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Abstract. Image retrieval method based on Euclidian distance

between normalized features with their mean and variance in

feature space is proposed. Effectiveness of the normalization is

evaluated together with a validation ofthe proposed image retrieval

method. The proposed method is applied for discrimination and

identifying dangerous red tide species based on wavelet utilized

classification methods together with texture and color features.

Through experiments, it is found that classification performance

with the proposed wavelet derived shape information extracted

from the microscopic view of the phytoplankton is effective for

identifying dangerous red tide species among the other red tide

species rather than the other conventional texture, color information.

Moreover, it is also found that the proposed normalization of

features is effective to improve identification performance. A

visualization method for representation of  3D object shape

complexity based on the proposed wavelet descriptor is proposed

together with its application to image retrievals. Image retrieval

method using wavelet descriptor of shape information together with

hue and texture information of objects extracted with dyadic

wavelet transformation is proposed. Although there are

conventional methods for image retrievals with hue and texture

information, image retrieval performance (hit ratio) is not so high.
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Therefore, the proposed method uses shape information derived

from objects extracted from original images in addition to the hue

and texture information. In order extract object, dyadic wavelet

transformation is used to find good focusing image area extraction

as objects. Experimental results with several kinds ofphytoplankton

show some improvement of hit ratio as well as Euclidian distance

among images.

Keywords: wavelet descriptor; red tide; phytoplankton

identification, Image retrieval, Dyadic wavelet, Hue

information, Texture information, Wavelet descriptor

1 Introduction

The conventional image retrieval methods use the color information such as

HSV 1 : Hue, Saturation and Value (Intellsity) , RGB: Red, Green, and Blue,

etc. as the spectral information. Meanwhile texture information is also used

in conventional image retrieval methods as the spatial information. On the

other hand, Bachattarian [1], Euclidian2, Mahalanobis3 distance measures [2]

are well known as the similarity or distance measure. Not only hierarchica14

and nonhierarchical clustering 5 as well as Bayesian rule of classification6

and Maximum Likelihood classification7, but also Vector quantization8,

Support vector machine9, etc. are proposed and used for image retrievals.

Relational information such as the relations among image portions or

segments, semantic information, knowledge based information, relational

similarity to classify semantic relations [3] etc. are tried to use in image

retrievals. Spatial and spectral information derived from the images in

concern is applicable image retrievals. There are some moment based spatial

information extraction methods [4], [5], texture feature based spatial

information extraction methods [6] and spectral information based image

retrieval methods [7], [8], [9]. Furthermore, some attempts are made for

image retrievals with wavelet descriptor as a spatial information extraction

[9], [10]. In general, these conventional methods have not so good
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performance in terms of retrieval success rate. Image retrieval method

based on texture, hue and shape features is proposed [11]. In the proposed

method, texture feature is extracted based on discrete wavelet transformation

while shape feature is extracted by the proposed wavelet descriptor which

allows extraction and representation of contour [12]. Contour of the object

extracted from the original image can be expressed with wavelet based

descriptor. The image retrieval method which is based on the hue information

and texture as well as the wavelet described shape information of extracted

objects is proposed previously to improve image retrieval success rate. Image

retrieval performance is not good enough in particular for resemble red tide

species. The method proposed here is normalization of features in concern

with their mean and variance. Through the normalization, all the features used

should have almost same influence for discrimination between the current

specie and the referenced specie results in improvement of identification

performance. The  fo ] lowing section describes the proposed image retrieval

method followed by some experiments for reproducibility of the proposed

 wave]et descriptor in comparison to the conventional Fourier descriptor with

several simple symmetrical and asymmetrical shapes. Then it is validated

with the image database of phytoplankton [13].

There are the following core problems in the image retrieval, (1) Extraction

of Visual Signature, (2) Image Similarity Using Visual Signature, (3)

Clustering and Classification, (4) Relevance Feedback‐Based Search

Paradigms, (5) Multimodal Fusion and Retrieval (Prasad et al. 1987 [14],

Datta et al. 2008 [15]). Firstly,  ViSua\mathfrak{l} signature, or, object feature has to be

extracted. Then image retrieval is made based on image similarity, or,

distance between object image features using extracted visual signature.

Clustering and classification, in particular, is important to measure the

similarity and or distance between extracted visual signatures. Relevance

feedback‐base search is a new paradigm in image retrievals together with

multimodal fusion and retrievals.
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Image retrieval success rate (search hit ratio) is not good enough due to a poor

visual signature or image feature followed by a poor similarity measure as

well as clustering and classification performance. There is some information

which can be extracted from images. That is (1) Halftone, color, and spectral

information, (2) Spatial information including shape, size, texture, etc., and

(3) Relational information such as relation between objects and the other

objects included in images. The conventional image retrieval methods use the

color information such as HSV: Hue, Saturation and Value (Intensity), RGB:

Red, Green, and Blue, etc. as the spectral information. Meanwhile texture

information is also used in conventional image retrieval methods as the

spatial information. On the other hand, Bachattarian (Duda et al., 2001 [16]),

Euclidian Mahalanobis distance measures (Arai, 1996 [17]) are well

known as the similarity or distance measure. Not only hierarchical and non‐

hierarchical clustering as well as Bayesian rule of classification and

Maximum Likelihood classification , but also Vector quantization , Support

vector machine , etc. are proposed and used for image retrievals. Relational

information such as the relations among image portions or segments,

semantic information, knowledge based information, relational similarity to

classify semantic relations (Séaghdha, et al., 2009 [18]) etc. are tried to use

in image retrievals. Spatial and spectral information derived from the images

in concern is applicable image retrievals. There are some moment based

spatial information extraction methods (The et al., 1988 [19], Taubin et al.,

1991 [20]), texture feature based spatial information extraction methods

(Niblack et al., 1993 [21]) and spectral information based image retrieval

methods (Zahn et al., 1972 [22], Huang 1998 [23], Yang, 1998 [24]).

Furthermore, some attempts are made for image retrievals with wavelet

descriptor as a spatial information extraction (Yang 1998 [25], Tieng 1997

[26]). In general, these conventional methods have not so good performance

in terms of retrieval success rate.

All the spectral and spatial information are used in image retrieval except

shape information. There are some trials to use shape information extracted
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from image using Fourier descriptor and the others. There are some

definitions for Fourier descriptors. Zahn and Roskies proposed  Z type

descriptor (Zahn and Roskies. 1972 [27]) while Granlund proposed  G type

descriptor (Granlund, 1972 [28]).  Z type descriptor is defined as the

 cumu]ative angle changes of the contour points from the starting point is

expanded with Fourier series while  G type descriptor defined as the length

between the contour points from the start point of contour line in concern is

expanded with Fourier series. Both of descriptors have the following

problems:

It is hard to express local properties,

lt cannot represent the shape of contour when the shape is not closed,

The results depend on the start point on the contour line in concem for

tracking.

On the other hand,  Z type descriptor has another difficulty that the

convergence speed is not fast so that it takes relatively large computational

resources and the reproducibility of low frequency component is not good

enough. Meanwhile,  G type descriptor has another difficulty that Gibbs

phenomenon (Gibbs, 1899 [29]) would occur at the end points ofthe closed

curve of contour lines results in the end points cannot be preserved.

The shape descriptor proposed here is wavelet based descriptor not the

Fourier type of descriptor. Therefore, the proposed wavelet based descriptor

allows shape description through frequency‐time analysis while Fourier

based descriptor allows only frequency components representation of shape.

There is some advantage for the wavelet based descriptor in shape

information extraction rather than Fourier descriptor. Wavelet descriptor is

proposed for best matching method to measure similarity between two feature

vectors of the two shapes (Yang, et al., 1998 [30], Tieng, et al., 1997 [31]).

This is impractical for higher dimensional feature matching. Therefore,

wavelet descriptors are more suitable for model‐based object recognition than
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data‐driven shape retrieval, because for shape retrieval, which is usually

conducted online, speed is essential.

Contour ofthe object extracted from the original image can be expressed with

wavelet based descriptor. The proposed image retrieval method is based on

the hue information and texture as well as the proposed wavelet described

shape information ofextracted objects to improve image retrieval success rate.

The following section describes the proposed image retrieval method

followed by some experiments for reproducibility of the proposed wavelet

descriptor in comparison to the conventional Fourier descriptor with several

simple symmetrical and asymmetrical shapes. Then it is validated with the

image database ofphytoplankton (Arai and Tearayama, 2010 [32]).

2 Proposed Method

2.1 Process Flow of the Proposed Image Classification

There are some image retrieval methods which are based on the following

features,

(1) Extraction of Visual Signature,

(2) Image Similarity Using Visual Signature,

(3) Clustering and Classification,

(4) Relevance Feedback‐Based Search Paradigms,

(5) Multimodal Fusion and Retrieval

Hit rate, however, is not good enough for the conventional image retrieval

methods. The following features can be applicable for image retrievals,

Spectral features: intensity, color, etc.

Spatial features: shape, size, texture, etc.

Relational features: relations among image portions or segments, semantic

information, knowledge based information, etc.
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Hue and texture information are used as typical features for discrimination

and classification Image classification method based on hue information [33]

and wavelet description based shape information [34] as well as texture

information ofthe objects extracted with dyadic wavelet transformation [35]

is proposed. Object is assumed to be focused so that the frequency component

in the object is relatively high in comparison to the other (background).

Figure 1 shows the process flow ofthe proposed image classification method.

Fig. 1. Process flow ofthe proposed image classification method.

One of the image features of hue information (angle) is calculated for the

entire image in the color image database. Dyadic wavelet transformation10 is

also applied to the images then texture information is extracted from the

transformed resu tant image. Based on the Dyadic wavelet transformation,

HHlı image of edge is extracted from the original image. Morphological

operations12, opening and closing are then applied to the edge extracted

images to remove inappropriate isolated pixels and undesirable image defects.

After that the resultant image is binarized with appropriate threshold then

contour ofthe object is extracted. Then the Dyadic wavelet transformation is

applied to the contour in order to extract shape information (Wavelet

descriptor). After all, Euclidian distance between target image and the other

candidate images in the color image database is calculated with extracted hue,

texture and shape information then the closest image is retrieved.
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Normalization of the extracted features is applied in the proposed method.

Then image in concern is retrieved with  Euc ] idian distance between features

of the image in concern and the images in the given image database. B.

Dyadic wavelet transformation Using dyadic wavelet, frequency component

can be detected. Dyadic wavelet allows to separate frequency components

keeping image size with that oforiginal image. Dyadic wavelet is called as a

binary  wave ]  et and has high pass and low pass filter components,  \{h[kJ,  g[kJ }

and reconstruction filter  \{h[kJ ,gfkl}. Low and high frequency components,

Cn and  dn are expressed as follows,

Cn  [i]=\Sigma kh[k]Cn-1[i+k2n-1] (1)

 dn[i]=\Sigma kg[k]Cn-1[i+k2n-1] (2)

Then original image is also reconstructed with the low and high frequency

components as follows,

 Cn-1[i]=1/2\Sigma kh[k]Cn[i-k2n-1]+\Sigma kg[k]dn[i-k2n-1]

(3)

If a new parameter  s[m] is employed, then lifting dyadic wavelet is defined

as follows,

 hnew[k]=hold[k] (4)

 hnew[k]=hold[k]+\Sigma ms[-m]g old  [k-m] (5)

 gnew[k]=gold[k]-\Sigma ms[m] hold  [k-m] (6)

 gnew[k]=g old  [k] (7)

2.2 Dyadic wavelet based descriptor (Shape information)

Image c]assification method with hue and texture information is conventional.

In the proposed method, another feature, shape information is employed.

Fourier descriptor is used, in general, to represent shape information.

Although Fourier descriptor represents frequency component of the contour

line, location information cannot be described. In other words, Fourier

descriptor does support only frequency analysis, and does not support time‐

frequency component analysis. Wavelet descriptor which is proposed by this
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paper supports a time‐frequency component analysis so that not only

frequency component but also location ofcontour edge can be discussed [36].

Let  u(i) be distance between a point in the closed object contour line and a

certain point  i on the line, then the closed object contour line can be

represented as  u(i),  i=1,2,\ldots,n.  i=1 corresponds to  0 degree while  i=n

corresponds to 360 degree, respectively as shown in Figure 2.

Fig.2 Example of extracted contour ofthe object in concern

 u(i) can be converted with dyadic wavelet transformation. Then the contour

line can be represented with high frequency component ofthe dyadic wavelet

transformed sequence as is shown in Figure 3. Then average of the high

frequency component of pixel value is used for a feature of the image

classification. The contour line can be represented with high frequency

component ofthe dyadic wavelet transformed sequence, Then average ofthe

high frequency component of pixel value is used for a feature of the image

retrieval.

 11  arrow

Contour locations Wavelet transformation

Reconstruction

Fig. 3. Dyadic wavelet descriptor for representation ofthe closed object

contour lines.

 Wave]et analysis makes available a time‐frequency analysis so that influence

due to start point dependency can be eliminated. It can represent the detailed

shape in particular local shape with  2x2 ofwavelet transformation. It is easy

to implement wavelet descriptor because only thing user has to do is replace
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Fourier transformation to wavelet transformation (Dyadic wavelet in the

proposed method).

Alternative shape information is Fourier Descriptor. Zahn and Roskies

proposed  Z type descriptor while Granlund proposed  G type descriptor. These

are as follows,

 Z type descriptor: Cumulative angle changes of the contour points from the

starting point is expanded with Fourier series

 G type descriptor: length between the contour points from the start point of

contour line in concern is expanded with Fourier series

The location coordinate is expressed in the complex plane representation for

the  G type of Fourier descriptor, that is,

 Z_{s}=X_{s}+iY_{s} (8)

Then space or time domain locations can be transformed with eth following

equation,

 F_{t}= \frac{1}{s}\sum_{s\subset 0}^{s-\downarrow}Z_{s}\exp(\frac{-2\pi ks}{s}
i) (9)

It can be inversely transformed with the following equation,

 Z_{s}= \sum_{t\Rightarrow 0}^{s-1}F_{t}\exp(\frac{2\pi ks}{s}i) (10)

Namely, the location coordinate is expressed in the complex plane

representation.

Both of descriptors has the following problems It is hard to express local

properties. It cannot represent the shape of contour when the shape is not

closed. The results depend on the start point on the contour line in concern

for tracking. Other than these, both descriptors have their following specific

problems,
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 Z type descriptor: Convergence speed is not fast so that it takes relatively

large computational resources, also Reproducibility of low frequency

component is not good enough

 G type descriptor: Gibbs phenomenon would occur at the end points of the

closed curve of contour lines results in the end points cannot be preserved

2.3 Texture information

Also texture information is useful for discrimination. Texture information can

be derived from dyadic  wave ]  et transformation. Texture information is

defined as high frequency component of pixel value derived from dyadic

wavelet transformation. Daubechies wavelet transformation is applied to the

 2x2 pixels defined in Figure 4.

Fig.4. Detected object and  2x2 ofmatrix in the object to detect texture

information with  2x2 of dyadic wavelet transformation.

Pixel value of the pixel in the object is replaced to the high frequency

component detected with Daubechies wavelet. Thus image which represents

texture information of the detected object image is generated [37].

Daubechies base function ofwavelet has order. 1st order of Daubechies base

function is totally equal to Haar base function. In this paper, 1st,  2nd,4th order

of Daubechies base function is used and compare their classification and

image retrieval performance with Euclidean distance between the specified

phytoplankton and the others.
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2.4 Hue angle

Thus contour of the object is detected. Then Red, Green, and Blue: RGB of

the original object image can be transformed to Hue, Saturation, and

Intensity: HSV information. Hue information in unit of radian, in particular,

is useful for discrimination of the target image classifications of

phytoplankton images.

RGB to HSV conversion is also be expressed as fo lows,

  V=\max(R, G, B)

 S=(V-X)[ where   X=\min(R, G, B)

 R=V:H=(\pi/3) (b‐ g)

 G=V:H=(\pi/3)(2+r-b)

 B=V:H=(\pi/3)(4+g-r)

where  r=(V-R)/(V-X),  g=(V-G)/(V-X),  b=(V-B)/(  V ‐X),  H ranges

from  0 to 360,  S ranges from  0 to 1 , V ranges from  0 to 1 , HSV representation

and  R,  G,  B also range from  0 to 1 as shown in Figure 5.

Fig.5 Color representation

These three features, hue,  H , texture, xx and shape information, yy composes

three dimensional feature space results in measurement of Euclidian distance

between a query image and the images in previously created image database.
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Using the distance, a query image can be retrieved from the image in the

database. Thus image classifications can be done with hue and texture

information as well as shape information derived from dyadic wavelet

descriptor.

2.5 Preliminary experiment

Ifthese transformation and inverse transformation is perfect, then the original

shapes are completely reproduced. The reproducibility for the shapes ofcircle,

triangle, square, and trapezium (asymmetric shape) of the proposed wavelet

descriptor is better than that ofthe conventional Fourier descriptor as shown

in Figure 6.

Contour  \bullet

Founer

DyadlC  \bullet

Fig.6 Comparison of reproducibility of the shapes between Fourier and

Dyadic wavelet descriptor.

The process flow of the preliminary experiment is shown in Figure 7. The

extracted contour is described with Fourier and wavelet descriptor. Then,

contour is reconstructed with the representations of contour with Fourier and

wavelet descriptors. After that, Root Mean Square; RMS error between the

reconstructed counter and the original contour is  calculated_{\circ}
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Fig.7 Process flow ofthe preliminary experiment

In the comparison, the original image is binarized and the contour is extracted.

Then shape information is extracted with both Fourier descriptor (  G‐type)

and Dyadic wavelet descriptor. After that, image is reconstructed with the

extracted shape information then compares the reconstructed images with two

descriptors, Fourier and Dyadic wavelet descriptors. The difference between

the reconstructed contours and original image is shown in Table 1. Thus it is

found that the reproducibility of Dyadic wavelet descriptor is better than the

conventional Fourier descriptor.

TABLE 1 COMPARISON OF THE DIFFERENCE BETWEEN THE ORIGINAL AND

RECONSTRUCTED CONTOURS WITH FOURIER AND DYADIC WAVELET

DESCRIPTORS.

Shape Fourier Dyadic

circle 0.4121 0.ı809

triangle 0.5391 0.1280

square 0.3689 0.1101

trapezium 0.4660 0.1929
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This method can be expanded to  3D object. Once  3D object image is acquired

through scanning in  roll/pitch/yaw directions with the appropriate step angle,

and then contour lines ofthe acquired  2D images are extracted. After that, the

 3D object shape complexity is represented with the wavelet descriptor as a

resultant image which includes series of the high frequency components

derived from dyadic wavelet transformation as shown in Figure 3 as shown

in the following sequence,

HH..  H(for roll angle  0),  HH..H ( for roll angle 10) HH..  H(for roll angle

350),

HH..  H(for pitch angle  0),  HH..H ( for pitch angle 10) HH..  H(for pitch

angle 350),

HH..  H(for yaw angle  0),  HH..H ( for yaw angle 10) HH..  H(for yaw angle

350). It is an image and is totally visual. This image represents  3D object

shape complexity as an index. Also this index is shiit invariant and rotation

invariant. Namely, the index is not changed even if  3D object is translated

and rotated.

3 Experiment

3.1 Data Used

Figure 8 shows intensive study area of Ariake bay in Kyushu, Japan and

example of chlorophyll‐a concentration derived from  Terra/MODIS of

remote sensing satellite.
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Fig.8 Intensive study area ofAriake bay and chlorophyll‐a concentration in

unit of  \mu g/m^{3}

Ariake Bay is a portion ofAriake Sea ofwhich the width is around  20km (in

direction ofeast to west) and the length is approximately  100km (in direction

of north to south). It is almost closed sea area because the mouth ofAriake
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Sea is quite narrow. Sea water exchanges are, therefore, very small. Diatom

blooms have recurrently appeared from late autumn to early spring in the

coastal waters of western Japan, such as the Ariake Bay and the Seto Inland

Sea, where large scale “Nori” aquaculture occurs.

Red tide is a severe problem not only for fisherman, but also for ocean

biologists. Red tide occurs in a nutrient‐rich ocean, chlorophyll‐a rich ocean

results in photosynthesis is getting active. Red tide is one of indicators for

ocean healthiness.

Nutrition‐rich water makes chlorophyll‐a increasing phytoplankton and thus

red tide occurs.

Diatom blooms have caused the exhaustion ofnutrients in the water column

during the “Nori” harvest season. The resultant lack of nutrients has

suppressed the growth of “Nori” and lowered the quality of “Nori” products

due to bleaching with the damage of the order of billions of Japanese yen

(Approx.25 billion yen for Ariake Bay).

This example of the MODIS derived chlorophyll‐a concentration which are

acquired on February 122012. The Ariake Sea is the largest productive area

ofNori (Porphyra yezoensis]) in Japan. In winters in 2012, 2013, 2014 and

2015, as well as 2016, a massive diatom bloom appeared in the Ariake Bay,

Japan. In case of above red tides, bloom causative was Rhizosolenia

imbricate2 and Eucampia zodiacus. This bloom has been occurred several

coastal areas in Japan and is well reported by Nishikawa et al. for Harima‐

nada sea areas. Diatom blooms have recurrently appeared from late autumn

to early spring in the coastal waters ofwestern Japan, such as the Ariake Bay

and the Seto Inland Sea, where large scale “Nori” aquaculture occurs.

Diatom blooms have caused the exhaustion of nutrients in the water column

during the “Nori” harvest season. The resultant lack of nutrients has

suppressed the growth of “Nori” and lowered the quality of “Nori” products

due to bleaching with the damage ofthe order of billions ofJapanese yen.

There are a plenty ofred tide species. Small portion ofred tide species can be

listed up in Figure 9. These red tide species can be classified into three

68



69

categories, (a) Caution level of species, (b) Waming level of species, and (c)

Dangerous species. Fishes and shells take these dangerous red tide species.

②

 b

 \copyright

 @\iota_{{\}}  ⑯_{},(
 @_{q_{q}}  \not\subset 3)\Re>. @4  hN

Fig.9 Photos of a portion of red tide species

After that human habitats eat the fishes and shells. Then such persons get a

bad situation and have an illness condition. Therefore, these red tide species

are classified into dangerous species. Identifying these dangerous red tide

species is important. It, however, is not so easy to classify because these three

categories of red tide species are quite resemble. Usually, the local fishery

research institutes measure red tide from the research vessels with microscope.

They used to count the number ofred tide with microscope camera acquired

imagery data on the ship. Then identify the red tide species in the same time

quickly. Even though human perception capability is superior to that by

machine learning based automatic classification, there are some mistakes.

The purpose ofthe research is to improve classification performance by using

considerable features which can be extracted from the microscopic imagery

data.

Figure 10 shows the extracted edges ofthe phytoplankton shapes.
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Fig. ı0 Extracted edges ofthe phytoplankton shapes.

3.2 Comparison of Euclidian Distance Between Cahttnella Antiqua‐3

and the Others with Three Features, Texture, Hue and Wavelet

Discriptor Based on Daubechies 1, 2, and 4

One of the measures for classification performance evaluation is Euclidian

distance among the classes in concern. Shorter Euclid distance implies a poor

classification performance while longer distance means a good performance.

Euclid distance between  Chattnella_{-}Antiqua-3 and the other species are

calculated and shown in Table 2, 3, 4 for the case of utilizing all these three

features of wavelet descriptor with Daubechies 1, 2, and 4, respectively.
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Calculated  Euc ]  id Distance when Texture Wavelet Descripter and hue

information are used as features.

TABLE 2. EUCLID DISTANCE BETWEEN CHATTNELLA ANTIQUA3 AND THE

OTHERS WITH DAUBECHIES 1

Daubechles 1 Mean Normallzed Mean Eucltd Dlstance

wavelet texture hue(rad) wavelet texture hue(rad) Normahzed Mean  /_{0}1 mprove

a  catcmllal_{t}cll  0 196484 4  320291 129206 4320291 5208882 347149 2610026  0 730394 2573451

a  cat\iota nclla4_{CL}ll  0 263178 548481 3647233 548481 1268603 5002298 8867848 3258216 1721688

 c anllqua  0 283669 5571536  0 892777 5571536 3941248 5472623 1887694 1870292  0 930425

 cantlq1It^{\underline{\gamma}}  0 288699 3577128 2054994 3 S77128 7631026 5588075 360677 1 141521  215 9618

 c antl   \int 1t3  0 29426 3701602  0 920312 3701602 4  02866S ; 715715

 cftlt a  0 246901 8065  S13 1742646 8  06SS13 6639391 4628697  S 200117 4  44074S 171001

 c manra  0 222682 365  0 779962 365 3583085 4  07280S 1703043  0 183073 8302522

 cpoIjk_{71}k_{oI}dcI^{\underline{1}} CLIl  0 24923 370454 1 181714 370454 4  858S58 4682154 1325511  0 271051 3890264

 c\prime)(I_{J}k_{11}k_{ol}dcs8ccII  0 217637 3961787 1 173258 3961787 4831712 3  9S7009  19S0802  0 364634 4350023

 df)tfn  0 327144 9655471 1  421S95  96S S471 5620126 6470492 6  20894S 5975446 390763

 g_{CatcnaIm2]}l_{Cc1l} 0210512 4233059  0 83791 4233059 3  7670S7 379347 2011445  0 544842 2691797

 gtarLmltIm15cc Il  0 230301 8044559  0 789282 8044559 3612674 4247682 4603199 4  34S976 5918657

 gIn\backslash tnanm’  04119S6  4286S65 1 s7805 4  28656S 6116836 8  4171s8  346416g  0 896759 2862983

 g\prime za\prime()to/  0 256012 5721647 2  321s16  S 721647 8477174 4837819 4963921 2459018 101866

 gp(Jljg/ annna  0 295303 7345761 1019077 7  34S761 4342222 5  73965S  36S7702  i64S502  0 334673

 g\backslash \iota mgInnLnn]  0 27297 9884615 1 184978 988461  i 486892 5  2270S1 6258951 6188811 1 13334

 \prime_{1}aka\backslash hn10  0 550117 7972222  0 993822 7972222 4262043 11 S8833 7265003 42888 6939478

 h_{CItCtdan\backslash f^{i_{I}ama}}  0 499699 4288433  08s0071 4288433 3805666 104311 4756989  066S326 6149864

 m mbmn]  0 35107 7  8S0218 1444111 7  8S0218  569161  70196S9 4655821 4182799 1130874

 n\backslash cmtlllan\backslash 4  022S198 3990742 2205616 3990742 8109217 4  130s54 4387168 1320164 2323199

 t1 $t  IntIllan5  0 184937 2872873 1 S07892 2872873 5  8941 3206455 323466 1026171  21S 2166

Mean  0 289427 562778 1420899 562778 5617916 5604776 3934275 2276169 196  6S01

Standard Devlatlon  0 095136 2183621  0 687803 2183621 2  183621 2183621 2147732 1994634 224  S983
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TABLE 3. EUCLID DISTANCE BETWEEN CHA TTNELLA ANTIQUA3 AND THE

OTHERS WITH DAUBECHIES 2

Daubechles 2 Mean  N_{0}1ed Mean Euclld Dlsatance

wavelet texture hue(rad)  wal elet texture hue(rad) Normallzed Mean  0, lmprove

a  catcntllal\iota tll  0 080995 1320291 129206  i 320291 5208882 3705773 232756  0 730394 218672

a catcnclla4ccll  0 170238 548481 3647233 548481 1268603 5416414 8841316 3258216 171  354S

 ta,11]qua  01 S5219 5571536  0 892777 5 S71536 3941248 5 128525 1933937 1870292 3402932

 c anlzqua2  0 171255 3577128 2054994 3 S77128 7631026 5435908 3608915 1 141521 2161497

 \iota anllqua3  0 180553 3701602  0 920312 3701602 4028665 5614136

 tfII/ca  0 159615 8065513 1742646 8065513 6639391 5212789  S1 01048 4  44074S 1486918

 cmmna  0 085888 365  0 779962 365 3583085 3799564 1869191  0 183073 9210066

 \iota poIjhIk_{oI}dc1^{\underline{\gamma}}tt]/  0 117673 370454 1 181714 370454 4  8S8SS8 440883 1463384  0 271051 439  892S

 cI)ol) knkoIdc  \backslash 8_{Ct}ll  0 147278 3961787 1  1732S8 3961787 4831712 4976309 1 Os8019  0 364634 1901588

 dforI]I  0 236693 9  6S5471  1421S9S 9655471 5620126 6690247 6  2g6143  g 975446 4697494

gcaIcnaInmlccll  0 103167 4233059  0 83791 4233059 3  7670s7 4130774 1 s97262  0 544842 1931609

 gcaIcnatun]5cc ll  0 098365 8  0445S9  0 789282 8044559 3612674 4038728 4  638S6 4345976 6  73228S

 gIn\backslash lrlatltm  0 315118 4  28656S 157805 4  28656S 6116836 8193524 3369849  08967S9  275781

 gnIIk_{I}motoI  0 122712 5721647 2321  s16 5721647 8477174 4  S0S419 5009897 2459018 10373 S7

 gp\prime l) gamnta  01684S 7345761 1019077 7345761 4342222  S 382141 3664974 3  64SK02  0 s34143

 g sungnIntI”  0 134972 9  8846lg 1 184978 9884615 486892 4740423 6300718 6188811 1808221

 h akashnno  0 g03999 7  97^{\underline{\urcorner}}222  0 993822 7972222 4262043 1181406 7 s32047 42888  7g 62133

 h Lnculan squania  0 429245 4288433  08g0071 4288433 3  80S666  103811S 4808173  066s326 6226794

 mmb ;um  0 260962 7850218 1444111 7850218 569161 7  1\preceq 5443 4727793 4182799 1302941

 n\backslash ctntIllans4  0 105809 3990742 2205616 3990742 8109217 4181417 4334419 1320164 2283243

 nt tImIllan s5  0 053063 2872873 1507892 2872873 58941 3170363 3184127 1026171 2102921

Mean  0 181013 562778 1420899 562778 5617916 5622949 3887016 2276169 1862811

Standard Devlatton  0 113918 2183621 0687803 2183621 2183621 2183621 2233389 1994634 233  185s

TABLE 4. EUCLID DISTANCE BETWEEN CHA TTNELLA ANTIQUA3 AND THE

OTHERS WITH DAUBECHIES 4

Daubechles 4 Mean Normahzed Mean Euchd Dlsatance
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wavelet texture hue(rad) wavelet texture hue(rad) Normallzed Mean %lmprove

a calcncllaltcll  0 088846 1320291 129206 4  320291  S 208882 3698761 2237914  0 730394 2063984

a  tatcty\}tlIa4ct ll  0 194141 548481 3647233 548481 1268603 5391889 8839726 3258216 1713057

 canlll^{1l}  0 176529 5 S71536  0 892777 5 S71536 3941248 510869 1911765 1870292 2217423

 \iota anliqua‐7  0 192126 3577128 2054994 3577128 7631026 5359488 3607122 1 141521 2159926

 \iota anoqua3  0 200659 3701602  0 920312 3701602 4028665 5496697

 \iota fm ca  0 184336 8065513 1742646 8065513 6639391 5234226 5092004 4440745 1466552

 \iota manna  0 095042 365  0 779962 365 3583085 3798392 1  7S6543  0 183073  8S947S3

 c polJ  knk_{oI}d\iota{\}^{\underline{\gamma}}cc1l  0 129042 370454 1 181714 3  704s4  48s8\underline{\backslash 5}8 4345107 1419469  0 271051 4236906

 cpoI)h]k_{oI}dcs8cclI  0 164878 3961787 1 173258 3961787 4831712 4921344 1 021573  0 364634 1801637

 df01lII  0 278876 9  6S5471 1421595 9655471 5620126 6754414 6289925 5975446 5  2628S

 gcatcnan_{t}ml_{Ct}ll  0 113391 4  2330s9  0 83791 4  2330s9 3767057 4093441 1523159  0 s44842 1795599

 gcnttnatnn15_{tt}ll  01054S7  8044SS9  0 789282 8  0445S9 3612674 3965864 4623611 4  34S976 6388313

 gtn\backslash t1 IatuIn  03720S2  428656S  1S780g  4286s6s 6116836 8  2S267 3506854  0 896759 2910587

 gmtkm1oto/  0 147609  S 721647 2321 S16 5721647 8477174 4643661 4959585 2  4^{s}9018 1016897

gpol) graltltna  0 194853 7345761 1019077 7345761 4342222 5403337 3  65881S 3645502  0 365202

 gs‘mgmmnm  0 15963 9  88461S 1 184978 9884615 486892 4836957 6274626 6188811 1386621

 hIkashI)10  0 S88219 7972222  0 993822 7972222 4262043 117286 7 S58393 42888 7623562

 h_{CI}rc\prime tan\backslash quama  0 506198 4288433  0 850071 4288433 3  80S666 1040972 4952965  0 665326 644442

 mmb_{tlJI}  0 302785 7850218 1444111 7850218 569161 7138867 476163 4182799 1383836

 n\backslash CIntlllcm\backslash 4  0 11566 3990742 2  20S616 3990742 8109217 4129926 431307 1320164 2267071

 n\backslash ctnl\prime llan\backslash 5  0 0558 2872873 1 S07892 2872873 58941 3167387 3097148 1026171 2018161

Mean  0 207911 562778 1420899 562778 5617916 5613306 3876471 2276169 1820314

 s_{t\mathfrak{W}} dard Devlatlo  \Pi  0 135799 2  183621  0 687803 2183621 2183621 2  183621 2255699 1994634  22S 2163

It is clear that the mean and standard deviation after the normalization are

same in comparison to the before the normalization. It also found that the

Euclidian distance between ChattnellaAntiqua‐3 and the others are improved

remarkably, around twice much longer distance.
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3.3 Euclidian Distance Between Chattnella Antica‐3 and the Others

Using Hue and Texture information as well as with and without

Wavelet Discriptor

Effectiveness of the wavelet descriptor is evaluated through comparisons of

Euclidian distance between Chattnella Antiqua‐3 of specie and the other

species calculated with the normalized features. Table 5, 6, 7 shows the

results for Daubechies 1, 2, 4 of base function ofwavelet.

The mean of Euclidian distance for without wavelet descriptor shows around

2.7 while that with wavelet descriptor shows more than 3.8. Therefore,

effectiveness of wavelet descriptor is corresponding to 40% improvement of

Euclidian distance which results in40 % improvement of image retrieval and

classification.

TABLE 5. EUCLID DISTANCE BETWEEN CHA TTNELLA ANTIQUA3

AND THE OTHERS WITH DAUBECHIES 1

Daubechies 1 With Without

Wavelet Descriptor

a.catenellalcell 2.610026 2.535638

a.catenella4cell 8.867848 8.686708

c.antiqua 1.887694 0.258332

c.antiqua2 3.60677 3.604622

c.antiqua3  0  0

c.furca 5.200117 2.827985

c.marina 1.703043 1.702262

 c.polykrikoides2cell 1.325511 1.325508

 c.polykrikoides8cell 1.950802 1.933373

d.fortii 6.208945 1.761374

 g. catenatumlcell 2.011445 1.939965

g.catenatum5cell 4.603199 1.525834

 g.instriatum 3.464165 3.414419

g.mikimotoi 4.963921 4.534306
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g.polygramma 3.657702 0.314469

g.sanguineum 6.258951 0.972019

h.akashiwo 7.265003 5.87725

h.circularisquama 4.756989 4.720654

m.rubrum 4.655821 2.11321

n.scintillans4 4.387168 4.37763

n.scintillans5 3.23466 3.126697

Mean 3.934275 2.740584

Standard Deviation 2.147732 2.077256

TABLE 6. EUCLID DISTANCE BETWEEN CHATTNELLA ANTIQUA3

AND THE OTHERS WITH DAUBECHIES 2

Daubechies 2 With Without

Wavelet Descriptor

a.catenellalc 2.3275 2.24382

ell 6 7

a.catenella4c 8.8413 8.65962

ell 16 1

c.antiqua 1.9339 0.49341

 37 6

c.antiqua2 3.6089 3.60676

 15 7

c.antiqua3  0  0

c.furca 5.1010 2.64139

 48 6

c.marina 1.8691 1.86847

 91 8

c.polykrikoid 1.4633 1.46338

 es2cell 84 1

c.polykrikoid 1.0580 1.02552

 es8cell 19 8
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d.fortii 6.2561 1.92113

 43 6

g.catenatuml 1.5972 1.50625

cell 62 4

g.catenatum5 4.6385 1.62940

cell 6 4

 g. instriatum 3.3698 3.31869

49

g.mikimotoi 5.0098 4.58459

 97 2

g.polygramm 3.6649 0.39005

a 74

g.sanguineu 6.3007 1.21218

 m 18 9

h.akashiwo 7.5320 6.20431

 47 6

h.circularisq 4.8081 4.77222

uama 73 7

m.rubrum 4.7277 2.26738

93

n.scintillans4 4.3344 4.32476

 19 5

n.scintillans5 3.1841 3.07439

27

Mean 3.8870 2.72418

 16 1

Standard 2.2333 2.09672

Deviation 89 8

TABLE 7. EUCLID DISTANCE BETWEEN CHATTNELLA ANTIQUA3

AND THE OTHERS WITH DAUBECHIES 4
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Daubechies 4 With Without

Wavelet Descriptor

a.catenellalcell 2.237914 2.150694

a.catenella4cell 8.839726 8.657998

c.antiqua 1.911765 0.397732

c.antiqua2  3.607 ]  22 3.604973

c.antiqua3  0  0

c.furca 5.092004 2.623887

c.marina 1.756543 1.755785

 c.polykrikoides2cell 1.419469 1.419465

 c.polykrikoides8cell 1.021573 0.987884

d.fortii 6.289925 2.028448

g.catenatumIcell 1.523159 1.427433

 g. catenatum5cell 4.623611 1.586348

 g.instriatum 3.506854 3.457722

g.mikimotoi 4.959585 4.529559

g.polygramma 3.658815 0.32716

g.sanguineum 6.274626 ]  .06831

h.akashiwo 7.558393 6.236273

h.circularisquama 4.952965 4.918078

m.rubrum 4.76163 2.337115

n.scintillans4 4.31307 4.303367

n.scintillans5 3.097148 2.984214

Mean 3.876471 2.704878

Standard Deviation 2.255699 2.126147

3.4 Euclidian distance between query image and the image in the

image database

 \ln order to show the effectiveness of the wavelet descriptor based shape

complexity feature, just three dimensional feature spaces is used because

small dimensionality is much comprehensive. In the feature space, the

aforementioned three features, hue (H) which is the averaged hue in unit of
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radian over the object area, wavelet descriptor (W) which is the averaged

high frequency component of pixel value along with the contour line of the

object and Texture (T) which is the averaged high frequency of pixel value

over the object area are used to discriminate the object included images thus

image retrieval is made by using a distance between location of the current

image and locations of the previously acquired images in the feature space.

As it is aforementioned, Hue, texture, and shape information are scalar value

and these features become a vector in the feature space. From an image in

image DB, three features are extracted and the image becomes a vector in

the three dimensional feature spaces. Figure 11 shows the distance between

Chatnella Antiqua of phytoplankton and the other phytoplankton. Figure 11

(a) shows the distance in case of texture information only while Figure 11

(b) shows that for hue information. Meanwhile, Figure 11 (c) and (d) shows

that of Dyadic wavelet and Fourier descriptors, respectively. On the other

hand, Figure 11 (e) shows that when hue, texture and Dyadic wavelet

descriptor is used whiıe Figure lı (f) shows that hue, texture and Fourier

descriptor is used.
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Fig.10 Comparisons between Chattnella Antiqua and the closest

phytoplankton in the Euclidian feature space.

The distance for both cases using hue and texture only is too short so that

separability is not good enough in comparison to the shape information with

Fourier or wavelet descriptors. The distance ofthe hue is twice much longer

than that oftexture. Although the texture ofthe phytoplankton is very similar,

colors ofphytoplankton are different. Shape information based distance is a

little bit longer than that of hue as well as texture information. When hue,

texture, and shape information are used, the distance between Dyadic

wavelet and Fourier descriptors together with hue and texture is very similar.
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Figure 12 shows scatter diagram of phytoplankton species with the vertical

axis is Wavelet descriptor. Taking Chattonella Antiqua of phytoplankton as

a query image, Euclidian distance between the query image and the others

are calculated. The distance calculated with the features of hue and texture

only is shown in Table 8 while Table 9 shows the distance with the feature

of wavelet descriptor, hue and texture.

Euclidian distance between Chattonella Antiqua and the others ranges from

0.005 to 11.52 for the features ofhue and texture  on ]  y while that ranges from

0.24 to 3.40. Table 3 shows rating results of  Euc ] idian distance between

ChattonellaAntiqua and the others and averaged Euclidian distance between

both. The averaged Euclidian distance between ChattonellaAntiqua and the

others with the feature of hue and texture only is shorter than that with

feature of hue, texture and wavelet descriptor of shape information.

 m\ln\ sub.b\alpha\cdot u2'.3:4 *
 ++ Seard  \mathfrak{m}a9e.\mathfrak{X}u2:3:4  x

HlUmage.b#  u2:3:4  \bullet
 i

1.

Wvdet  \Vert
 m_{1}oe

(a)
 e_{Rlm{\rm Res} ulbMur\cdot 3:4}\bullet

 H
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 +  \bullet

HltImage.  \infty^{\bullet}u2:3:4  K

3.

2.
Tenlre

1.

0.
1

ttDesaiptor

(c)
Fig.11. The feature space consists of hue (H), wavelet descriptor (W) and

texture (T) for image retrievals (vertical axis is Wavelet descriptor).

TABLE 8 EUCLIDIAN DISTANCE BETWEEN CHA TTOlvELLA ANTIQUA AND THE
OTHERS WITH FEATURES OF HUE AND TEXTURE ONLY.
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TABLE 9 EUCLIDIAN DISTANCE BETWEEN CHA TTONELLA ANTIQUA AND THE
OTHERS WITH FEATURES OF WAVELET DESCRIPTOR, HUE AND TEXTURE.

.Table 10 shows average ofthe features, hue, texture, and shape information

with descriptors, Dyadic wavelet descriptor and Fourier descriptor as well as

the percent difference between both. The proposed Dyadic wavelet descriptor

shows the most significant difference between both, 22.59%. It is almost 3.8

times in comparison to the conventional Fourier descriptor. Also Euclidean

distance between both in the case of hue, texture, and Dyadic wavelet

descriptor is 0.5751 while that of Fourier descriptor is 0.5739 results in 0.21%

improvement is achieved with the proposed Dyadic wavelet descriptor in

terms ofdistance in the feature space which consists ofhue, texture, and shape

information of features. It depends on the weights for each feature. If the

weight for Dyadic wavelet is set as much as large in comparison to the others,
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then much longer distance can be achieved. In the case of equal weight for all

three features, the distance shown in Table 11 can be achieved. Ifthe weight

for Dyadic wavelet descriptor is set at 0.5 followed by 0.3 for hue, and 0.2

for texture, then 5.25% improvement can be achieved with the proposed

Dyadic wavelet descriptor, hue, and texture features.

TABLE 10 AVERAGE OF THE FEATURES AND THE PERCENT DIFFERENCE

BETWEEN CHA  \Gamma\Gamma NELLA ANTIQUA AND C. POL yKRIKOJDES

TABLE 11 EUCLIDEAN DISTANCE BETWEEN CHA  \Gamma\Gamma NELLA ANTIQUA AND
C. POLYKRIKOIDES WITH HUE, TEXTURE, AND DYADIC WAVELET DESCRIPTOR

OR FOURIER DESCRIPTOR BASED SHAPE INFORMATION.

4 Conclusion

Wavelet descriptor of shape information is effective to improve image

retrieval success rate. In addition to the conventional hue and texture

information, wavelet descriptor derived shape information representing

contour of the object is useful for discrimination of images. Experimental

results show Euclidian distance between a specific image of Chattonella

Antiqua and the other phytoplankton with the features of hue, texture and

shape information is 50 times much longer than that with the features of hue

and texture information of the object image. The shortest Euclidian distance

between Chattonella Antiqua and the other phytoplankton is improved from

0.005 to 0.24. This implies that separability between ChatonellaAntiqua and

the others is improved results in much easy image retrieval ofred tide species.
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lt is also found that the reproducibility ofthe proposed Dyadic  wave ]  et based

descriptor is improved by 2‐3 times in comparison to the conventional Fourier

descriptor. An example for discrimination between Chattonella Antiqua and

C. Polykrikoides shows 5.25% improvement can be achieved with the

proposed Dyadic wavelet descriptor based features in comparison to the

conventional Fourier descriptor based features if the appropriate weight

factors are set to the hue, texture, and shape information of features.

Comparative study on discrimination methods for identifying dangerous red

tide species based on wavelet utilized classification methods is conducted.

Through experiments, it is found that classification performance with the

proposed wavelet derived shape information extracted from the microscopic

view of the phytoplankton is effective for identifying dangerous red tide

species among the other red tide species rather than the other conventional

texture, color information.

It is clear that the proposed wavelet descriptor is effective for image retrieval

and classification. It is almost 40 % improvement in terms of Euclidian

distance.

Normalization of features is effective to improve Euclidian distance between

specie in concern and the others. The experimental results show that the

Euclidian distance between ChattnellaAntiqua‐3 and the others are improved

remarkably, around twice much longer distance.
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