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Reconstruction of a non-radical triangular set from

its primary components and its bit-size estimate
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Abstract

Triangular sets that generate a non-radical ideal are far less understood then those that generate a
radical one. In the realm of “triangular-decomposition”, decomposing and reconstructing such triangular
sets is important, based on generalized versions of the Chinese remaindering theorem. In this work we
address the reconstruction in the non-radical case. It relies on the recently proposed computation of ged
of univariate polynomials over a non-radical triangular set. As an application, we estimate the coefficient
growth entailed in this reconstruction process.

Background A triangular set in this work refers to a zero-dimensional lexicographic Grébner basis which
has a purely triangular shape, as follows:

Tn( X1, Xoy -+ s X1, Xp) = X -
Tt (X1y ..oy Xpot) = X003 4

Ty (Xy) = X{' 4

If we assume that such a triangular set generates a radical ideal, then its primary components q; are
maximal ideals. Therefore, the quotient ring k[X71, ..., X,]/q; is a field, more precisely it encodes a tower
of fields extensions. It is thus possible to apply standard algorithms over fields such as ged. Now for
polynomials having coefficients over a triangular set that generates a radical non-maximal ideal, it is not
obvious anymore since there are zero-divisors. The work of Kalkbrener [8] and the D5 principle [7] have

shown however how to circumvent this problem. The issue occurring for the division operation, it splits
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the underlying triangular set into two ones: in one branch the division is possible, in the other one not.
This paradigm is the core of ged-based view on the triangular decomposition method.

But when the triangular set is not radical, the above description fails apart since the primary compo-
nents themselves are not all maximal ideals, and elements are not necessarily invertible. The article [5]
proves that a kind of ged notion exists, and highlights a strategy to compute it. The crux is that there is
not one ged but a chain of. A complete algorithm to compute this ged-chain is still challenging, except
in one case described below.

Invertibility in a special case Let (T1,...,T),) and let T' = (11,...,T,,—1) be a triangular set a be a
univariate polynomial in R[X,] where R = k[X1,..., X,_1]/(T). Let p := /(T be the radical of (T;
This is a maximal ideal.

(H) Assume that ged(a mod p, T}, mod p) = 1 over the field k[X1,..., Xp—1]/p.
Then the last non-nilpotent subresultant of a and T, computed in R[X,] is invertible in R. (In the
terminology introduced in [5], the ged chain has only one block, which is moreover equal to 1). It follows
that a is invertible in R[X,]/(T) = k[X1,..., X,]/(Th,...,Tn).

Application to Chinese remaindering theorem This simple observation has the implication that
undergoing the reconstruction part of the Chinese Algorithm theorem is possible even over a primary
triangular set. Additionally, the algorithm works similarly to the one for radical triangular sets [2], as
shown below in Algo. 1.

Algorithm 1: Recombination polynomials by the Chinese remaindering theorem

Input: Primary triangular set t = (t1,...,t,) (let R := (k[X1,..., X,]/(t)))

family of polynomials {a;};=1,. s of R[y], such that (a1,...,as) = (1) in R[y]

Output: {&};=1,..s such that 3=, &a; = 1 mod (t) and deg,(€;) < 3_;, deg,(a;)

Compute the product A = [];_; a; mod (t)

2 fori=1,...,sdo

3 A; :== A/a; mod (t)

4 Compute the extended subresultant sequence {A;, as, Sr,(As, i), -+ - Sp;(Aiyai)s -+, So}
{1,0,Upys ooy tUpy oo up} and {0, 1,005 oo, Upyy -5 V0 ) // deg,(S;,) =rj,
Up; Aj +vr 0 = S,
5 to < Sy ! mod (t)

6 €; + vp - to mod (t)

[

K

7 return {€y,...,¢5}

Comments The novelty is that the subresultant sequence of A; and a; can be computed in R =
E[X1,...,X,]/(t) using the classical PRS of Brown [1]: the division made over R are always possible.
This is because (t) is primary, hence indecomposable.

Next, that Sp € R is invertible (line 5). This comes from the fact that A; and a; are coprime modulo
the maximal ideal \/m The precise algorithm to compute this inverse is similar to the one that works
for triangular sets that generate a maximal ideal (see e.g. [9]).

Last, the fact that 57, €;a; = 1 mod (t) is an easy and standard consequence of the algorithm.

Note that the algorithm above is a plain one. There are faster versions®) based on so-called subproduct

DIn any cases, the complexity of the algorithm ultimately solely depends on which version of the pseudo Euclidean
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tree techniques [10, Chap. 10.3].

From the computation of the recombination polynomials output by Algo. 1 we deduce the recombi-

nation part of the CRT as follows, We use the notation of Algo. 1.
e Consider some target modular values f; € (R[y]/(a:))[z1,- -, 2]

e Compute f:= i, €a;f; mod (t).
(Then we have: f € (R[y]/(A))[z1,. .., 2] where A= [];_, a; and f = f; mod (t U {a;}))

Reconstruction from primary components Next instead of polynomials a; in the input of Algo. 1,
assume that they are “pairwise coprime” triangular sets, how to adapt the algorithm ?

First the input primary triangular sets must be arranged into a natural tree data structure. Second,
Algo. 1 is called recursively from the root of the tree up to the parent of the leaves, for each branch. The

following example illustrates how the algorithm work:

Example Consider the four primary triangular sets t*!, t'2, 2!, £22 :

i zy) =y’ +ay | Py =@+ -2y | By =@w-1 [ Py =y —(=+1y
11%(z) = ? () = (z+1)? 12 () = (z + 1)
These four triangular sets are arranged in the following tree. The number of leaves is equal to the number
of primary triangular sets. To alleviate notations, we write: a; := ti! = t12 = 22, ag = 31 =2 = (2+1)?
and ag; =t fori=1,2,j=1,2.

a; = (x + 1)?

. ap =+ 1D —xy \
a,y = y?+xy ay = (y— 1) Ay =yt —(x+ 1y

e Problem: Define R;; := k[x,y]/(t¥). Given moduli f;; € Ryj[z1,...,2] compute a polynomial
f € k[z,y][z1, ..., z¢] such that f = f;; mod (t¥), with the degree constraints: deg,(f) < ¥, deg,(a;)
and deg, (f) < max;(3_; deg, (as;)).

Algo.1 applied to a1, as, then to a1, a1z modulo a; and to as, aze modulo as yields:

€1a1 + ésap =1 —  é1:=3+ 2z, €y :=1-—2z
e11a11 + ezaiz = 1 mod (a1) — e11:=22y+2y+3, ep:=—2zy—2y+1

€21a91 + €32a22 = 1 mod (az) — é31:=3ay+5y+1, én:=(-3y+4)z—5y+7
o Answer: f =37, a:6(3; aijei; fi; mod (ai1a;2)) mod (aiaz).

This example in the case of triangular sets of two variables generalizes by considering trees of depth

larger than two.

Coefficients growth When the input triangular sets are maximal ideals, and the base field is alge-

braically closed, then these triangular sets are just “ideal of points” like (z — 1,y — 2). The problem is to

division is used. It is well-known that the half-ged [10, Chap. 11] has a softly linear asymptotic complexity, against a
quadratic one for the standard Euclidean algorithm.



interpolate points. The estimation of the growth of coefficients through explicit interpolation formula has
been treated in [3]. See [4] for a short survey. The situation is more complicated for primary triangular
sets with respect to two points:

First there is no explicit interpolation formula. Algorithm 1 computes ged cofactors (written vy at
Line 6) which are more difficult to estimate. The cost of normal forms (the mod used at various places)
makes the estimates more complicated.

The second point is the the lack of a precise “Arithmetic Bézout Theorem” in the case of primary
triangular sets. This tool is crucial to deduce bit-size from any input polynomial systems. In the realm of
Diophantine Geometry where height theory comes from, this has not been treated; As far as I know, at
best algebraic cycles of projective varieties have been addressed. Even without this major tool, the bounds
obtained are similar to the ones computed for the radical case. This provides a rather good heuristic to
believe that comparable “universal” (independent of the describing polynomial system) bounds should
hold.

Theorem.[6] Let {t(*)} ¢ v(T) C Q[X1,. .., Xy] be a finite family of pairwise distinct primary triangular
sets over Q. The unique zero in Q™ of the system t(® is denoted .

Assume that the lezicographic Grébner basis of the ideal I = ], (t(®) is a triangular T set defined
over Q. The zeroes V(T) of the system T are the a’s.

The reconstruction algorithm described above of T from the input {t(o‘)}aevg) induces a growth of
coefficients of at most:

W(T,) <nDH(T) +O( nL(T) D* u(T) ), where,

e T, is the n-th polynomial in the triangular set T.

o The mazimal bit-size of the coefficients in t(%) is denoted H(c).

sum and mazx over the zeroes a of T: H(T) =73 H(a) and L(T) := max, H(a)
e D=di+da+ - +dy, degy, (1) = d;.

w(T) := maxg u(a) is the mazimal multiplicity of the roots in Q" of the system T.

We remark that in the case of a radical ideal, we have u(T) = 1, L(T) <« H(T), and the bounds are

thus similar, with a small overhead of L(T), to those obtained in [3] that focused on the radical case only.
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