu n}(t, f - \frac{f_0}{2})$ 、雑音成分 $W_{nn}(t, f)$ の3つに分けて考えることが出来る。

図 1: 提案手法の概要

- 得られた分布 WV(t, f) に矩形狭帯域フィルタ H_{Bpass}(f) を掛けて、帯域外のクロス 項、雑音を除去する(同図(c))。
- 更に移動平均平滑化フィルタ k_A(t)を用いて時間方向に平滑化を行い、クロス項、雑 音を低減する(同図(d))。
- 5. そうして得られた Wigner-Ville 分布(同図(e))を周波数方向に積分し、得られる 分布を時間周辺分布推定量 $\hat{\mu}^2(t)$ とする。

以降、この提案法をA法と表記する。ここで提案法の狭帯域フィルタ $H_{Bpass}(f)$ の帯域幅 を W_{Bpass} とするとき、 $k_A(t)$ の移動平均点数 N_{KA} は

$$N_{KA} = \left\lceil \frac{1}{2W_{Bpass}\Delta t} \right\rceil \tag{5}$$

とする。ただし、「]はガウス記号を表わす。

2.0.3 従来法

比較対象として、包絡線検波の従来法である Complex Demodulation 法 (以降 CD 法と 記述する) と二乗検波法 (以降 SQ 法と記述する) を用いる。CD 法は以下のようにして推 定する方法である。

$$\widehat{\mu_{CD}^2}(t) = |y(t) * k_{CD}(t)|^2 \tag{6}$$

$$y(t) = x_A(t)e^{j2\pi f_0 t} \tag{7}$$

ただし、*はコンボリューションを表す。SQ法による推定は以下のように行う。

$$\widehat{\mu_{SQ}^2}(t) = 2x^2(t) * k_{SQ}(t) \tag{8}$$

しかし、提案法ではWigner-Ville分布を用いているため解析信号を入力信号としている。 そこでSQ法でも解析信号を入力信号とした式(2.0.3)のSQa法を比較対象として用いる。

$$\widehat{\mu_{SQa}^2}(t) = x_A^2(t) * k_{SQ}(t) \tag{9}$$

ここで、 $k_{CD}(t), k_{SQ}(t)$ は平滑化フィルタを表しており、その移動平均点数 N_{CDSQ} は

$$N_{CDSQ} = \lceil \frac{1}{W_{Bpass} \Delta t} \rceil \tag{10}$$

とする。

3 コンピュータシミュレーション

3.1 シミュレーション信号

入力信号には変調信号 s(t) による次のような AM 型信号 x(t) を用いる。

$$x(t) = a(t)\cos(2\pi f_0 t) \tag{11}$$

$$a(t) = \mu(t) + n(t) \tag{12}$$

$$\mu(t) = 1 + s(t) \tag{13}$$

 $\mu(t)$ は真の包絡線信号で、a(t)は $\mu(t)$ に加法雑音を加わえた包絡線 (Envelop)、n(t)は白 色ガウス雑音である。今回は $f_0 = 9.96[Hz] (= 51\Delta f, 脳波の \alpha 波を想定して 10[Hz] に一$ 番近いサンプル点の周波数に設定した)とし、<math>s(t)は1次の AR 型信号とした。

シミュレーションでは種々の $SN = \frac{\sqrt{E[\mu^2(t)]}}{\sigma_n} = \frac{1+\sigma_s}{\sigma_n} (\sigma_n : 変調信号 s(t) の標準偏差、\sigma_n: 雑音 n(t) の標準偏差) に対して精度を確かめた。 <math>\sigma_s = 0.05, 0.1, \sigma_n = 0.0, 0.05, ..., 0.1$ と した。

1次のAR信号 *s*(*t*) は次式で定める。

$$s(t) = a_1 s(t-1) + e(t)$$
(14)

 a_1 はAR係数で $a_1 = 0.98$ とした。またe(t)は平均0,分散1の正規白色乱数である。この時のa(t)とx(t)を図の最上段と最下段に示す。同図中段はキャリア cos $2\pi f_0 t$ である。

図 2: シミュレーションで用いた AM 型信号

36

図 3: AR(1) 信号の真のスペクトルとペリ 図 4: 雑音 n(t) がないときの x(t) のスペク オドグラム トル

また、この時のs(t)真のスペクトルを図3に示す。図中の灰色線はペリオドグラムを表わ す。実際のシミュレーション信号x(t)の真のスペクトルは図3のスペクトルが搬送波周波 数 f_0 の位置にシフトしたものとなる(図4参照)。ただし $\mu(t) = 1 + s(t)$ なので DC 成 分も同様にシフトされ、非常に狭帯域な信号になる。本報告では、2.0.2 における狭帯域 フィルタ $H_{Bpass}(f)$ の帯域幅を1.0,1.5,2.0,…,20.0 [Hz] と変化させ、本方法の推定精度 を従来法と比較した。

3.2 コンピュータシミュレーション時の各種パラメータ

コンピュータシミュレーション時の各種パラメータは以下のように定めた。

- 1. データ点数 N = 1024 点
- 2. サンプリング周波数 $f_s = 200[Hz]$
- 3. サンプリング間隔 $\Delta t = \frac{1}{t_0} = 0.005[sec]$
- 4. 時間長 $T = N\Delta t = 5.12[sec]$
- 5. 周波数分解能 $\Delta f = \frac{1}{T} = 0.195[Hz]$

4 結果

図 5 は真の信号 s(t) の標準偏差 $\sigma_s = 0.1$, 雑音 n(t) の標準偏差 $\sigma_n = 0.2$ の時の Wigner-Ville 分布とその周辺分布の一例である。同図の左の分布は周波数周辺分布で、キャリア

図 6: 狭帯域フィルタを掛けた Wigner-Ville 分布

の周波数 $f_0 = 9.96$ [Hz] にスペクトルのピークが出ている。同図下の分布は時間周辺分布 である。

図 6 は図 5 の Wigner-Ville 分布に $W_{Bpass} = 2.5[Hz]$ の狭帯域フィルタ $H_{Bpass}(f)$ を掛けた結果である。(種々の W_{Bpass} の中で $W_{Bpass} = 2.5[Hz]$ のときの最も $\hat{\mu}_A^2(t)$ の推定精度が良かった)。図を見て明らかなようにフィルタの帯域外の雑音を除去しているため、それを積分して得られる時間周辺分布 $x_{Bpass}^2(t)$ (同図下青線)はすでにかなりの平滑化がなされている。この $x_{ABpass}^2(t)$ を更に時間方向に平滑化した本法(A 法)と従来法(CD 法

図 7: $W_{Bpass} = 2.5[Hz]$ の推定結果の一例 図 8: $W_{Bpass} = 5[Hz]$ の推定結果の一例

及び SQ_a 法)の推定結果の一例を図 7,8 に示す。図 7 は図 6 で得られた Wigner-Ville 分 布に平滑化フィルタ $k_A(t)(N_{KA} = 39 点)$ をかけて得られる本方法による推定値 $\hat{\mu}_A^2(t)$ (青 線)、従来の CD 法の結果(緑線)及び SQ_a 法の結果(赤線)を示す。ただし、CD 法及 び SQ_a 法の平滑化フィルタ $k_{CD}(t)$ と $k_{SQ_a}(t)$ の移動平均点数は $W_{Bpass} = 2.5[Hz]$ に対し て式(2.0.3)で決まる値($N_{CDSQ} = 79 点$)に設定した。この図は本方法Aが最も良い結果 をもたらしたときの比較である。一方、CD 法、 SQ_a 法が同時に最も良い結果となったの は $W_{Bpass} = 5[Hz]$ のときであり、図 8 はこのときの各方法の結果を比較したものである。

図7では、本方法は CD 法、 SQ_a 法に対して RMSE が小さく推定精度が良いことが分か る。また図8では、本方法は CD 法、 SQ_a 法に僅かに劣っていた。図7,図8より各方法で 最適な W_{Bpass} を用いたときの推定精度推定精度を比較すると CD 法 (RMSE = 0.12184)、 SQ_a 法 (RMSE = 0.1209) に対して本方法 (RMSE = 0.11981) は優れていた。ただし、 これは 1 サンプルでの結果であり、これだけで各方法の優劣を判断することはできない。 そこで各条件毎に 100 サンプルのシミュレーションを行い W_{Bpass} に対する RMSE を統計 的に調べた結果を次に示す。

図9は狭帯域フィルタの帯域幅 W_{Bpass} を種々変化させたときの各推定方法による推定精度(MSEのアンサンブル平均の平方根 $\sqrt{E[MSE]}$)を示したものである(A法[青], CD法[縁], $SQ_a[赤]$)。上段2つは真の信号 $\mu(t)$ の標準偏差を $\sigma_{\mu} = \sigma_s = \sigma_{ar} = 0.05$ としたときの結果であり、下段は $\sigma_{\mu} = \sigma_s = 0.1$ のときの結果である。また各段の左側は雑音n(t)

図 9: H_{Bpass}の帯域幅 W_{Bpass} を変化させた時の各種推定法による精度の比較

の標準偏差 $\sigma_n = 0$ のときの結果、右側は $\sigma_n = 0.2$ のときの結果である。

縦の破線は各推定法での RMSE 最少となる狭帯域フィルタの帯域幅 W_{Bpass} の位置を表 している。左側の2枚において CD 法(緑)は SQ_a法(赤)と推定結果がほぼ同等で重 なっている。図9の左上と左下から、帯域幅 W_{Bpass}が狭すぎると真の信号の成分までカッ トしてしまうため制度は悪くなることがわかる。そのため雑音が無い場合は、できるだけ W_{Bpass}を大きくする方が良い。これは Wigner-Ville 分布上で真の信号 $\mu(t)$ の成分が高周 波領域にまで広がっているためである。しかし、雑音が加わると最適な帯域幅が存在する ようになることが図9からわかる。これは、帯域を広く取ることで全周波数領域に散らば る白色雑音を拾ってしまうためである。

このように本方法(A法)の推定精度は従来法である SQ_a 法に対しては優れていること が分かる。また CD 法に対しては雑音に汚されていない場合(図9の各段の左側)は、本 方法が優れる。一方で雑音に汚されていた場合(図9の各段の右側)雑音強度によっては、 必ずしも提案手法が最も優れていたとは言えない。図10の左のグラフは真の信号 $\mu(t)$ 標 準偏差 $\sigma_{\mu} = \sigma_s = \sigma_{ar}$ を固定し、SN 比 $\frac{\sqrt{E[\mu^2(t)]}}{\sigma_n = \frac{\sigma_ar}{\sigma_n}}$ と最適 W_{Bpass} に対する RMSE との関 係を示したものである。左側が $\sigma_{ar} = 0.05$ 、右側が $\sigma_{ar} = 0.1$ の場合である。図10より、 本方法(青)は従来法の CD 法(緑) y SQ_a 法(赤)と同等の推定精度であることが分

図 10: $\mu(t)$ と n(t) の SN 比に対する RMSE の変化

かる。また *SQ*_a 法の結果を見ても分かるように包絡線の検波には入力信号に原信号の解 析信号を用いることが有用であることも分かる。

5 まとめ

本報告では、非定常確率過程の Copula に基づく正値時間 – 周波数分布を求める際に重要な役割を果たす時間周辺分布の新たな推定法を提案し、その有用性についてコンピュー タシミュレーションによって検討した。ここでは推定したい真の時間周辺分布は非定常 確率過程の包絡線であると考え、Wigner-Ville 分布を用いてそれを推定する方法を提案し た。従来の包絡線検波法である CD 法、SQ 法を改良した SQa 法と比較を行ったところ、 本方法はそれらと同等か、条件によっては推定精度の点で優れていた。

本報告で扱った信号は搬送波周波数が一定でかつ、既知であるという条件であった。し かし、実際の脳波などでは搬送波周波数は未知であるし、変化もすると考えられる。この 場合、従来法の CD 法は瞬時"周波数"をうまく推定する必要があるのに対し、本提案方 法は瞬時"帯域"を推定すれば良く、多少の瞬時周波数推定の誤差に対して、推定する時 間周辺分布への影響が少ないと考えられる。このことからも本方法の有用性が示唆されて いる。

一方で、本方法は時間-周波数分布を求める計算をしているため CD 法、SQ 法のように 時間領域だけで求まる推定法に比べて計算コストの面で劣っており、今後の課題である。

参考文献

- Manuel Davy and Arnaud Doucet. Copulas: A new insight into positive time-frequency distributions. *IEEE Signal Processing Letters*, Vol. 10, No. 7, pp. 215–218, 2003.
- [2] Hisashi Yoshida, Haruka Kuramoto, Yusuke Sunada, and Sho Kikkawa. Marginal estimation in copula-based time-frequency analysis of a random signal. In *Proceedings* of the 5th International Workshop on Information Optics, 2006.