\mathfrak{sl}_2 の有限次元表現に付随する $\mathrm{O}(p,q)$ の (\mathfrak{g},K) 加群

鳥取大学 教育センター 橋本 隆司 Takashi Hashimoto

Education Center, Tottori University

Abstract

本稿の主目的は、Howe 双対性の下で \mathfrak{sl}_2 の有限次元表現 F_m ($\dim F_m = m+1$)に対応する O(p,q) の既約 (\mathfrak{g},K) 加群を構成し、その K タイプ公式、および Gelfand-Kirillov 次元、Bernstein 次数を求めることである.

1 序

本稿を通して、G は不定値直交群 O(p,q) を表し、次のように実現しておく:

$$G = O(p,q) = \{ g \in GL_{p+q}(\mathbb{R}); {}^{t}gI_{p,q}g = I_{p,q} \}.$$
(1.1)

ただし $I_{p,q} = \begin{bmatrix} 1_p & 1_q \end{bmatrix}$ とする.したがって G のリー環を g_0 と記すとき

$$\mathfrak{g}_0=\mathfrak{o}(p,q)=\{X\in\mathfrak{gl}_{p+q}(\mathbb{R});\ ^tXI_{p,q}+I_{p,q}X=O\}$$

となる. g_0 の複素化を g, さらに g_0 (resp. g) の双対を g_0^* (resp. g^*) と記し,次の G-不変双一次形式 B により g_0 (resp. g) と同一視する:

$$B(X,Y) = \frac{1}{2}\operatorname{tr}(XY).$$

さて、G はシンプレクティック・ベクトル空間 (W,ω), ただし

$$\begin{split} W &= (\mathbb{C}^{p+q})_{\mathbb{R}} = \big\{z = x + \mathrm{i}\, y; x, y \in \mathbb{R}^{p+q}\big\}; \\ \omega(z, w) &= \mathrm{Im}(z^* I_{p,q} w) \qquad (z, w \in W), \end{split}$$

に自然に作用するが、これはハミルトニアン作用、すなわち、運動量写像 $\mu:W\to g_0^*\simeq g_0$ が存在する。この運動量写像 μ を量子化することにより g の表現が得られるが、この表現は (g,K) 加群になることがわかる(ただし K は、 $O(p)\times O(q)$ に同型な G の極大コンパクト部分群を表す)。次に、好一対 $(O(p,q),\mathfrak{sl}_2(\mathbb{R}))$ に着目して、Howe 双対性の下で $\mathfrak{sl}_2(\mathbb{R})$ の有限次元表現 F_m (ただし $\dim F_m=m+1$)に対応する (g,K) 加群 $M^\pm(m)$ を構成する.

この $M^{\pm}(m)$ の K タイプ公式と既約性を調べ、また、それによりこの加群の Gelfand-Kirillov 次元および Bernstein 次数を求めるのが本研究の目的である.

なお, 証明等の詳細については, arXiv:1801.10298 [math.RT] を参照のこと.

以下,本稿で使用する記号を準備する.

リー環 g_0 の Cartan 分解を $g_0=\mathfrak{t}_0\oplus\mathfrak{p}_0$, 複素リー環 \mathfrak{g} の複素カルタン分解を $\mathfrak{g}=\mathfrak{t}\oplus\mathfrak{p}$ とする. $E_{i,j}$ により (i,j) 成分のみ 1 で他の成分はすべて 0 である (p+q) 次の正方行列を表すものとするとき, \mathfrak{g} の基底 $\{X_{i,j}^\pm\}$ を

$$X_{i,j}^+ = \begin{bmatrix} A_{i,j} & \\ \\ \end{bmatrix}, \quad X_{p+i,p+j}^+ = \begin{bmatrix} \\ \\ \\ A_{i,j} \end{bmatrix}, \quad X_{i,j}^- = \begin{bmatrix} \\ \\ E_{j,i} \end{bmatrix}$$

とおく、ただし、 $A_{i,j} := E_{i,j} - E_{j,i}$ とおいた、したがって、

$$\mathfrak{k}=\bigoplus_{i,j}\mathbb{C}X_{i,j}^{+}\oplus\bigoplus_{i,j}\mathbb{C}X_{p+i,p+j}^{+},\qquad \mathfrak{p}=\bigoplus_{i,j}\mathbb{C}X_{i,j}^{-}$$

である. また, 上昇階乗冪, 下降階乗冪をそれぞれ

$$(\alpha)_n := \prod_{i=1}^n (\alpha+i-1), \quad (\alpha)_n^- := \prod_{i=1}^n (\alpha-i+1).$$

とかくことにする.

2 運動量写像とその量子化

■運動量写像 W の標準的な基底 $\{e_1,\ldots,e_{p+q},\mathrm{i}\,e_1,\ldots,\mathrm{i}\,e_{p+q}\}$ $(e_i={}^t(0,\ldots,1,\ldots,1))$ に対し,同一視

$$e_i \leftrightarrow \partial_{x_i}$$
, i $e_i \leftrightarrow \partial_{y_i}$ $(i = 1, 2, \dots, p + q)$

の下で、W 上のシンプレクティック形式 ω を微分形式として表すと

$$\omega = \sum_{i=1}^{p+q} \epsilon_i \, \mathrm{d}x_i \wedge \mathrm{d}y_i \tag{2.1}$$

となる。ただし, $\epsilon_i = \begin{cases} 1 & (i=1,\dots,p) \\ -1 & (i=p+1,\dots,p+q) \end{cases}$ とおいた。このとき,G の W への自然な作用の運動量写像は次のようになる。

命題 2.1. 運動量写像 $\mu:W\to \mathfrak{g}_0^*\simeq \mathfrak{g}_0$ は次式で与えられる:

$$\mu(z) = -\frac{i}{2}(zz^* - {}^{t}(zz^*))I_{p,q}$$

$$= (-x^t y + y^t x)I_{p,q}$$

$$= \begin{bmatrix} -x'{}^{t}y' + y'{}^{t}x' & x'{}^{t}y'' - y'{}^{t}x'' \\ -x''{}^{t}y' + y''{}^{t}x' & x''{}^{t}y'' - y''{}^{t}x'' \end{bmatrix}.$$
(2.2)

ただし $z = x + i y \in W$, $x = {}^t(x', x'')$, $y = {}^t(y', y'') \in \mathbb{R}^{p+q}$ とする.

■正準量子化 $f \in C^{\infty}(W)$ に対し、W 上のベクトル場 ξ_f を d $f = \omega(\xi_f, \cdot)$ により定め、Poisson bracket を $\{f,g\} := \omega(\xi_g, \xi_f)$ と定義する.このとき、(2.1) より各座標関数間のPoisson bracket は以下のようになる:

$$\{x_i, y_j\} = -\epsilon_i \delta_{i,j}, \quad \{x_i, x_j\} = \{y_i, y_j\} = 0.$$

 $f \in C^{\infty}(W)$ に対応する量子化を \hat{f} とかくとき、Dirac の量子化条件の一つである

$$\{f_1, f_2\} = f_3$$
 ならば $[\hat{f}_1, \hat{f}_2] = -i \hat{f}_3$ $(f_j \in C^\infty(W), j = 1, 2, 3)$

に則って

$$[\hat{x}_i, \hat{y}_i] = i \epsilon_i \delta_{i,j}, \quad [\hat{x}_i, \hat{x}_i] = [\hat{y}_i, \hat{y}_i] = 0 \qquad (i, j = 1, 2, \dots, p + q)$$

となるので,

$$\hat{x}_i = x_i, \hat{y}_i = -i \partial_{x_i}, (i = 1, ..., p);
\hat{x}_{p+j} = -i \partial_{y_{p+j}}, \hat{y}_{p+j} = y_{p+j} (j = 1, ..., q)$$
(2.3)

と量子化する. したがって、この量子化は W のラグランジュ部分空間 V として

$$V = \langle e_1, \dots, e_p, i e_{p+1}, \dots, i e_{p+q} \rangle_{\mathbb{R}}$$
(2.4)

を選んだことになる。つまり、V上の多項式係数の微分作用素のなす環を $\mathcal{PD}(V)$ とするとき,量子化された作用素はすべて $\mathcal{PD}(V)$ の元として実現されている。したがって,(2.2) で与えられる運動量写像 μ を量子化すれば,すなわち,その中の x_i,y_i をそれぞれ \hat{x}_i,\hat{y}_i で置き換えれば,量子化 $\hat{\mu}$ は次のようになる:

$$\hat{\mu} = \begin{bmatrix} \mathrm{i} \left(x^{\prime \, t} \partial_{x^{\prime}} - \partial_{x^{\prime}} {}^t x^{\prime} \right) & x^{\prime \, t} y^{\prime \prime} + \partial_{x^{\prime}} {}^t \partial_{y^{\prime \prime}} \\ \partial_{y^{\prime \prime}} {}^t \partial_{x^{\prime}} + y^{\prime \prime \, t} x^{\prime} & \mathrm{i} \left(y^{\prime \prime \, t} \partial_{y^{\prime \prime}} - \partial_{y^{\prime \prime}} {}^t y^{\prime \prime} \right) \end{bmatrix}.$$

ここで

$$x' = {}^{t}(x_1, \dots, x_p), \qquad \qquad \partial_{x'} = {}^{t}(\partial_{x_1}, \dots, \partial_{x_p}),$$

$$y'' = {}^{t}(y_{p+1}, \dots, y_{p+q}), \qquad \qquad \partial_{y''} = {}^{t}(\partial_{y_{p+1}}, \dots, \partial_{y_{p+q}})$$

とかいた.

 $\blacksquare g = \mathfrak{o}(p,q)$ の表現 上で定義した運動量写像 μ に対し, $H_X := \langle \mu, X \rangle$ $(X \in \mathfrak{g})$ とおくとき,

$$\{H_X, H_Y\} = H_{[X,Y]}$$

が成り立つことに注意すれば,次の定理が成り立つ.

定理 **2.2.** $\pi(X) := \mathrm{i} \langle \hat{\mu}, X \rangle$ $(X \in \mathfrak{g})$ とおけば,写像 $\pi : \mathfrak{g} \to \mathfrak{PD}(V)$ はリー環の準同型となる.これを \mathfrak{g} の基底 $\{X_{i,j}^*\}$ で述べると

$$\pi(X) = \begin{cases} -x_{j}\partial_{x_{i}} + x_{i}\partial_{x_{j}} & if \quad X = X_{i,j}^{+}; \\ -y_{p+j}\partial_{y_{p+i}} + y_{p+i}\partial_{y_{p+j}} & if \quad X = X_{p+i,p+j}^{+}; \\ \mathrm{i}\,(x_{i}y_{p+j} + \partial_{x_{i}}\partial_{y_{p+j}}) & if \quad X = X_{i,j}^{-}; \end{cases}$$

となる.

■正準量子化その2 上と同一のラグランジュ部分空間 V に対応する正準量子化として

$$\hat{x}_{i}^{\sharp} = x_{i}, \qquad \hat{y}_{i}^{\sharp} = -i \, \partial_{x_{i}}, \qquad (i = 1, \dots, p);$$

$$\hat{x}_{p+i}^{\sharp} = y_{p+j}, \qquad \hat{y}_{p+i}^{\sharp} = i \, \partial_{y_{p+j}} \qquad (j = 1, \dots, q)$$
(2.5)

とする、これらもすべて $\mathfrak{PD}(V)$ の元として実現されていることに注意、これに対応する量子化された運動量写像 \hat{a}^{\sharp} は

$$\hat{\mu}^{\sharp} = i \begin{bmatrix} x'^{t} \partial_{x'} - \partial_{x'}^{t} x' & x'^{t} \partial_{y''} + \partial_{x'}^{t} y'' \\ y''^{t} \partial_{x'} + \partial_{y''}^{t} x' & y''^{t} \partial_{y''} - \partial_{y''}^{t} y'' \end{bmatrix}$$

となる.定理 2.2 と同様, $\pi^{\sharp}(X) = \mathrm{i}\langle \hat{\mu}^{\sharp}, X \rangle$ とおけば

$$\pi^{\sharp}(X) = \begin{cases} -x_{j}\partial_{x_{i}} + x_{i}\partial_{x_{j}} & \text{if} \quad X = X_{i,j}^{+}; \\ -y_{p+j}\partial_{y_{p+i}} + y_{p+i}\partial_{y_{p+j}} & \text{if} \quad X = X_{p+i,p+j}^{+}; \\ -(x_{i}\partial_{y_{p+j}} + y_{p+j}\partial_{x_{i}}) & \text{if} \quad X = X_{i,j}^{-} \end{cases}$$
(2.6)

となり、これは [2] で与えられた g の表現に一致する。

■いくつかの注意

注意 2.3. (1) \hat{x}_{n+i}^{\sharp} および \hat{y}_{n+i}^{\sharp} は、次のように \hat{x}_{p+j} および \hat{y}_{p+j} に対応している:

$$\hat{x}_{p+j} = -i \, \partial_{y_{p+j}} \longleftrightarrow \hat{x}_{p+j}^{\sharp} = y_{p+j}
\hat{y}_{p+j} = y_{p+j} \longleftrightarrow \hat{y}_{p+j}^{\sharp} = i \, \partial_{y_{p+j}}$$

$$(j = 1, \dots, q).$$

これは $y_{p+1},...,y_{p+q}$ に関する部分的フーリエ変換 (partial Fourier transform) に他ならない. つまり, 我々の表現 π は π^{\sharp} とこの部分的フーリエ変換により関係している.

(2) 対応 ${}^t(x',i\,y'') \leftrightarrow {}^t(x',y'')$ の下で V を \mathbb{R}^{p+q} と同一視することにより,G を V に作用 させるとき,(2.6) で与えられる π^{\sharp} は, $C^{\infty}(V)$ 上の G の正則表現の微分表現に一致する.したがって,特に, $\pi_{\mathbb{H}} = \pi^{\sharp}$ であることから, $\pi_{\mathbb{H}}$ は K の表現に持ち上がる.

3 好一対 $(O(p,q),\mathfrak{sl}_2(\mathbb{R}))$

■好一対 $(O(p,q),\mathfrak{sl}_2(\mathbb{R}))$ これより以降, g の表現としては π のみを考え, また, 記号を簡単にするため,

$$x = {}^{t}(x_1, x_2, \dots, x_p), \qquad y = {}^{t}(y_1, y_2, \dots, y_q)$$

とかくことにする.

さて、よく知られているように、 $(O(p,q), \operatorname{Sp}(m,\mathbb{R}))$ は $\operatorname{Sp}(m(p+q),\mathbb{R})$ において好一対をなすが、m=1 として好一対 $(O(p,q),\operatorname{SL}_2(\mathbb{R}))$ を得る。そこで、いささか天下りではあるが、

$$H = -E_x - \frac{p}{2} + E_y + \frac{q}{2}, \quad X^+ = -\frac{1}{2}(\Delta_x + r_y^2), \quad X^- = \frac{1}{2}(r_x^2 + \Delta_y)$$

とおく. ただし,

$$E_{x} = \sum_{i=1}^{p} x_{i} \partial_{x_{i}}, \qquad r_{x}^{2} = \sum_{i=1}^{p} x_{i}^{2}, \qquad \Delta_{x} = \sum_{i=1}^{p} \partial_{x_{i}}^{2},$$

$$E_{y} = \sum_{j=1}^{q} y_{j} \partial_{y_{j}}, \qquad r_{y}^{2} = \sum_{j=1}^{q} y_{j}^{2}, \qquad \Delta_{y} = \sum_{j=1}^{q} \partial_{y_{j}}^{2}.$$

このとき,簡単な計算により、次の命題が成り立つことを確かめることができる.

命題 **3.1.** $g' := \mathbb{C}$ -span $\{H, X^+, X^-\} \subset \mathcal{PD}(V)$ とおけば, $g' \simeq \mathfrak{sl}_2$ である. さらに $g' \subset \mathcal{PD}(V)^g$ が成り立つ. ただし, $\mathcal{PD}(V)^g := \{D \in \mathcal{PD}(V); D\pi(X) = \pi(X)D \ (X \in \mathfrak{g})\}$ とする.

■最高ウェイトベクトルと最低ウェイトベクトル g の作用と可換な $g' \simeq \mathfrak{sl}_2$ の作用がわかったので、次に、g' の作用に関する最高ウェイトベクトル (または最低ウェイトベクトル)、すなわち、ある複素数 λ に対して

$$Hf = \lambda f$$
 かつ $X^+f = 0$ (または $X^-f = 0$) (3.1)

を満たすV上の関数を求めよう.

今, \mathbb{R}^n 上の斉次 d 次の調和多項式を $\mathfrak{R}^d(\mathbb{R}^n)$ とかくことにすると,これが O(n) の既約表現になっていることはよく知られている. さらに V 上の多項式全体のなす空間 $\mathcal{P}(V)$ は

$$\mathcal{P}(V) \simeq \mathbb{C}[x_1, \dots, x_p] \otimes \mathbb{C}[y_1, \dots, y_q]$$

$$\simeq \bigoplus_{k=0}^{\infty} \left(\mathbb{C}[r_x^2] \otimes \mathcal{H}^k(\mathbb{R}^p) \right) \otimes \bigoplus_{l=0}^{\infty} \left(\mathbb{C}[r_y^2] \otimes \mathcal{H}^l(\mathbb{R}^q) \right)$$

$$\simeq \bigoplus_{k,l=0}^{\infty} \mathcal{H}^k(\mathbb{R}^p) \otimes \mathcal{H}^l(\mathbb{R}^q) \otimes \mathbb{C}[r_x^2, r_y^2]$$

であることに注意して、(3.1) を満たす最高ウェイトベクトル(または最低ウェイトベクトル) f を $\mathcal{P}(V)$ の中で探してみるとうまくいかないことがわかる。そこで、今、f が

$$f(x,y) = h_1(x)h_2(y)\phi(r_x^2, r_y^2)$$

の形をしていると仮定する. ただし

$$h_1 \in \mathcal{H}^k(\mathbb{R}^p), h_2 \in \mathcal{H}^l(\mathbb{R}^q), \phi(s,t) \in \mathbb{C}[[s,t]]$$

とする. つまり、次の関数空間 $\tilde{\epsilon}$ の中で探すことにする:

$$\tilde{\mathcal{E}} = \bigoplus_{k,l=0}^{\infty} \mathcal{H}^k(\mathbb{R}^p) \otimes \mathcal{H}^l(\mathbb{R}^q) \otimes \mathbb{C}[[r_x^2, r_y^2]].$$

このとき、微分方程式 (3.1) を解けば、次の命題を得る.

命題 **3.2.** $h_1 \in \mathcal{H}^k(\mathbb{R}^p)$, $h_2 \in \mathcal{H}^l(\mathbb{R}^q)$ が与えられたとき, $(\kappa_+ := k + p/2, \kappa_- := l + q/2)$.

(1) $f=h_1(x)h_2(y)\phi(r_x^2,r_y^2)$ が $Hf=\lambda f$ および $X^+f=0$ を満たすならば、f は

$$f(x,y) = h_1(x)h_2(y)r_y^{2\mu}\psi_{\kappa_+}$$

で与えられる. ただし $\mu_- = (\lambda + \kappa_+ - \kappa_-)/2 \in \mathbb{N}$.

(2) $f = h_1(x)h_2(y)\phi(r_x^2,r_y^2)$ が $Hf = \lambda f$ および $X^-f = 0$ を満たすならば、f は

$$f(x,y) = h_1(x)h_2(y)r_x^{2\mu_+}\psi_{\kappa_-}$$

で与えられる. ただし $\mu_+ = -(\lambda + \kappa_+ - \kappa_-)/2 \in \mathbb{N}$.

ここで
$$\psi_{\alpha} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(\alpha)_n} \left(\frac{r_x^2 r_y^2}{4}\right)^n$$
 とおいた.

■いくつかの注意 (2)

注意 3.3. (1) 上の命題 3.2 で現れた関数

$$\psi_{\alpha} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! (\alpha)_n} \left(\frac{r_x^2 r_y^2}{4}\right)^n$$

は、第1種の ν 次ベッセル関数 J_{ν}

$$J_{\nu}(t) = \left(\frac{t}{2}\right)^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \, \Gamma(n+\nu+1)} \left(\frac{t}{2}\right)^{2n}$$

を用いて表すことができる. 実際,

$$\psi_{\alpha} = \Gamma(\alpha) \left(\frac{r_x r_y}{2}\right)^{-(\alpha-1)} J_{\alpha-1}(r_x r_y)$$

という関係が成り立つ. よく知られているように、 J_{ν} はベッセルの微分方程式

$$\frac{\mathrm{d}^2 J_{\nu}}{\mathrm{d}t^2} + \frac{1}{t} \frac{\mathrm{d}J_{\nu}}{\mathrm{d}t} + \left(1 - \frac{v^2}{t^2}\right) J_{\nu} = 0$$

を満たすが、これを ψ_{α} の言葉に翻訳すれば

$$\frac{r_x^2 r_y^2}{4} \psi_{\alpha+2} = \alpha(\alpha+1)(\psi_{\alpha+1} - \psi_{\alpha})$$
 (3.2)

となる. (3.2) は、以下で見るように、いくつかの場面で鍵となる役割を果たす.

(2) 補題 2.3 に述べたように、二つの表現 π と π^{\sharp} の間には

$$\begin{array}{cccc}
\pi & \pi^{\sharp} \\
-i \, \partial_{y_j} & \longleftrightarrow & y_j \\
y_j & \longleftrightarrow & i \, \partial_{y_j}
\end{array} (j = 1, \dots, q)$$

のような関係がある. この対応の下で、 \mathfrak{g}' の表現作用素 H および X^+ はそれぞれ、定数倍を除いて、

$$\begin{split} \tilde{E}_{p,q} &= \sum_{i=1}^{p} x_i \partial_{x_i} + \sum_{j=1}^{q} y_j \partial_{y_j} + \frac{p-q}{2}, \\ \Box_{p,q} &= \sum_{i=1}^{p} \partial_{x_i}^2 - \sum_{j=1}^{q} \partial_{y_j}^2 \end{split}$$

に対応する. したがって、(3.1) を満たす最高ウェイトベクトル f は、微分方程式

$$\Box_{p,q}\tilde{f}=0$$

の斉次解 \tilde{f} に対応する.

命題 3.2 から, $\tilde{\epsilon}$ の元である最高ウェイトベクトル(または最低ウェイトベクトル)f は,その K タイプが決まれば, r_y^2 (または r_x^2) の冪とベッセル関数の次数は一意的に定まることがわかる.

■ $g' = \mathfrak{sl}_2$ と \mathfrak{p} の \mathcal{E} への作用 本節の最後に、 $g' = \mathfrak{sl}_2$ と、 $X \in \mathfrak{p}$ に対して $\pi(X)$ の \mathcal{E} への作用を掲げておこう。

 $\rho_x = r_x^2/2, \rho_y = r_y^2/2$ とおけば表示が簡単になるので、以下、そうする.また、これまでの議論から、我々の関数は、とりあえず、以下の (3.3) で与えられる関数空間 $\mathcal{E} \subset \tilde{\mathcal{E}}$ に棲んでいるものとする:

$$\mathcal{E} := \mathbb{C}\text{-span}\left\{h_1(x)h_2(y)\rho_x^a \rho_y^b \psi_\alpha; \begin{array}{l} h_1 \in \mathcal{H}^k(\mathbb{R}^p), h_2 \in \mathcal{H}(\mathbb{R}^q), \\ a, b \in \mathbb{N}, \alpha \in \mathbb{C} \setminus (-\mathbb{N}) \end{array}\right\}. \tag{3.3}$$

命題 **3.4.** $h_1 = h_1(x) \in \mathcal{H}^k(\mathbb{R}^p), h_2 = h_2(y) \in \mathcal{H}^l(\mathbb{R}^q)$ $(\kappa_+ = k + p/2, \kappa_- = l + q/2)$ に対し,

$$H(h_{1}h_{2}\rho_{x}^{a}\rho_{y}^{b}\psi_{\alpha}) = (-\kappa_{+} + \kappa_{-} - 2a + 2b)h_{1}h_{2}\rho_{x}^{a}\rho_{y}^{b}\psi_{\alpha},$$

$$X^{+}(h_{1}h_{2}\rho_{x}^{a}\rho_{y}^{b}\psi_{\alpha}) = h_{1}h_{2}(-a(\kappa_{+} + a - 1)\rho_{x}^{a-1}\rho_{y}^{b}\psi_{\alpha} + \frac{\kappa_{+} + 2a - \alpha}{\alpha}\rho_{x}^{a}\rho_{y}^{b+1}\psi_{\alpha+1}),$$

$$X^{-}(h_{1}h_{2}\rho_{x}^{a}\rho_{y}^{b}\psi_{\alpha}) = h_{1}h_{2}(b(\kappa_{-} + b - 1)\rho_{x}^{a}\rho_{y}^{b-1}\psi_{\alpha} - \frac{\kappa_{-} + 2b - \alpha}{\alpha}\rho_{x}^{a+1}\rho_{y}^{b}\psi_{\alpha+1})$$
(3.4)

が成り立つ. したがって、 \mathfrak{sl}_2 の作用は \mathfrak{E} の各元の K タイプを保つ.

さらに、 \mathbb{R}^n 上の次数 d の斉次多項式関数 P に対し

$$P^{\dagger} := P - \frac{r^2}{4(d+n/2-2)} \Delta P$$

とかくことにする(ただし, $\Delta=\sum\limits_{j=1}^n\partial_{x_i}^2$)。このとき, $\Delta^2P=0$ ならば $\Delta P^\dagger=0$,つまり, $P^\dagger\in\mathcal{H}^d(\mathbb{R}^n)$ となることに注意.

命題 3.5. $h_1 = h_1(x) \in \mathcal{H}^k(\mathbb{R}^p), h_2 = h_2(y) \in \mathcal{H}^l(\mathbb{R}^q)$ $(\kappa_+ = k + p/2, \kappa_- = l + q/2)$ に対し,

$$-i \pi(X_{i,j}^{-}) \left(h_1 h_2 \rho_x^{\alpha} \rho_y^{b} \psi_{\alpha} \right)$$

$$= (\partial_{x_i} h_1) (\partial_{y_j} h_2) \rho_x^{\alpha} \rho_y^{b} \left(\frac{(\kappa_+ + a - \alpha)(\kappa_- + b - \alpha)}{(\kappa_+ - 1)(\kappa_- - 1)} \psi_{\alpha} + \frac{(\alpha - 1)(\kappa_+ + \kappa_- + a + b - \alpha - 1)}{(\kappa_+ - 1)(\kappa_- - 1)} \psi_{\alpha - 1} \right)$$

$$+ (\partial_{x_i} h_1) (y_j h_2)^{\dagger} \left(-\frac{\kappa_+ + a + b - \alpha}{\alpha(\kappa_+ - 1)} \rho_x^{a + 1} \rho_y^{b} \psi_{\alpha + 1} + \frac{b(\kappa_+ + a - 1)}{\kappa_+ - 1} \rho_x^{a} \rho_y^{b - 1} \psi_{\alpha} \right)$$

$$+ (x_i h_1)^{\dagger} (\partial_{y_j} h_2) \left(-\frac{\kappa_- + a + b - \alpha}{\alpha(\kappa_- - 1)} \rho_x^{a} \rho_y^{b + 1} \psi_{\alpha + 1} + \frac{a(\kappa_- + b - 1)}{\kappa_- - 1} \rho_x^{a - 1} \rho_y^{b} \psi_{\alpha} \right)$$

$$+ (x_i h_1)^{\dagger} (y_j h_2)^{\dagger} \left(-\frac{a + b + 1 - \alpha}{\alpha} \rho_x^{a} \rho_y^{b} \psi_{\alpha + 1} + ab \rho_x^{a - 1} \rho_y^{b - 1} \psi_{\alpha} \right)$$

$$(3.5)$$

が成り立つ.

いずれの命題 3.4 および 3.5 の証明においても (3.2) が鍵となる.

4 主結果

■ \mathfrak{sl}_2 の有限次元表現に付随する (\mathfrak{g},K) 加群 \mathfrak{sl}_2 の表現論により,非負整数 $m \in \mathbb{N}$ に対し, $Hf = \lambda f, X^{\pm}f = 0, (X^{\mp})^{m+1}f = 0$ ならば $\lambda = \pm m$ であることから,以下のような対象を導入する.

定義 **4.1** (cf. [5]). 与えられた非負整数 $m \in \mathbb{N}$ に対し,

$$\begin{split} M^+(m) &:= \left\{ f \in \mathcal{E}; \begin{array}{l} Hf = m\,f, \quad X^+f = 0 \\ (X^-)^j f \neq 0 \; (1 \leq j \leq m), \; (X^-)^{m+1} f = 0 \end{array} \right\}, \\ M^-(m) &:= \left\{ f \in \mathcal{E}; \begin{array}{l} Hf = -m\,f, \quad X^-f = 0 \\ (X^+)^j f \neq 0 \; (1 \leq j \leq m), \; (X^+)^{m+1} f = 0 \end{array} \right\} \end{split}$$

と定義する.

定義により $M^+(0) = M^-(0)$ であるが,さらに $M^+(m)$ と $M^-(m)$ について次が成り立つ.

命題 **4.2.** $M^+(m)$ と $M^-(m)$ は互いに同型な (\mathfrak{g},K) 加群である.

実際, $(X^+)^m(X^-)^m v = (m!)^2 v (v \in M^+(m))$ であるから,

$$(X^{-})^{m}: M^{+}(m) \xrightarrow{\sim} M^{-}(m).$$

が同型を与える.

 $\blacksquare K$ タイプ公式 次に本研究の主結果を述べる.

定理 **4.3.** 正整数 p と q のパリティが同一(すなわち $p+q \in 2\mathbb{N}$)とし、非負整数 $m \in \mathbb{N}$ が $m+3 \leq (p+q)/2$ を満たすと仮定する.このとき、次が成り立つ.

(1) $M^{\pm}(m)$ の K タイプ公式は

$$M^{\pm}(m)|_{K} \simeq \bigoplus_{\substack{k,l\geqslant 0\\k-l+\frac{p-q}{2}\in\Lambda_{m}}} \mathcal{H}^{k}(\mathbb{R}^{p})\otimes \mathcal{H}^{l}(\mathbb{R}^{q}),$$

で与えられる. ただし $\Lambda_m = \{-m, -m+2, -m+4, \dots, m-2, m\}$ とする.

(2) さらに $p,q \ge 2$ ならば、 $M^{\pm}(m)$ は既約である.

命題 3.2 より, $m \in \mathbb{N}$ に対し, $f = h_1 h_2 \rho_y^{\mu} - \psi_{k+p/2} \in M^+(m)$ (または $f = h_1 h_2 \rho_x^{\mu} + \psi_{l+q/2} \in M^-(m)$)ならば

$$\pm m = -k + l - \frac{p - q}{2} \pm 2\mu_{\mp} \in \mathbb{Z}$$

なので、 $f \neq 0$ ならば $(p+q)/2 \in \mathbb{Z}$ でなければならないことに注意する.

また、定理より、 $M^+(0) = M^-(0)$ は O(p,q) の極小表現に対応することがわかる (cf. [1, 4, 3]).

証明には次の補題を用いる.

補題 **4.4.** $h_1 = h_1(x) \in \mathfrak{R}^k(\mathbb{R}^p)$ および $h_2 = h_2(y) \in \mathfrak{R}^l(\mathbb{R}^q)$ ($\kappa_+ = k + p/2$, $\kappa_- = l + q/2$) とする.

(1) $f = h_1 h_2 \rho_y^{\mu_-} \psi_{\kappa_+}$ が最高ウェイトベクトルで、ウェイトが $\lambda = -\kappa_+ + \kappa_- + 2\mu_-$ ならば

$$(X^{-})^{\nu} f = h_1 h_2 \sum_{i=0}^{\nu} {\nu \choose i} \frac{(-\lambda + \nu - 1)_i^{-} (\mu_{-})_{\nu-i}^{-} (\kappa_{-} + \mu_{-} - 1)_{\nu-i}^{-}}{(\kappa_{+})_i} \rho_x^i \rho_y^{\mu_{-} - \nu + i} \psi_{\kappa_{+} + i}.$$

(2) $f = h_1 h_2 \rho_x^{\mu_+} \psi_{\kappa_-}$ が最低ウェイトベクトルで、ウェイトが $\lambda = -\kappa_+ + \kappa_- - 2\mu_+$ ならば

$$(X^{+})^{\nu} f = (-1)^{\nu} h_{1} h_{2} \sum_{i=0}^{\nu} {\nu \choose i} \frac{(\lambda + \nu - 1)_{i}^{-} (\mu_{+})_{\nu-i}^{-} (\kappa_{+} + \mu_{+} - 1)_{\nu-i}^{-}}{(\kappa_{-})_{i}} \rho_{x}^{\mu_{+} - \nu + i} \rho_{y}^{i} \psi_{\kappa_{-} + i}.$$

ただし、v = 0,1,2,...で、 $\binom{v}{i}$ は二項係数を表す.

証明は、命題 3.4 を a=0 または b=0 の場合に適用して ν に関する帰納法を用いる.

定理の証明(概略) (1) $M^+(m)$ について示す。 $M^-(m)$ についても全く同様である。補題より $f = h_1 h_2 \rho_+^{\nu_-} \psi_{\kappa_+} \in M^+(m)$ ($\kappa_+ = k + p/2, \kappa_- = l + q/2$) に対し、

$$(X^{-})^{m+1} f = h_1 h_2 \sum_{i=0}^{m+1} {m+1 \choose i} \frac{(0)_i^{-}(\mu_{-})_{m+1-i}^{-}(\kappa_{-} + \mu_{-} - 1)_{m+1-i}^{-}}{(\kappa_{+})_i} \rho_x^{i} \rho_y^{\mu_{-} - m - 1 + i} \psi_{\kappa_{+} + i}$$

$$= (\mu_{-})_{m+1}^{-}(\kappa_{-} + \mu_{-} - 1)_{m+1}^{-} h_1 h_2 \rho_y^{\mu_{-} - m - 1} \psi_{\kappa_{+}}.$$

したがって, $(X^{-})^{m+1}f = 0$ のとき

$$\mu_{-} = 0, 1, \dots, m,$$
 or $\mu_{-} = -\kappa_{-} + 1, -\kappa_{-} + 2, \dots, -\kappa_{-} + m + 1$

となるが、p,q,m に関する仮定から後者は除外される. したがって $m = -\kappa_+ + \kappa_- + 2\mu_-$ より

$$\kappa_+ - \kappa_- = -m + 2\mu_- = -m, -m + 2, \dots, m$$

を得る.

(2) 命題 3.5 より, $f = h_1 h_2 \rho_{\nu}^{\mu_-} \psi_{\kappa_+} (\kappa_+ = k + p/2, \kappa_- = l + q/2)$ に対し,

$$-i \pi(X_{i,j}^{-})f = \frac{\kappa_{-} + \mu_{-} - 1}{\kappa_{-} - 1} (\partial_{x_{i}} h_{1})(\partial_{y_{j}} h_{2}) \rho_{y}^{\mu_{-}} \psi_{\kappa_{+} - 1}$$

$$+ \mu_{-} (\partial_{x_{i}} h_{1})(y_{j} h_{2})^{\dagger} \rho_{y}^{\mu_{-} - 1} \psi_{\kappa_{+} - 1}$$

$$+ \frac{\kappa_{+} - \mu_{-} - \kappa_{-}}{\kappa_{+} (\kappa_{-} - 1)} (x_{i} h_{1})^{\dagger} (\partial_{y_{j}} h_{2}) \rho_{y}^{\mu_{-} + 1} \psi_{\kappa_{+} + 1}$$

$$+ \frac{\kappa_{+} - \mu_{-} - 1}{\kappa_{+}} (x_{i} h_{1})^{\dagger} (y_{j} h_{2})^{\dagger} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+} + 1}$$

$$(4.1)$$

となるが、(4.1) の右辺の各項の係数を調べると、任意に K タイプを決めたとき、そこからそれに隣合うすべての K タイプに移れることがわかる(図 1 を参照).

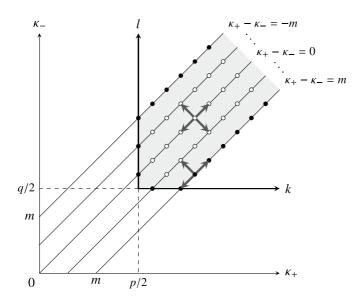
■Gelfand-Kirillov 次元と Bernstein 次数 有限生成 $U(\mathfrak{g})$ 加群 M に対し、その Gelfand-Kirillov 次元,Bernstein 次数をそれぞれ $Dim\ M$, $Deg\ M$ と記すことにする.

系 **4.5.** $p,q \ge 3$, $p+q \in 2\mathbb{N}$, $m+3 \le (p+q)/2$ ならば

$$\operatorname{Dim} M^{\pm}(m) = p + q - 3,$$

$$\operatorname{Deg} M^{\pm}(m) = \frac{4(m+1)(p+q-4)!}{(p-2)!(q-2)!}$$

である.



白丸 (o), 黒丸 (•) ともに K タイプを表す。白黒の別は、単に、内部にあるか境界上にあるかを区別している。白丸からは北東 ()), 北西 ()), 南東 ()), 南西 ()) のいずれの方向にも進める。一方、黒丸からは、4 つの方向のうち、内部または境界上にあるドットにしか進めない。

図 1

系より

$$\operatorname{Deg} M^{\pm}(m) = (m+1)\operatorname{Deg} M^{\pm}(0)$$

となる.

証明 $p \ge q$ と仮定してもよい. まず

$$\dim \mathcal{H}^d(\mathbb{R}^n) = \binom{d+n-1}{n-1} - \binom{d+n-3}{n-1}$$

であることを思い出そう.

いま, M₀ を

$$\mathsf{M}_{0} := \bigoplus_{\substack{(\kappa_{+}, \kappa_{-}) \in \Sigma_{m} \\ \kappa_{+} + \kappa_{-} \leqslant c}} \mathcal{H}^{k}(\mathbb{R}^{p}) \otimes \mathcal{H}^{l}(\mathbb{R}^{q}) \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}}$$

$$\tag{4.2}$$

と選ぶ. ただし, $c = \max\{m+p, m+q\}$ であり, μ は μ = $(\kappa_+ - \kappa_- + m)/2$ により決まる.

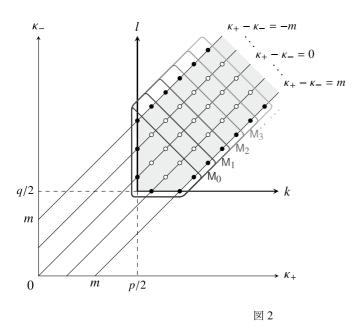
次に、いつものように $M_n := U_n(\mathfrak{g})M_0 (M_{-1} := 0)$ とおけば、

$$\dim(\mathsf{M}_n/\mathsf{M}_{n-1}) = \sum_{j=0}^m \dim(\mathcal{H}^{n+j}(\mathbb{R}^p) \otimes \mathcal{H}^{n+m-j+\frac{p-q}{2}}(\mathbb{R}^q))$$

$$= \frac{4(m+1)}{(p-2)!(q-2)!} n^{p+q-4} + (\text{lower order terms in } n)$$

$$= \frac{4(m+1)(p+q-4)!}{(p-2)!(q-2)!} \frac{n^{p+q-4}}{(p+q-4)!} + \cdots$$

となる (図2を参照). これから直ちに系が従う.



Acknowledgements

本研究は科研費(課題番号 23540203, 26400014)の助成を受けて行われました.

参考文献

[1] B. Binegar and R. Zierau, *Unitarization of a singular representation of* SO(p,q), Comm. Math. Phys. **138** (1991), no. 2, 245–258. MR 1108044

- [2] Roger E. Howe and Eng-Chye Tan, *Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations*, Bull. Amer. Math. Soc. (N.S.) **28** (1993), no. 1, 1–74. MR 1172839 (93j:22027)
- [3] T. Kobayashi and G. Mano, *The Schrödinger model for the minimal representation of the in- definite orthogonal group* O(p,q), Memoirs of the American Mathematical Society, American Mathematical Society, 2011.
- [4] Toshiyuki Kobayashi and Bent Ørsted, *Analysis on the minimal representation of* O(*p*, *q*). *I, III*, Adv. Math. **180** (2003), no. 2, 486–512, 513–550, 551–595. MR 2020550 (2004k:22018a)
- [5] Stephen Rallis and Gérard Schiffmann, Weil representation. I. Intertwining distributions and discrete spectrum, Mem. Amer. Math. Soc. 25 (1980), no. 231, iii+203. MR 567800 (81j:22007)

Takashi Hashimoto

University Education Center, Tottori University,

4-101, Koyama-Minami, Tottori, 680-8550, JAPAN.

e-mail: thashi@tottori-u.ac.jp