The local Miyawaki liftings and the Gan–Gross–Prasad conjecture

Hiraku Atobe

Graduate School of Mathematical Sciences, The University of Tokyo

Abstract

The Gan–Gross–Prasad conjecture for the Fourier–Jacobi case is a local analogous problem for the Fourier–Jacobi expansion and the theta expansion of modular forms. The Miyawaki lifting, which was constructed by Ikeda, is a lifting similar to the theta lifting. In this talk, using local Miyawaki liftings, we give a new example of the Gan–Gross–Prasad conjecture for a non-generic case.

1 The local Gan–Gross–Prasad conjecture for Fourier– Jacobi case

Fix a finite extension F of the *p*-adic field \mathbb{Q}_p . Let

• $\operatorname{Sp}_r(F)$ be the symplectic group of rank r given by

$$\operatorname{Sp}_{r}(F) = \left\{ g \in \operatorname{GL}_{2r}(F) \mid {}^{t}g \begin{pmatrix} 0 & -\mathbf{1}_{r} \\ \mathbf{1}_{r} & 0 \end{pmatrix} g = \begin{pmatrix} 0 & -\mathbf{1}_{r} \\ \mathbf{1}_{r} & 0 \end{pmatrix} \right\};$$

- $\widetilde{\operatorname{Sp}}_r(F)$ be the metaplectic double cover of $\operatorname{Sp}_r(F)$, which is identified with $\operatorname{Sp}_r(F) \times \{\pm 1\}$ as sets;
- $V_{r-1}(F) \subset \operatorname{Sp}_r(F)$ be a Heisenberg group given by

$$V_{r-1}(F) = \left\{ \mathbf{v}(x, y, z) = \begin{pmatrix} 1 & x & z & y \\ 0 & \mathbf{1}_{r-1} & {}^t y & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & -{}^t x & \mathbf{1}_{r-1} \end{pmatrix} \middle| x, y \in F^{r-1}, \ z \in F \right\}.$$

We identify $\operatorname{Sp}_{r-1}(F)$ as a subgroup of $\operatorname{Sp}_r(F)$ by the embedding

$$\operatorname{Sp}_{r-1}(F) \ni \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & A & 0 & B \\ \hline 0 & 0 & 1 & 0 \\ 0 & C & 0 & D \end{pmatrix} \in \operatorname{Sp}_r(F).$$

Let $J_{r-1}(F) = \operatorname{Sp}_{r-1}(F) \ltimes V_{r-1}(F) \subset \operatorname{Sp}_r(F)$ be a Jacobi group, and $\widetilde{J}_{r-1}(F) = \widetilde{\operatorname{Sp}}_{r-1}(F) \ltimes V_{r-1}(F) \subset \widetilde{\operatorname{Sp}}_r(F)$ be its double cover.

Fix a non-trivial additive character ψ of F. For $\xi \in F^{\times}$, we set $\psi_{\xi}(x) = \psi(\xi x)$ for $x \in F$. The Weil representation of $\tilde{J}_{r-1}(F)$ whose central character is ψ_{ξ} is denoted

by $\omega_{\psi_{\xi}}^{(r-1)}$. By the restriction, we may also regard $\omega_{\psi_{\xi}}^{(r-1)}$ as a smooth representation of $\widetilde{\mathrm{Sp}}_{r-1}(F)$.

For irreducible smooth representations π_1 of $\widetilde{\operatorname{Sp}}_r(F)$ and π_2 of $\widetilde{\operatorname{Sp}}_{r-1}(F)$, set

$$d_{r,r-1,\xi}(\pi_1,\pi_2) = \dim_{\mathbb{C}} \operatorname{Hom}_{\widetilde{J}_{r-1}(F)}(\pi_1 \otimes \pi_2 \otimes \overline{\omega_{\psi_{\xi}}^{(r-1)}},\mathbb{C}).$$

Similarly, for two irreducible smooth representations π'_1 and π'_2 of $\widetilde{\operatorname{Sp}}_n(F)$, set

$$d_{n,n,\xi}(\pi'_1,\pi'_2) = \dim_{\mathbb{C}} \operatorname{Hom}_{\widetilde{\operatorname{Sp}}_n(F)}(\pi'_1 \otimes \pi'_2 \otimes \overline{\omega_{\psi_{\xi}}^{(n)}}, \mathbb{C}).$$

Theorem 1.1 ([4], [3]). For any π_1 , π_2 , π'_1 , and π'_2 as above,

$$d_{r,r-1,\xi}(\pi_1,\pi_2) \le 1, \quad d_{n,n,\xi}(\pi'_1,\pi'_2) \le 1.$$

The local Gan–Gross–Prasad conjecture for the Fourier–Jacobi case describes these dimensions for the tempered case.

Theorem 1.2 ([3], [1]). When π_1 , π_2 , π'_1 , and π'_2 are tempered, there exist explicit descriptions for $d_{r,r-1,\xi}(\pi_1,\pi_2)$ and $d_{n,n,\xi}(\pi'_1,\pi'_2)$ in terms of their L-parameters.

The purpose of this article is to give a new example for a non-tempered case.

Let $(\cdot, \cdot)_F$ be the quadratic Hilbert symbol of F, and $\chi_{\xi} = (\cdot, \xi)_F$ be the quadratic character of F^{\times} associated to $\xi \in F^{\times}$. A double cover of $\operatorname{GL}_k(F)$ is defined by $\widetilde{\operatorname{GL}}_k(F) =$ $\operatorname{GL}_k(F) \times \{\pm 1\}$ as a set, and its group law is given by

$$(a_1,\epsilon_1)\cdot(a_2,\epsilon_2)=(a_1a_2,\epsilon_1\epsilon_2(\det a_1,\det a_2)_F).$$

Then there exists a genuine character $\chi_{-1}^{1/2}$ of $\widetilde{\operatorname{GL}}_1(F)$, depending on ψ , such that $\chi_{-1}^{1/2}(a,\epsilon)^2 = \chi_{-1}(a)$ for $(a,\epsilon) \in \widetilde{\operatorname{GL}}_1(F)$.

For a unitary character of F^{\times} and an irreducible smooth representation of $\widetilde{\operatorname{Sp}}_r(F)$, we denote by $\mu \circ \det_k \rtimes \pi$ the space of locally constant function $f : \widetilde{\operatorname{Sp}}_{r+k}(F) \to \pi$ such that

$$f(\left(\begin{pmatrix} a & * & * & * \\ 0 & A & * & B \\ \hline 0 & 0 & {}^{t}a^{-1} & 0 \\ 0 & C & * & D \end{pmatrix}, \zeta\right)g) = \chi_{-1}^{1/2}(\det a, \zeta)^{\delta}\mu(\det a)|\det a|^{r+\frac{k+1}{2}}\pi\begin{pmatrix} A & B \\ C & D \end{pmatrix}f(g)$$

for $a \in \operatorname{GL}_k(F)$, $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_r(F)$, $\zeta \in \{\pm 1\}$ and $g \in \widetilde{\operatorname{Sp}}_{r+k}(F)$, where $\delta = 1$ if π is genuine, and $\delta = 0$ otherwise.

The main result is given as follows:

Theorem 1.3 ([2, Theorems 1.8(2), Theorem C.5]). Fix positive integers $n \ge r$. Let μ be a unitary character of F^{\times} , and π_1 and π_2 be irreducible tempered representations of $\widetilde{\operatorname{Sp}}_r(F)$ and $\widetilde{\operatorname{Sp}}_{r-1}(F)$ on which $\{\pm 1\}$ acts by $(\pm 1)^{n+r}$ and $(\pm 1)^{n+r-1}$, respectively.

1. The induced representation $\mu \circ \det_{n-r} \rtimes \pi_1$ is irreducible.

2. Assume that π_1 is discrete series, or $r \leq n \leq r+1$, or n > 2r. Then we have

$$d_{n,n,\xi}(\mu\chi_{-1}^{n+r-1} \circ \det_{n-r} \rtimes \pi_1, \mu\chi_{\xi} \circ \det_{n-r+1} \rtimes \pi_2) = d_{r,r-1,\xi}(\pi_1, \pi_2).$$

In the proof of (1), we compute Jacquet modules of several induced representations using the geometric lemma. For the proof of (2), we use seesaw identities for local Miyawaki liftings.

2 The local Miyawaki liftings

Fix a unitary character μ of F^{\times} . For two positive integers n and r, let $I^{(n+r)}(\mu)$ be the space of locally constant function $f: \widetilde{\mathrm{Sp}}_{r+k}(F) \to \mathbb{C}$ such that

$$f(\left(\begin{pmatrix} A & B\\ 0 & {}^{t}A^{-1} \end{pmatrix}\zeta\right)g) = \chi_{-1}^{1/2}(\det A, \zeta)^{n+r}\mu(\det A)|\det A|^{\frac{n+r+1}{2}}f(g)$$

It is called a degenerate principal series of $\widetilde{\operatorname{Sp}}_{n+r}(F)$. We consider an embedding

$$\operatorname{Sp}_{n}(F) \times \operatorname{Sp}_{r}(F) \hookrightarrow \operatorname{Sp}_{n+r}(F), \ \left(\begin{pmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{pmatrix}, \begin{pmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{pmatrix} \right) \mapsto \left(\begin{array}{cccc} A_{1} & 0 & B_{1} & 0 \\ 0 & A_{2} & 0 & B_{2} \\ \hline C_{1} & 0 & D_{1} & 0 \\ 0 & C_{2} & 0 & D_{2} \end{array} \right).$$

Definition 2.1. For an irreducible smooth representation π of $\widetilde{\operatorname{Sp}}_r(F)$ on which $\{\pm 1\}$ acts by $(\pm 1)^{n+r}$, the maximal π -isotypic quotient of $I^{(n+r)}(\mu)$ is of the form

$$\mathcal{M}^{(n)}_{\mu}(\pi) \boxtimes \pi$$

for some smooth representation $\mathcal{M}_{\mu}^{(n)}(\pi)$ of $\widetilde{\mathrm{Sp}}_n(F)$. We call $\mathcal{M}_{\mu}^{(n)}(\pi)$ the (local) Miyawaki lift of π .

The following is basic properties of Miyawaki liftings.

Theorem 2.2 ([2, Theorems 1.8]). Suppose that $n \ge r$.

- 1. For any π as above, $\mathcal{M}^{(n)}_{\mu}(\pi)$ is nonzero and of finite length.
- 2. If π is tempered, then $\mathcal{M}^{(n)}_{\mu}(\pi) \cong \mu \chi^{[\frac{n+r}{2}]} \circ \det_{n-r} \rtimes \pi$.
- 3. Assume one of the following:
 - (a) π is discrete series;
 - (b) π is tempered, and $r \leq n \leq r+1$ or n > 2r.

Then all irreducible subquotients of $\mathcal{M}_{\mu}^{(r)}(\mathcal{M}_{\mu}^{(n)}(\pi))$ are isomorphic to π , and its maximal semisimple quotient is irreducible.

Miyawaki liftings satisfy seesaw identities.

Proposition 2.3 (Seesaw identity [2, Proposition 1.9]). Let π and π' be irreducible representations of $\widetilde{\text{Sp}}_{r-1}(F)$ and $\widetilde{\text{Sp}}_n(F)$ on which $\{\pm 1\}$ acts by $(\pm 1)^{n+r}$ and $(\pm 1)^{n+r-1}$, respectively. Then

$$\operatorname{Hom}_{\widetilde{J}_{r-1}(F)}(\mathcal{M}_{\mu}^{(r)}(\pi'),\pi\otimes\omega_{\psi_{\xi}}^{(r-1)})\cong\operatorname{Hom}_{\widetilde{\operatorname{Sp}}_{n}(F)}(\mathcal{M}_{\mu\chi_{\xi}}^{(n)}(\pi)\otimes\omega_{\psi_{\xi}}^{(n)},\pi').$$

We shall write these properties as the following seesaw diagram:

References

- [1] H. Atobe, The local theta correspondence and the local Gan–Gross–Prasad conjecture for the symplectic-metaplectic case, Math. Ann. (2017).
- [2] H. Atobe, A theory of Miyawaki liftings: The Hilbert-Siegel case, arXiv:1712.03624v2.
- [3] W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups, Astérisque. No. 346 (2012), 1–109.
- [4] B. Sun, Multiplicity one theorems for Fourier-Jacobi models, Amer. J. Math. 134 (2012), no. 6, 1655–1678.

Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914 JAPAN E-mail address: atobe@ms.u-tokyo.ac.jp