
109

CAS in Teaching Basics of Statistical Learning

Aleksandr Mylläri, Tatiana Mylläri

Dept. of Computers & Technology,
School of Arts and Sciences

St.George’s University
St.George’s, Grenada, West Indies

amyllari@sgu.edu

Abstract. Visual demonstrations provide a convenient way to illustrate the
work of algorithms and help students to understand them. Modern Computer
Algebra Systems (such as Mathematica or Maple) provide not only opportunity
for analytic and numerical calculations, but also convenient tools for solving
optimization problems, image construction and animations. It makes CAS a
good resource to use in the classroom since the code is usually compact and
clear, allowing students to make changes and experiment easily. We model the
work of Rosenblatt’s perceptron and simple Support Vector Machines (SVMs)
using Wolfram Mathematica. Constructed models are used to demonstrate
basic concepts and ideas in the introductory courses on SVMs and Statistical
Learning.

1 Introduction

Modern systems of Computer Algebra, such as Mathematica or Maple, provide good
facilities for simulations and visualization. Visual demonstrations provide a conve‐
nient way to show the work of algorithms and help in understanding them.

We use Support Vector Machines (SVMs) to make an introduction to Statistical
Learning Theory. As an example, we consider the problem of binary classification.
SVMs are attractive from the educational point of view since it is easy to introduce
them stepwise from simple perceptron (in the linearly separable case) to more ad‐
vanced classifiers. We start with the perceptron and generalize it to a maximum
margin classifier; then we introduce a kernel trick that allows generalization to non‐
linearly separable cases; and finally we consider soft margin classifiers (accepting
misclassifications during the training stage). Constructed models are used in in‐
troductory courses on SVMs and Statistical Learning; we use visualization as an
explantory tool to illustrate the work of algorithms using Mathematica.

Our introductory course on Machine Learning and Support Vector Machines
(SVMs) is based on the classic books by N. Cristianini and J. Shave‐Taylor [1] and
B. Schölkopf and A.J. Smola [2]. Here, we illustrate the work of the algorithms;
detailed descriptions and explanations can be found in [1] and [2].

109

110

10

. :
..

0.

 =

 00

. . . :. \cdot,
 \cdot

 =.
.

.:
 .= . .

 oz\cdot\cdot

. .

 : :
0.0602

Figure 1: An example of linearly separable data (to use with the perceptron algo‐
rithm).

SVMs among other Machine Learning algorithms have been included in Math‐
ematica since version 10[3]; there were implementations of SVMs done for earlier
versions of Mathematica (see, e.g. [4], [5]). Though classifiers implemented in Math‐
ematica are very efficient, we choose our own simple classifiers and experiments
because we feel that our primary goal‐ students’ understanding of how the algo‐
rithms work‐ is best served by using practical simulations.

The binary classification problem is one of the basic problems of machine learn‐
ing. We consider supervised learning‐ the case when the learning machine is given
a training set of examples with associated labels (usually +1 and -1). We use X

to denote the input space and Y to denote the output domain. We have X\in R^{2} ;
for binary classification Y=\{-1,1\}.

2 Training data

A training set is a collection of training examples (also called training data). It is
usually denoted by

 S=((x_{1}, y_{1}), \ldots, (x_{l}, y_{l}))\subseteq(X\cross Y)^{l},

where l is the number of examples. We refer to the x_{i} as examples and the y_{\dot{i}} as
their labels.

Mathematica as well as other Computer Algebra systems easily allows one to
generate data with desired properties, such as a linearly separable case with clear
margin (Fig. 1), non‐linearly separable data (Fig. 2), noisy data with some cases
mislabelled, etc. Same data generation algorithms can be used to generate test data
sets with specified distributions to check the classifier obtained.

3 Classification

Binary classification is frequently performed by using a real‐valued function f : X\subseteq
 R^{n}arrow R in the following way: the input x=(x_{1}, \ldots, x_{n})' is assigned to the positive
class if f(x)\geq 0 , and to the negative class otherwise. The simplest case is when

110

111

Figure 2: An example of non‐linearly separable data.

 f(x) is a linear function of x\in X , so that it can be written as

 f(x)=\{w\cdot x\}+b=\sum_{\dot{i}=1}^{n}w_{i}x_{i}+b
where (w, b)\in R^{n}\cross R are the parameters that control the function and the decision
rule is given by sgn(f(x)) , where we use the convention that sgn(0) =1 . The learning
methodology implies that these parameters must be learned from the data.

A geometric interpretation is that the input space X is split into two parts by
the hyperplane defined by the equation \{w\cdot x\}+b=0 (see Figure 3). In the simple
case we use for visualization, we deal with points on a plane, and a hyperplane is a
straight line which divides the plane into two halves corresponding to the inputs of
the two distinct classes. In Figure 3, the positive region is above and the negative
region below the line.

As was said in the Introduction, we use a basic sequence of actions: we start
with linearly separable data and a perceptron; continue with a maximum margin
classifier; generalize it to the non‐linear (separable) case; and then generalize to the
non‐separable case (noisy data). We have no intention to give detailed descriptions
of algorithms and methods here. The formulae and descriptions below are only
provided to demonstrate that SVMs can be easily programmed in Mathematica.

3.1 Perceptron

The first iterative algorithm for learning linear classifications is the perceptron pro‐
posed by Frank Rosenblatt in 1956. It is an ‘on‐line’ and ‘mistake‐driven’ procedure,
which starts with an initial weight vector w_{0} (usually w_{0}=0 ‐ the all zero vector)
and adapts it each time a training point is misclassified by the current weights. The
perceptron algorithm updates the weight vector w and bias b directly. This pro‐
cedure is guaranteed to converge provided there exists a hyperplane that correctly
classifies the training data (i.e. data are linearly separable). If no such hyperplane
exists the data are said to be nonseparable. Example of the resulting classifier for
the data from Figure 1 is shown on Figure 3.

111

112

Figure 3: Hyperplane (line in this case) found by the perceptron algorithm.

Figure 4: Margin of the data from Fig. 1.

3.2 Maximum margin classifier

The number of iterations performed by the perceptron algorithm depends on a
quantity called the margin. This quantity plays a central role in SVM theory so we
give a more formal definition [1]:

Definition The (functional) margin of an example (x_{i}, y_{i}) with respect to a hy‐
perplane (w, b) is the quantity

 \gamma_{i}=y_{i}(\{w\cdot x_{i}\}+b) .

Note that \gamma_{i}>0 implies correct classification of (x_{i}, y_{i}) . If we replace functional
margin by geometric margin we obtain the equivalent quantity for the normalized

linear function (\frac{1}{\Vert w\Vert}w, \frac{1}{\Vert w\Vert}b) , which measures the Euclidean distances of the points

from the decision boundary in the input space. The margin of a training set S is
the maximum geometric margin over all hyperplanes (straight lines in our case). A

hyperplane realizing this maximum is called a maximal margin hyperplane. The size
of its margin will be positive for a linearly separable training set. Figure 4 shows the
margin of a training set, while Fig. 5 compares perceptron with maximum margin.

Having our (linear) classifier in the form f(x)=\{w\cdot x\rangle+b we are free to scale
the parameters w and b . By requiring that this scaling be such that the point(s)

112

113

Figure 5: Perceptron (Fig. 3) vs. maximum margin.

closest to the hyperplane satisfy |\langle w, x_{i}\rangle+b|=1 , we obtain its canonical form (w, b)
by solving the following optimization problem [2]:

minimize w \in R^{n},b\in R^{T(w)}=\frac{1}{2}\Vert w\Vert^{2},
subject to y_{i}(\{x_{i}, w\rangle+b) \geq 1 for all i=1 , . . . , m.

In practice, it is convenient to solve the dual optimization problem that is derived
by introducing a Lagrangian:

 L(w, b, \alpha)=\frac{1}{2}\Vert w\Vert^{2}-\sum_{\dot{i}=1}^{m}\alpha_{i}
(y_{i}(\langle x_{i}, w\}+b)-1) (1)

with Lagrange multipliers \alpha_{i}\geq 0 . The Lagrangian L must be maximized with
respect to a_{i} , and minimized with respect to w and b . We have

 \sum_{i=1}^{m}\alpha_{i}y_{i}=0,
and

 w=\sum_{i=1}^{m}\alpha_{i}y_{i}x_{i}.
The patterns x_{i} for which \alpha_{i}>0 . are called Support Vectors.

The dual optimization problem takes the form

maximize \alpha\in R^{m}W(\alpha)=\sum_{i=1}^{m}\alpha_{i}-\frac{1}{2}\sum_{\prime,l,j=
1}^{m}\alpha_{i}\alpha_{j}y_{\dot{i}}y_{j}\{x_{i}, x_{j}\rangle,

subject to \alpha_{i}\geq 0, i=1 , . . . , m,

and \sum_{i=1}^{m}\alpha_{i}y_{i}=0.

113

114

Figure 6: Data from Fig. 2 after nonlinear transformation.

This optimization problem can be easily solved in Mathematica by using Maximize.
The classifier takes the form

 f(x)= sgn (\sum_{i=1}^{m}\alpha_{i}y_{\dot{i}}\langle x, x_{i}\}+b)
3.3 Non‐linear case

Consider the case shown in Figure 2. Data are not linearly separable, but if we map
our data nonlinearly into a higher‐dimensional space, data could became linearly
separable. In the case of Figure 2, mapping (x_{1}, x_{2})arrow(x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2}) will do the
trick (see Figure 6).

Let us note that in the formulation of the dual optimization problem and final
classifier, training data is present only in the form of dot products. So, if we make a
nonlinear mapping \Phi , in the target nonlinear space we will be interested only in the
dot product \langle\Phi(x), \Phi(x_{i}) }. Let us introduce a (positive definite, see [2] for details)
kernel function k(x, x_{i}) :

 \{\Phi(x), \Phi(x_{i})\}=k(x, x_{i})

The optimization problem to solve will take the form

maximize \alpha W(\alpha)=\sum_{\dot{i}=1}^{m}\alpha_{i}-\frac{1}{2}\sum_{i,j=1}^{m}
\alpha_{i}\alpha_{j}y_{i}y_{j}k(x, x_{i}) ,

subject to \alpha_{i}\geq 0, i=1 , . . . , m,

and \sum_{i=1}^{m}\alpha_{i}y_{i}=0.
and the final classifier

 f(x)= sgn (\sum_{i=1}^{m}y_{i}a_{i}k(x, x_{i})+b)

114

115

..

.

Figure 7: Classifier with polynomial kernel.

Again, this optimization problem can be easily solved in Mathematica by using
Maximize.

Examples of such classifiers are given in Figure 7 (for data shown in Figure
2, using a polynomial kernel function) and Figure 8 (using an exponential kernel
function).

In practice, a separating hyperplane could be non‐existent‐ e.g. data could be
noisy, with outliers, or some training examples could be mislabelled. So, it would
be good to have an algorithm that can deal with such cases. One approach is to
introduce so‐called slack variables, \xi_{i}\geq 0 , where i=1 , . . . , m , and use relaxed
separation constraints

 y_{i}(\langle x_{i}, w\rangle+b)\geq 1-\xi_{i}, i=1
, . . . ,

 m.

Obviously, by making \xi_{i} large enough, the constraints on (x_{i}, y_{i}) can always be met.
To avoid this trivial solution with large values of \xi_{i} , a term to penalize large values
of \xi_{\dot{i}} can be added to the optimization problem. In the simplest case of the so‐called
C‐SV classifier (for some C>0), the optimization problem takes the form:

minimize w \in H,\xi\in R*m^{T(w,\xi)}=\frac{1}{2}\Vert w\Vert^{2}+\frac{C}{m}\sum_{i=1}
^{m}\xi_{i},
subject to

 \xi_{i}\geq 0, i=1
, . . . , m,

and

 y_{i}(\{x_{i}, w\rangle+b)\geq 1-\xi_{i}, i=1
, . . . ,

 m.

The solution, as in the linearly separable case, will have the form

 w=\sum_{\dot{i}=1}^{m}\alpha_{i}y_{i}x_{i}

115

116

Figure 8: Classifier with exponential kernel.

Coefficients \alpha_{i} can be found by solving the corresponding dual (quadratic) optimiza‐
tion problem:

maximize \alpha\in R^{m}W(\alpha)=\sum_{i=1}^{m}\alpha_{i}-\frac{1}{2}\sum_{\dot{i}j=1}
^{m}\alpha_{i}\alpha_{j}y_{i}y_{j}k(x_{i}, x_{j}) ,

subject to 0 \leq\alpha_{i}\leq\frac{C}{m} for all i=1 , . . . , m,

and \sum_{i=1}^{m}\alpha_{i}y_{i}=0.
Similar to the separable case, this optimization problem can be easily solved in
Mathematica by using Maximize. The threshold b can be obtained by averaging

 b=y_{j}- \sum_{i=1}^{m}y_{i}\alpha_{i}k(x_{j}, x_{i})
over all points with \alpha_{i}>0 ; in other words, all support vectors. An example of the
work of a soft‐margin classifier is given in Figure 9.

4 Conclusions

Mathematica provides good facilities for modeling and visualization of SVMs. Built‐
in methods to solve optimization problems, compactness of the Mathematica code,
and good graphics make experimentation easy. Thus, students can generate training
and test data easily. As an option, advanced students can experiment with making
their own optimization problem solvers. If the data set is of reasonable size, multiple

116

117

Figure 9: Example of training soft‐margin classifier.

simulations can be done in moderate time with different parameters, etc. Students
can experiment with different kernel functions, observe overfitting/underfitting, etc.
A rough estimate of the quality of learning could be also easily done by looking at
the proportion of non‐zero coefficients \alpha_{i}- if all (or too large a fraction) of training
examples are found to be support vectors, overlearning takes place. All of the above‐
mentioned cases of easily constructed learning examples using Mathematica show it
to be a useful resourse to use in the classroom for introductory courses on SVMs
and Statistical Learning Theory.

References

[1] Shawe‐ Taylor J., Cristianini N. Support Vector Machines and other kernel‐based learn‐
ing method. Cambridge University Press (2000)

[2] Schölkopf B., Smola A.J. Learning with Kernels Support Vector Machines, Regular‐
ization, optimization and Beyond. Massachusetts Institute of Technology (2001)

[3] https://www.wolfram.com/mathematica/new‐in‐10/high1y‐automated‐machine‐
learning/

[4] Paláncz B, Völgyesi L. Support Vector Classifier via Mathematica. Periodica Poly‐
technica Civ. Eng, Vol. 48, Nr. 1‐2. pp. 15‐37. (2004)

[5] Nilsson R., Björkegren J., Tegnér J. A Flexible Implementation for Support Vector
Machines. The Mathematica Journal, Vol. 10, pp.114‐127. (2006)

117

