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The local Miyawaki liftings and the
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Abstract

The Gan−Gross−Prasad conjecture for the Fourier‐Jacobi case is a local analo‐
gous problem for the Fourier‐Jacobi expansion and the theta expansion of modular
forms. The Miyawaki lifting, which was constructed by Ikeda, is a lifting similar to
the theta lifting. In this talk, using local Miyawaki liftings, we give a new example
of the Gan−Gross−Prasad conjecture for a non‐generic case.

1 The local Gan-Gross−Prasad conjecture for Fourier‐
Jacobi case

Fix a finite extension  F of the  p \frac{-}{} adic field  \mathbb{Q}_{p} . Let

 \bullet  Sp_{r}(F) be the symplectic group of rank  r given by

 Sp_{r}(F)=\{g\in GL_{2r}(F) tg \begin{array}{ll}
0   -1_{r}
1_{r}   0
\end{array}g= \begin{array}{ll}
0   -1_{r}
1_{r}   0
\end{array}\} ;

 \bullet  \overline{Sp}_{r}(F) be the metaplectic double cover of  Sp_{r}(F) , which is identified with  Sp_{r}(F)\cross
 \{\pm 1\} as sets;

 \bullet  V_{r-1}(F)\subset Sp_{r}(F) be a Heisenberg group given by

 V_{r-1}(F)=\{v(x, y, z)= \begin{array}{llll}
1   x   z   y
0   1_{r-1}   ty   0
0   0   1   0
0   0   -t_{X}   1_{r-1}
\end{array}|x, y\in F^{r-1}, z\in F\}.
We identify  Sp_{r-1}(F) as a subgroup of  Sp_{r}(F) by the embedding

 Sp_{r-1}(F)\ni\begin{array}{ll}
 A   B
C   D
\end{array} \mapsto\begin{array}{llll}
 1   0   0   0
0   A   0   B
0   0   1   0
0   C   0   D
\end{array} \in Sp_{r}(F) .

Let  J_{r-1}(F)=Sp_{r-1}(F)xV_{r-1}(F)\subset Sp_{r}(F) be a Jacobi group, and  \overline{J}_{r-1}(F)=\overline{Sp}_{r-1}(F)\ltimes
 V_{r-1}(F)\subset Sp_{r}(F) be its double cover.

Fix a non‐trivial additive  characte\underline{r}\psi of  F . For  \xi\in F^{\cross} , we set  \psi_{\xi}(x)=\psi(\xi x) for
 x\in F . The Weil representation of  J_{r-1}(F) whose central character is  \psi_{\xi} is denoted
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by  \omega_{\psi_{\xi}}^{(r-1)} . By the restriction, we may also regard  \omega_{\psi_{\xi}}^{(r-1)} as a smooth representation of

 \overline{Sp}_{r-1}(F) .

For irreducible smooth representations  \pi_{1} of  \overline{Sp}_{r}(F) and  \pi_{2} of  \overline{Sp}_{r-1}(F) , set

 d_{r,r-1,\xi}(\pi_{1}, \pi_{2})=\dim_{\mathbb{C}-}Hom_{J_{r-1}(F)}(\pi_{1}
\otimes\pi_{2}\otimes\overline{\omega_{\psi_{\xi}}^{(r-1)}}, \mathbb{C}) .

Similarly, for two irreducible smooth representations  \pi í and  \pi_{2}' of  \overline{Sp}_{n}(F) , set

 d_{n,n,\xi} (\pi_{1}', \pi_{2}')=\dim_{\mathbb{C}}Hom_{s_{p.(F)}^{-}}(\pi_{1}
\otimes\pi_{2}'\otimes\overline{\omega_{\psi_{\xi}}^{(n)}}, \mathbb{C}) .

Theorem 1.1 ([4], [3]). For any  \pi_{1},  \pi_{2} ,  \pií, and  \pi_{2}' as above,

 d_{r,r-1,\xi}(\pi_{1}, \pi_{2})\leq 1, d_{n,n,\xi}(\pi_{1}, \pi_{2}')\leq 1.

The local Gan−Gross−Prasad conjecture for the Fourier‐Jacobi case describes these
dimensions for the tempered case.

Theorem 1.2 ([3], [1]). When  \pi_{1},  \pi_{2} ,  \pií, and  \pi_{2}' are tempered, there exist explicit de‐
scriptions for  d_{r,r-1,\xi}(\pi_{1}, \pi_{2}) and  d_{n,n,\xi}(\pi_{1}', \pi_{2}') in terms of their  L ‐parameters.

The purpose of this article is to give a new example for a non‐tempered case.

Let  (\cdot, \cdot)_{F} be the quadratic Hilbert symbol of  F , and  \chi_{\xi}=(\cdot, \xi)_{F} be the quadratic
character of  F^{\cross} associated to  \xi\in F^{\cross} A double cover of  GL_{k}(F) is defined by  GL_{k}(F)=
 GL_{k}(F)\cross\{\pm 1\} as a set, and its group law is given by

 (a_{1}, \epsilon_{1}) .  (a_{2}, \epsilon_{2})=(a_{1}a_{2}, \epsilon_{1}\epsilon_{2} (\det a_{1}, \det 
a_{2})_{F}) .

Then there exists a genuine character  \chi_{-1}^{1/2} of  \overline{GL}_{1}(F) , depending on  \psi , such that  \chi_{-1}^{1/2}(a, \epsilon)^{2}=
 \chi_{-1}(a) for  (a, \epsilon)\in GL_{1}(F) .

For a unitary character of  F^{\cross} and an irreducible smooth representation of  \overline{Sp}_{r}(F) , we
denote by  \mu\circ\det_{k} ×  \pi the space of locally constant function   f:\overline{Sp}_{r+k}(F)arrow\pi such that

 f  (\Vert a000 CA0* ta^{-1}*** DB0*) ,  \zeta)g)=\chi_{-1}^{1/2}(\det a, \zeta)^{\delta}\mu(\det a)|\det a|^{r+\frac{k+
1}{2}}\pi  (\begin{array}{ll}
A   B
C   D
\end{array})  f(g)

for  a\in GL_{k}(F) ,  (\begin{array}{ll}
A   B
C   D
\end{array})  \in Sp_{r}(F),  \zeta\in\{\pm 1\} and  g\in\overline{Sp}_{r+k}(F) , where  \delta=1 if  \pi is

genuine, and  \delta=0 otherwise.
The main result is given as follows:

Theorem 1.3  ( [2, Theorems 1.8(2), Theorem C.5]  ) . Fix positive integers  n\geq r . Let  \mu

 \underline{be} a unitary character of  F^{\cross} , and  \pi_{1} and  \pi_{2} be irreducible tempered representations of
 Sp_{r}(F) and  Sp_{r-1}(F) on which  \{\pm 1\} acts by  (\pm 1)^{n+r} and  (\pm 1)^{n+r-1} , respectively.

1. The induced representation  \mu\circ\det_{n-r}x\pi_{1} is irreducible.
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2. Assume that  \pi_{1} is discrete series, or  r\leq n\leq r+1 , or  n>2r . Then we have

 d_{n,n,\xi} (\mu\chi_{-1}^{n+r-1}o\det_{n-r}x\pi_{1}, \mu\chi_{\xi}o\det_{n-r+
1}x\pi_{2})=d_{r,r-1,\xi}(\pi_{1}, \pi_{2}) .

In the proof of (1), we compute Jacquet modules of several induced representations us‐
ing the geometric lemma. For the proof of (2), we use seesaw identities for local Miyawaki
liftings.

2 The local Miyawaki liftings

Fix a unitary character  \mu of  F^{\cross} For two positive integers  n and  r , let  I^{(n+r)}(\mu) be the
space of locally constant function  f:\overline{Sp}_{r+k}(F)arrow \mathbb{C} such that

 f (( (\begin{array}{ll}
A   B
0   tA^{-1}
\end{array})\zeta)g)=\chi_{-1}^{1}/2(\det A, \zeta)^{n+r}\mu(\det A)|\det 
A|\frac{n+r+1}{2}f(g) .

It is called a degenerate principal series of  \overline{Sp}_{n+r}(F) . We consider an embedding

 Sp_{n}(F)\cross Sp_{r}(F)\mapsto Sp_{n+r}(F),  (  (\begin{array}{ll}
A_{l}   B_{1}
C_{1}   D_{1}
\end{array}) ,  (\begin{array}{ll}
A_{2}   B_{2}
C_{2}   D_{2}
\end{array}))\mapsto(\begin{array}{llll}
A_{1}   0   B_{1}   0
0   A_{2}   0   B_{2}
C_{1}   0   D_{l}   0
0   C_{2}   0   D_{2}
\end{array})
Definition 2.1. For an irreducible smooth representation  \pi of  \overline{Sp}_{r}(F) on which  \{\pm 1\}
acts by  (\pm 1)^{n+r} , the maximal  \pi ‐isotypic quotient of  I^{(n+r)}(\mu) is of the form

 \mathcal{M}_{\mu}^{(n)}(\pi)X\pi

for some smooth representation  \mathcal{M}_{\mu}^{(n)}(\pi) of  \overline{Sp}_{n}(F) . We call  \mathcal{M}_{\mu}^{(n)}(\pi) the (local) Miyawaki
lift of  \pi.

The following is basic properties of Miyawaki liftings.

Theorem 2.2 ([2, Theorems 1.8]). Suppose that  n\geq r.

1. For any  \pi as above,  \mathcal{M}_{\mu}^{(n)}(\pi) is nonzero and of finite length.

2. If  \pi is tempered, then  \mathcal{M}_{\mu}^{(n)}(\pi)\cong\mu\chi_{-}^{[\frac{n+r}{12}]}\circ\det_{n-r}x
\pi.
3. Assume one of the following:

(a)  \pi is discrete series;

(b)  \pi is tempered, and  r\leq n\leq r+1 or  n>2r.

Then all irreducible subquotients of  \mathcal{M}_{\mu}^{(r)}(\mathcal{M}_{\mu}^{(n)}(\pi)) are isomorphic to  \pi , and its
maximal semisimple quotient is irreducible.

Miyawaki liftings satisfy seesaw identities.
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Proposition  2.\underline{3} (Seesaw  iden\underline{ti}ty[2 , Proposition 1.9]). Let  \pi and  \pi' be irreducible rep‐
resentations of  Sp_{r-1}(F) and  Sp_{n}(F) on which  \{\pm 1\} acts by  (\pm 1)^{n+r} and  (\pm 1)^{n+r-1},
respectively. Then

 Hom_{\overline{J_{r}}-1(F)}(\mathcal{M}_{\mu}^{(r)}(\pi'), 
\pi\otimes\omega_{\psi_{\xi}}^{(r-1)})\cong Hom_{s_{p_{n}(F)}^{-}}(\mathcal{M}_{
\mu\chi_{\xi}}^{(n)}(\pi)\otimes\omega_{\psi_{\xi}}^{(n)}, \pi') .

We shall write these properties as the following seesaw diagram:

 \overline{Sp}_{r}(F
 -

 \cross\overline{Sp}_{n}(F) .

 |  |
 \overline{Sp}_{r-1}(F)\ltimes I  )_{n}(F)
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