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準素成分から根基でないイデアルの三角形集合の復元と
そのビット長の評価

Reconstruction of a non‐radical triangular set from

its primary components and its bit‐size estimate
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Abstract

根基でないイデアルの三角形集合は、根基イデアル三角形集合に比べてよく理解されていない。Wu‐Ritt 氏
による三角形分解法においては、一般化された中国剰余定理により三角形集合を分解、また復元するのは大事
である。本研究は根基でない場合での復元アルゴリズムを扱う。最近対提案された —− 角形集合上の係数がある
多項式の最大公約因子を使うことにより、このアルゴリズムを導入できることになった。応用として、復元の
過程による係数の成長を評価する。

Abstract

Triangular sets that generate a non‐radical ideal are far less understood then those that generate a
radical one. In the realm of “triangular‐decomposition”, decomposing and reconstructing such triangular
sets is important, based on generalized versions of the Chinese remaindering theorem. In this work we
address the reconstruction in the non‐radical case. It relies on the recently proposed computation of gcd
of univariate polynomials over a non‐radical triangular set. As an application, we estimate the coefficient
growth entailed in this reconstruction process.

Background A triangular set in this work refers to a zero‐dimensional lexicographic Gröbner basis which
has a pui’ely triangular shape, as follows:

 T

媒  (X_{1}, X_{2}, \cdots, X_{n-1}, X_{n})=X_{n^{n}}^{d}+
  T_{n-1}(X_{1}, \ldots, X_{n-1})=X_{n-1}^{d_{n-1}}+\cdot\cdot

 T_{1}(X_{1})=X_{1}^{d_{1}}+  \cdot\cdot

If we assume that such a triangular set generates a radical ideal, then its primary components  q_{i} are

maximal ideals. Therefore, the quotient ring  k[X_{1}, . . . , X_{n}]/q_{i} is a field, more precisely it encodes a tower

of fields extensions. It is thus possible to apply standard algorithms over fields such as  gcd . Now for

polynomials having coefficients over a triangular set that generates a radical non‐maximal ideal, it is not

obvious anymore since there aı  e zero‐divisors. The work of Kalkbrener [8] and the D5 principle [7] have
shown however how to circumvent this problem. The issue occurring for the division operation, it splits
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the underlying triangular set into two ones: in one branch the division is possible, in the other one not.

This paradigm is the coı  e of  gcd‐based view on the triangular decomposition method.

But when the triangular set is not radical, the above description fails  apal\cdot t since the  P^{rima1}y compo‐

nents themselves are not all maximal ideals, and elements are not necessarily invertible. The article [5]

proves that a kind of  gcd notion exists, and highlights a strategy to compute it. The crux is that  thei\cdot e is

not one  gcd but a chain of. A complete algorithm to compute this  gcd‐chain is still challenging, except
in one case described below.

Invertibility in a special case Let  (T_{1}, \ldots, T_{n}) and let  T=(T_{1}, \ldots, T_{n-1}) be a triangulal set  a bc a

univariate polynomial in  R[X_{n}] where  R=k[X_{1}, , X_{n-1}]/\langle T}. Let  p  :=\sqrt{\langle T\rangle} be the radical of  \langle T\rangle ;
This is a maximal ideal.

(H) Assume that  gcd (  a mod  p,  T_{n} mod p)  =1 over the field  k[X_{1}, X_{n-1}]/\mathfrak{p}.
Then the last non‐nilpotent subresultant of  a and  T_{n} computed in  R[X_{n}] is invertible in R.. (In the

tcrminology introduced in [5], the  gcd chain has only one block, which is moreover equal to 1). It follows
that  a is invertible in  R[X_{n}]/\langle T\rangle=k[X_{1}, X_{n}]/\langle T_{1},  T_{n}\rangle.

Application to Chinese remaindering theorem This simple observation has the implication that

undergoing the reconstruction part of the Chinese Algorithm theorem is possible even over a primaı  y

triangular set. Additionally, the algorithm works similarly to the one for radical triangular sets [2], as
shown below in Aıgo. 1.

Algorithm 1: Recombination polynomials by the Chinese remainderingpolynomialsby the Chinese theorem

Input: Primary triangulaı set  t=  (t_{1} , t_{n}) (let R.  := (  k [Xı, . . . ,   X_{n}]/\langle t\rangle ))
f.amily of polynomiaıs  \{a_{i}\}_{i=1,\ldots,s} of  R.[y] , such that  \{a_{1},   a_{s}\rangle=\langle 1\rangle in  R[y]
Output:  \{\overline{e_{\dot{\lambda}}}\}_{i=1,\ldots,s} such that   \sum_{?}\cdot\overline{e_{\dot{i}}}a_{i}\equiv 1 mod  \langle t\rangle and   \deg_{y}(\overline{e_{\dot{i}}})<\sum_{j\neq i}\deg_{y}(a_{j})

1 Compute the product  A \equiv\prod_{i=1}^{s}a_{i} mod  \langle t\rangle
2 for  i=1,  s do

 4365  \ovalbox{\tt\small REJECT} A_{i}:=A/a_{i}.mod \langle t.\rangle
Compute t

 he.extend\dot{.}c.dsubres^{\neg}
ultant sequence {

 A_{i}.'.a_{\dot{i}},' S_{r_{2}}(A_{i}, a_{\dot{t}}) \frac{t}{e_{\dot{t}}}
0_{arrow v_{0}t_{0}mod \langle t\rangle}^{arrow S_{0}^{-.1}mod \langle t\rangle}
u_{r_{j}}A_{i}+v_{r_{J}}a_{i}=S_{r_{3}}\{1,0,u_{r_{2}},.,u_{r_{3}}., u_{0}\}_{c}
and\{0,1,v_{r2},\ldots, v_{r_{\dot{j}}},.v_{0}\}' S_{r_{j}}(A_{\dot{i}}, a_{i}),
\ldots,S_{0}\}//\deg_{y}(S_{r_{j}})=r_{j},
7 return  \{\overline{e,1}, \overline{e,s}\}

Comments The novelty is that the subresultant sequence of  A_{i} and  a_{i} can be computed in  R=

  k[X_{1}, X_{n}]/\{t\rangle using the classical PR. S of Brown [1]: the division made over  R are always possible.
This is because  \langle t\rangle is primary, hence indecomposable.

Next, that  S_{0}\in R is invertible (line 5). This comes from the fact that A. and  a_{i} are coprime modulo
the maximal ideal  \sqrt{\langle t\rangle} . The  P^{lecise} algorithm to compute this inverse is similal to the one that  WO1^{\cdot}ks

for triangulal sets that generate a maximal ideal (see e.g. [9]).
Last, the fact that   \sum_{i=1}^{s}\overline{e_{\dot{i}}}a_{\dot{t}}\equiv 1 mod  \langle t\rangle is an easy and standa1  d consequence of the algorithm.

Note that the algorithm above is a plain one. There are faste1 versions1) based on so‐called subproduct

 1)In any cases, the compıexity of the aıgorithm uıtimdtely soıely depends on which version of the pseudo Eucıidean
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tree techniques [10, Chap. 10.3].

From the computation of the recombination polynomials output by Algo. 1 we dcduce the recombi‐

nation part of the CRT as follows, We use the notation of Algo. 1.

 e Consider some target modular values  f_{?:}\in(R[y]/\langle a_{i}\rangle)[z_{1}, , z_{l}]

 e Compute  f  := \sum_{i=1}^{s}e_{i}Na_{i}f_{i} mod  \langle t\rangle.

(Then we have:  f\in(R[y]/\langle A\rangle)[z_{1},  \ldots,  z_{\ell}] where  A= \prod_{\dot{i}=1}^{s}a_{i} and  f\equiv f_{x} mod  \langle t\cup\{a_{i}\}\rangle )

Reconstruction from primary components Next instead of polynomials  a_{i} in the input of Algo. 1,

assume that they are “pairwise coprime” triangular sets, how to adapt the algorithm  f

First the input primary triangular sets must be arranged into a natural tree data structule. Second,

Algo. 1 is called recursively from the root of the tree up to the parent of the leaves, for each branch. The

following example illustrates how the algorithm work:

Example Consider the four primary triangular sets  t^{11},  t^{12},  t^{21},  t^{22} :

 \{t_{2}^{11}(x' y)=y^{2}+xyt_{1}^{11}(x)=x^{2}  \{  t_{1}^{12}(x)'=x^{2}t_{2}^{12}(x,/y)=(y+1)^{2}-xy  \{  t_{2}^{21}(x' y)=(y-1)^{2}t_{1}^{21}(x)=(x+1)^{2}  \{\begin{array}{l}
t_{2}^{22}(x, y)=y^{2}-(x+1)y
t_{1}^{22}(x)=(x+1)^{2}
\end{array}
These four triangular sets are  a1^{\cdot}ranged in the following tree. The number of leaves is equal to the number

of primary triangular sets. To alleviate notations, we  Wi.ite:  a_{1}  :=t_{1}^{1{\imath}}=t_{1}^{12}=x^{2},  a_{2}=t_{1}^{21}=t_{1}^{22}=(x+1)^{2}
and  a_{ij}=t_{2}^{xj} for  i=1,2,  j=1,2.

 1)^{2}

 \alpha_{11}:=  (x 十殴  y

 e\underline{Problem} : Define  R_{ij}  :=k[x, y]/\langle t^{ij}\rangle . Given moduli  f_{\dot{i}j}\in R_{ij}[z_{1}, , z_{\ell}] compute a polynomial

 f\in k[x, y][z_{1}, z_{\ell}] such that  f\equiv f_{ij} mod  \langle t^{ij}\rangle , with the degree  const_{1}.aints:   \deg_{x}(f)<\sum_{i}\deg_{x}(a_{\dot{\tau}})
and   \deg_{y}(f)<\max_{i}(\sum_{j}\deg_{y}(a_{ij})) .

Algo.1 applied to  a_{1},  a_{2} , then to  a_{11},  a_{12} modulo aı and to  a_{21},  a_{22} modulo  a_{2} yields:

 \overline{e_{i}}a_{1}+\overline{e_{2}}a_{2}=1 arrow \overline{e_{1}} :=3+2x, 
\overline{e_{2}} :=1-2x

 \overline{e_{11}}a_{11}+\overline{e,12}a_{12}\equiv 1 mod  \langle a_{1}\rangle  arrow  \overline{e_{11}}:=2xy+2y+3,  \overline{e_{12}}  :=-2xy-2y+1

 \overline{e_{21}}a_{21}+\overline{e,22}a_{22}\equiv 1mod \{a_{2}\rangle arrow 
\overline{e_{21}} :=3xy+5y+1, \overline{e_{22}} :=(-3y+4)x-5y+7

  e\underline{Answer}:f\equiv\sum_{i}a_{i}\overline{C_{\dot{i}}^{-}} (   \sum_{j}a_{ij}\overline{e_{\dot{i}j}}f_{ij} mod  \langle a_{i1}a_{i2}\rangle )  mod \{a_{1}a_{2}\rangle.

This example in the case of triangular sets of two variables generalizes by considering trees of depth

larger than two.

Coefficients growth When the input triangular sets are maximal ideals, and the base field is alge‐

braically closed, then these triangular sets are just “ideaı of points” like  \langle x-1,   y-2\rangle . The problem is to

division is uscd. It is weıl‐known that the haıf‐gcd [10, Chap. 11] has a softıy linear asymptotic compıexity, against a
quadratic one for the standard Euclidean aıgorithm.
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interpolate points. The estimation of the growth of coefficients through explicit interpolation formula has

been treated in [3]. See [4] for a short survey. The situation is more complicated for primary  triangula1^{\sim}

sets with respect to two points:

First  thel\cdot e is no explicit interpolation f
 \cdot

oımula. Algorithm 1 computes  gcd cofactors  (W1^{\cdot} itten  v_{0} at

Line 6) which are more difficult to estimate. The cost of  no1^{\cdot}mal forms (the mod used at va1’ious places)

makes the estimates more complicated.

The second point is the the lack of a precise “Arithmetic Bézout Theorem” in the case of primary

triangular sets. This tool is crucial to deduce bit‐size from any input polynomial systems. In the realm of

Diophantine Geometry where height theory comes from, this has not been treated, As far as I know, at

best algebraic cycles of projective varieties have been addressed. Even without this major tool, the bounds

obtained are similar to the ones computed for the radical case. This provides a rather good heuristic to

believe that comparable “universal” (independent of the describing polynomial system) bounds should
hold.

Theorem.[6] Let  \{t^{(\alpha)}\}_{\alpha\in V(T)}\subset\overline{\mathbb{Q}}[X_{1}, X_{n}] be a finite family of pairwise distinct primary tríangular
sets over  \overline{\mathbb{Q}} . The unique zero in  \overline{\mathbb{Q}}^{n} of the system  t^{(\alpha)} is denoted  \alpha,

Assume that the lexicographic Gröbner basis of the ideal   I= \prod_{\alpha}\langle t^{(\alpha)}\rangle is a triangular  T set defined

over  \mathbb{Q} . The zeroes  V(T) of the system  T are the  \alpha' s.

The reconstruction algorithm described above of  T from the input  \{t^{(\alpha)}\}_{\alpha\in V(T)} induces a growth of
 \cdot

coefficients of at most.

 h(T_{n})\leq nDH(T)  + Õ  (nL(T)D^{2}\mu(T)) , where,
 \bullet  T_{n}i_{6} the  n-th polynorn.ial in  th_{J}etrian_{\ovalbox{\tt\small REJECT}}gular.set T.
 eTh_{1}e rnaximal bit‐size of the coefficients in  t^{(\alpha)} is denoted  H(\alpha) .
 e sum and max over th.ezer.oes a of T. \cdot

 H( T)=\sum_{\alpha}H(\alpha)a71_{s}dL(T)  := \max_{\alpha}H(\alpha)
 \bullet  D=d_{1}+d_{2}+\cdots+d_{n},  \deg_{X_{\dot{}}}(T_{i})=d_{i}.
 \bullet  \mu(T)  := \max_{\alpha}\mu(\alpha) is th.  e maximal  mult_{i}plicity of the roots in  \overline{\mathbb{Q}}^{n} of the system T.

We remark that in the case of a radical ideal, we have  \mu(T)=1,  L(T)\ll H(T) , and the bounds are

thus similar, with a small overhead of  L(T) , to those obtained in [3] that focused on the radical case only.
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