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1. Introduction

Fish migration is a key biological phenomenon that drives food‐webs. This is a large‐scale mass

biological phenomenon by coordinated behavior of fish population depending on environmental

cues (Cote et al., 2017). A life history of migratory fish involves long‐distant migrations between

habitats, which are driven by many ecological factors, such as seasonal changes of habitat quality,

existence ofpredators, and possibly by environmental changes due to climate changes and human

activities (Chapman et al., 2015; Hagelin et al., 2016; Hulthén et al., 2015; Jones and Petreman,

2015). Comprehension and assessment of fish migration is necessary for better, ecologically‐

friendly water environment. In addition, prediction of timing and amount of fish migration is

indispensable for sustainable fisheries management (Kumar and Kumari, 2015; Willis et al., 2015).

Population dynamics of animals like fish is an herently stochastic biological

phenomenon due to the lack of data and unresoıved, possibly nonlinear, complicated, and multi‐

scale environmental and ecological processes (Buiatti et al., 2013; Lande et al., 2003; Lv and

Pitchford, 2007). There exist a variety of costs for migration between habitats, such as

physiological energy consumption (Yoshioka, 20ı6; Yoshioka, 2017) and predation (Brönmark et

al., 2013; Chapman et al., 2013). Existence ofphysical barriers, such as weirs and dams equipped

with poorly designed fishways would be obstacles of migration (Dugan et al., 2010; Leeuwen et

aı., 2016; Franklin and Hodges, 2015; Yoshioka et al., 2016). Fish migration between habitats is

thus considered as a stochastic optimal stopping problem where a stopping time to be optimized

corresponds to timing of migration. Ai and Sun (2012) discussed solvability of optimal stopping

problem of a popuıation governed by a stochastic logistic‐like SDE. Yakubu and Fogarty (2006)

formulated fish migration in terms of a spatially‐discrete meta‐population dynamics modeı with

directional movements.
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As an application example of a mathematical finance methodology to fish migration,

this paper introduces a tractable stochastic optimal stopping problem. The decision‐maker ofthe

problem is a fish population. The present model assumes a non‐structured population in the sense

that the population contains the individuals ofthe same age. This assumption is not so restrictive

for migration of major migratory fishes having a life history of singıe year such as Plecoglossus

altivelis (P. altivelis, Ayu) serving as important inland fishery resources in Japan. Even for

migratory fishes with a structured population such as saımonids, the model can be applied to

analysis oftheir migration assuming that the population has a dominant age. Environmental cues

that trigger the migration are implicitly incorporated into the coefficients of the present model,

and their explicit and detailed mathematical modeling is beyond the scope ofthis paper. The exact

solution to the present system of variational inequalities (VIs) are analytically expressed.

Ecological characterization of the sufficient condition to guarantee the existence of the exact

soıution is presented, which provides a useful connection between mathematics and fish migration.

Similarities between the present ecological problem and a problem of mathematical finance are

discussed as well.

The rest ofthis paper is organized as follows. Section 2 presents the mathematical model

focused in this paper. Section 3 gives a heuristic exact solution to the VI associated with the

present model, proves its viscosity property, and shows that the solution is the unique viscosity

solution to the VI. Section 4 poses advanced topics on mathematical modeling of fish migration

and discusses relationship between the topics and tools in mathematical finance. Section 5

concludes this paper.

2. Mathematical model

2.1 Stochastic differential equation

A system ofstochastic differential equations (SDEs) that governs the population dynamics, which

is represented by the total number of population N_{t}(\geq 0) in the habitat and their representative

body weight  X_{t}(\geq 0) at the time  t . Assume that there is no reproduction and the popuıation is

not structured. The governing equations of  N_{t} and  X_{t} are set as the Itog SDEs

 M_{t}=-\mathbb{R}_{t}dt , t>0 , N_{0}=n , (1)

 M_{t}=X_{t}(rdt+\sigma dB_{t}) , t>0, X_{0}=x (2)

where  B_{t} is the 1‐D standard Brownian motion,  R>0 is the natural mortality rate,  \sigma\geq 0 is

the environmental noise intensity, and  r>0 is the intrinsic growth rate.  \sigma is a lumped

parameter that represents internal and external stochasticity involved in the population dynamics
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that affects the growth of individuals, such as competitions among individuals and fluctuations of

environmental conditions ofthe habitat. Owing to the linearity ofthe SDEs, the conventional Ito  E

lemma leads to the SDE of the biomass  Z_{t}=N_{t}X_{t} as

 dZ_{t}=Z_{l}((r-R)dt+\sigma dB_{t}) , t>0, Z_{0}=nx . (3)

We assume the condition

 r-R> \frac{\sigma^{2}}{2} , (4)

so that the extinction of the population does not occur, namely  Z_{t}>0 for  t>0 almost surely

when  Z_{0}>0 . Hereafter, the notation  z=nx is employed for the sake ofbrevity ofdescriptions.

2.2 Performance index

The performance index  J to be maximized by the population, the decision‐maker, is set as

 J(z; \tau)=E^{Z}[\int_{0}^{\tau}\frac{q}{1-\alpha}Z_{s}^{1-a}e^{-\delta s}ds+
\chi_{\{\tau<+\infty\}}e^{-\delta\tau}(\frac{1}{{\imath}-\alpha}Z_{\tau}^{1-a}-
k)] (5)

where  \delta>0 is the discount rate,  q>0 is the weight parameter,  0<\alpha<1 is the constant of

sensitivity,  k>0 is the cost of migration, and  \chi_{\{\tau<+\infty\}} is the indicator function for the set

 \tau\in[0,+\infty) . The first term of  J represents the cumulated benefit during the growth in the

current habitat. The second term represents the benefit by reaching the next habitat through a

migration and the cost of migration.

2.3 Value function

The value function  \Phi=\Phi(n,x) is the maximized performance index defined as

  \Phi(z)=\sup_{\tau\in\Gamma}J(z;\tau) (6)

where  \Gamma is a set of non‐negative, adapted stopping times. The main assumption made

throughout this paper is as follows

Assumption 2.1

  \lambda=6-(1-\alpha)(r-R)+\alpha(1-\alpha)\frac{\sigma^{2}}{2}>0 . (7)

Assumption 2.1 is satisfied if  \delta is sufficiently large. This assumption is necessary to have a

non‐trivial optimal strategy. In fact, without this (namely when  -\lambda\geq 0 ), we have an unbounded

50



51

value function with  \tau^{*}=+\infty (no migration):

 \Phi(z)\geq J(z;+\infty)

 = E^{Z}[\int_{0}^{+\infty}\frac{q}{1-\alpha}Z_{s}^{1-\alpha}e^{\delta s}ds]
 = \frac{q}{1-\alpha}z^{1-\alpha}\int_{0}^{+\infty}E^{z}[e^{(1-\alpha)(r-R)s+(1-
\alpha)\sigma B_{s}}]e^{-\delta s}ds . (8)

 = \frac{q}{1-\alpha}z^{1-\alpha}\int_{0}^{+\infty}e^{-\^{A} s}ds
 =+\infty

The upper‐ and lower‐bounds ofthe value function  \Phi are obtained as folıows.

Proposition 2.1

 0 \leq\Phi(z)\leq(A+\frac{1}{1-\alpha})z^{1-a},  z\geq 0,  A= \frac{q}{(1-\alpha)\prime t}>0 . (9)

(Proof of Proposition 2.1)

The lower‐bound that shows non‐negativity of  \Phi is trivial by the functional form of  J . On the

other hand, the upper‐bound is obtained as folıows.

  \Phi(z)\leq E^{Z}[\int_{0}^{+\infty}\frac{q}{1-\alpha}Z_{s}^{1-a}e^{-\delta s}
ds]+\sup_{\tau\in\Gamma}E^{Z}[\chi_{\{\tau<+\infty\}}e^{-\delta\tau}(\frac{1}{1-
\alpha}Z_{\tau}^{{\imath}-a}-k)]
 =Az^{1a}+ \sup_{\tau\in\Gamma}E^{z}[e^{-\delta r}(\frac{1}{1-\alpha}Z_{r}
^{{\imath}-\alpha}-k)] (10)

  \leq Az^{1-a}+\frac{1}{1-\alpha}\sup_{t\geq 0}E^{Z}[Z_{t}^{1-\alpha}e^{-\delta
l}]
Since

  \sup_{t\geq 0}E^{Z}[Z_{t}^{1-a}e^{-6t}]=z^{1-a}\sup_{l\geq 0}\{e^{-it}\}=z^{1-
a} (ı1)

combining (10) and (11) yields the desired upper‐bound, and thus the proof is completed.

 \square 

Corollary 2.1

By Proposition 2.1,  \Phi is continuous at the origin  z=0.

The value function  \Phi is continuous with respect to  z , which is proven by the following non‐

standard continuity result.
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Proposition 2.2

 | \Phi(z_{1})-\Phi(z_{2})|\leq(A+\frac{{\imath}}{1-\alpha})|z_{1}^{1-\alpha}-z_
{2}^{1-\alpha}|,  z_{1},z_{2}\geq 0 . (12)

(Proof of Proposition 2.2)

By the definition of  \Phi , we have

 | \Phi(z_{1})-\Phi(z_{2})|=|\sup_{\tau\in\Gamma}J(z_{1};\tau)-
\sup_{\tau\in\Gamma}J(z_{2};r)|
  \leq|\sup_{\tau\in\Gamma}(J(z_{1};\tau)-J(z_{2};\tau))| (13)

  \leq\sup_{\tau\in\Gamma}|J(z_{1};\tau)-J(z_{2};\tau)|
and

 J(z_{1};\tau)-J(z_{2};\tau)

 = E^{z_{1}}[J_{0}^{\tau}\frac{q}{1-\alpha}Z_{s}^{1-a}e^{-\delta s}ds+
\chi_{\{\tau<+\infty\}}e^{-\delta\tau}(\frac{1}{1-\alpha}Z_{\tau}^{1-a}-k)]
 - E^{z_{2}}[\int_{0}^{\tau}\frac{q}{1-\alpha}Z_{s}^{1-\alpha}e^{-\delta s}ds+
\chi_{\{\tau<+\infty\}}e^{-\delta r}(\frac{1}{1-\alpha}Z_{\tau}^{1-a}-k)] . (14)

  \leq\frac{q}{1-\alpha}|z_{1}^{1-\alpha}-z_{2}^{1-a}|E[\int_{0}^{\tau}e^{(1-a)
(r-R)s+(1-\alpha)\sigma B_{s}}e^{-\delta s}ds]
 + \frac{1}{1-\alpha}|^{11-a-f_{T}}z_{1^{-a}}-z_{2}|E[e']

We then have

 | \Phi(z_{1})-\Phi(z_{2})|\leq\frac{1}{1-\alpha}|z_{1}^{1-\alpha}-z_{2}^{1-a}
|\sup_{\tau\in\Gamma}|_{+E[e^{-\lambda\tau}]}^{E[e^{(1-a)(r-R)s+({\imath}-
\alpha)\sigma B_{s}}}\int_{0}^{r}e^{-\delta s}ds]|
  \leq\frac{1}{1-\alpha}|z_{1}^{1-a}-z_{2}^{1-a}||_{+\sup_{\tau\in\Gamma}^{E}
E[e^{-\lambda r}]}^{\sup_{r\in\Gamma}[\int_{0}^{r}e^{(1-\alpha)(r-R)s+(1-a)
\sigma B_{s}}e^{-\delta s}ds]}| , (ı5)

 =(A+ \frac{1}{1-\alpha})|z_{1}^{1-}-z_{2}^{1-a}|
which is the desired estimate (12).

 \square 

Combining Propositions 2.1 and 2.2 immediately shows the following theorem, which is

necessary for a verification ofthe VI.

Theorem 2.1
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The valuefunction  \Phi=\Phi(z) is continuous and locally boundedfor  z\geq 0.

2.4 Variational inequality

Application of the dynamic programming principle to (6) leads to the VI

  \min\{L\Phi-\frac{q}{1-\alpha}z^{1-a},\Phi-(\frac{1}{1-\alpha}z^{1-a}-k)\}=0 ,
z>0 (16)

with the degenerate elliptic operator  L given by

 L=6-(r-R)z \frac{d}{dz}-\frac{1}{2}\sigma^{2}z^{2}\frac{d^{2}}{dz^{2}} , (17)

subject to the boundary condition  \Phi(0)=0 , meaning a trivial fact that there is no profit when

no population exists in the current habitat.

2.5 Financial interpretation

The present mathematical model has a financial interpretation. The stochastic process  Z_{t} is

interpreted as a value process of some project. The first term of the performance index  J

represents the cumulative profit ofthe project, and the second term is a sum ofthe terminal profit

and the exit cost. Owing to this mathematical similarity between the ecological and financial

problems, mathematical tooıs developed in mathematicaı finance can be effectively applied to the

present problem as demonstrated in the next section.

It shouıd be noted that one ofthe significant differences between the present ecological

model and the conventional financiaı models is on the decision‐makers. In the present model, the

decision‐maker is the popuıation, which is the controıled stochastic process itself, while it is not

the case for the financial models where the decision‐maker is typically an observer ofthe process

to be controlled.

3. Exact solution

3.1 A candidate of exact solutions

We have a heuristic,  Rlmost\square classical solution  \Phi_{0}=\Phi_{0}(z)(z\geq 0) to the VI(16).

Proposition 3.1

Assume  \prime t>q . Then, the fiunction  \Phi_{0}(z) defned below satisfies the  VI(16) in the classical

sense expect at the one point  z=\overline{z} . In addition, this  \Phi_{0} complies with the boundary condition

 \Phi_{0}(0)=0 :
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 \Phi_{0}(z)=\{\begin{array}{l}
Az^{{\imath}-a}+Bz^{a} (0\leq z\leq\overline{z})
\frac{1}{1-\alpha}z^{1-a}-k (z>\overline{z})
\end{array} (18)

  \overline{Z}=[\frac{\lambda\omega k}{A-q}.\frac{1-\alpha}{\omega-1+\alpha}]
^{\frac{1}{1-\alpha}}>0 , (19)

  \omega=\frac{1}{\sigma^{2}}[-(r-R-\frac{\sigma^{2}}{2})+\sqrt{(r-R-
\frac{\sigma^{2}}{2})^{2}+2\sigma^{2}\delta}]>1-\alpha , (20)

 B= \frac{k(1-\alpha)}{\omega-1+\alpha}(\frac{1}{\overline{Z}})^{\omega}>0 , (21)

and A given in (9).

The regularity results  \Phi_{0}\in C[0,+\infty )  \cap C^{1}(0,+\infty) and  \Phi_{0}\in C^{2}((0,\overline{z})\cup(\overline{z}, +\infty)) hold true by

Proposition 3.1. In addition,  \Phi_{0} compıies with Propositions 2.1 and 2.2. Since

 \Phi_{0}\not\in C[0,+\infty)\cap C^{2}(0,+\infty) , it is not a classical solution to the VI(16). However, it turns out that

the function  \Phi_{0} is a continuous viscosity solution to the VI(16).

Ifthe function  \Phi_{0} is the value function  \Phi , based on the knowledge of mathematical

finance, its implication is that it is optimal to migrate from the current to the next habitat at  \tau=\tau^{*}

such that

  \tau^{*}=\inf\{t>0|Z_{t}\geq\overline{z},Z_{0}=z\} . (22)

For small  z<\overline{z} , the result implies

  \tau^{*}=\inf\{t>0|Z_{t}=\overline{z}, Z_{0}=z\} . (23)

A remark on the assumption  \lambda>q is provided here. Ifthis assumption does not hold, then there

is no solution to the VI(16) ofthe form (18). A solution with  \lambda\leq q is formally obtained as

 \Phi_{0}(z)=Az^{1-a} (24)

 \since

  \lim_{qarrow\lambda-0}\overline{z}=+\infty and   \lim_{qarrow\lambda-0}B=0 . (25)

The function  \Phi_{0} in (24) implies  \tau^{*}=+\infty , namely, it is optimal to stay in the current habitat.

Note that the function  \Phi_{0} in (24) is a cıassical soıution to the VI(16) that belongs to
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 C[0,+\infty)\cap C^{2}(0,+\infty) .

3.2 Viscosity property

A definition of viscosity solutions to the VI(16) is presented, which is utilized to verify the

viscosity property of  \Phi_{0}.

Defimition 3.1

A continuous fiunction  \Phi=\Phi(z) for  z\geq 0 such that  \Phi(0)=0 is a viscosity sub‐solution

(super‐solution) to the  VI(16) ififor each  z=V>0 , the inequality

  \min\{Lw-\frac{q}{1-\alpha}z^{1-\alpha},w-(\frac{1}{1-\alpha}z^{1-\alpha}-k)\}
\leq 0(\geq 0) at  z=x (26)

holds true for any test function  w\in C^{2}(0,+\infty) such that  w\geq\Phi(w\leq\Phi) and   w-\Phi attains

a local minimum (maximum) at  z=Y. A continuous function  \Phi=\Phi(z) for  z\geq 0 such that

 \Phi(0)=0 is a viscosity solution ifi it is a viscosity sub‐solution as well as a viscosity super‐

solution.

 \square 

Proposition 3.2

Assume  \lambda>q.  \Phi_{0} in Proposition 3.1 is a viscosity solution to the  VI(16) .

(Proof of Proposition 3.2)

It is sufficient to check the viscosity property of  \Phi_{0} only at  z=\overline{z} . To see that  \Phi_{0} is a

viscosity sub‐solution is trivial since the condition of viscosity sub‐solutions reduces to

  \min\{Lw-\frac{q}{1-\alpha}z^{1-a},0\}\leq 0 at  z=\overline{z} (27)

for any test functions  w for viscosity sub‐solutions. The left‐hand side of (27) is non‐positive

for any  w.

To see  \Phi_{0} satisfies the condition of viscosity super‐solution at  z=\overline{z} , it is sufficient

to check

  \min\{Lw-\frac{q}{1-\alpha}z^{1-a},0\}\geq 0 at  z=\overline{z} , (28)

namely
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 Lw ‐   \frac{q}{1-\alpha}z^{1-a}\geq 0 at  z=\overline{z} (29)

for any test functions  w for viscosity super‐solutions. Since  \Phi_{0} is continuously differentiable

at  z=\overline{z} ,  w should satisfy  w(\overline{z})=\Phi_{0}(\overline{z}) and   \frac{dw}{\ }(\overline{z})=\frac{d\Phi_{0}}{\ }( \overline{z}) . In addition, we have

  \delta B_{0}(\overline{z})-(r-R)z\frac{d\Phi_{0}}{\ }( \overline{z})-\frac{1}
{2}\sigma^{2}z^{2}\frac{d^{2}\Phi_{0}}{dz^{2}}(\overline{z}-0)-\frac{q}{1-
\alpha}\overline{z}^{1-\alpha}=0 . (30)

By  \overline{z} 〉  0 , combining (29) and (30) shows that it is sufficient to show

   \frac{o^{2}w}{e^{2}}(\overline{z})\leq\frac{d^{2}\Phi_{0}}{dz^{2}}
(\overline{z}-0) (31)

against any test functions  w for viscosity super‐solutions. Such a  w has to satisfy

  \frac{d^{2}w}{dz^{2}}(\overline{z})\leq\min\{\frac{d^{2}\Phi_{0}}{dz^{2}}
(\overline{z}-0),\frac{d^{2}\Phi_{0}}{\ ^{2}}( \overline{z}+0)\} (32)

by Definition 3.1 and the fact that  w-\Phi_{0} attains a ıocaı maximum at  z=\overline{z} . Therefore, the

condition (31) is satisfied by the test function that complies with (32). The result implies that

 \Phi_{0} is a viscosity solution to the VI(16).

 \square 

Similarly, we also have the following result.

Proposition 3.3

Assume  \lambda\leq q . Then,  \Phi_{0} in (24) is a viscosity solution to the  VI(16) .

3.3 Verification

An appıication of Theorem 2.1 of Reikvam (1998) with slight modifications show the following

theorem. An idea of its proof is also presented.

Theorem 3.1

 \Phi_{0} is the valuefunction  \Phi.

(Idea of the Proof of Theorem 3.1)

The result of Theorem 2.1 of Reikvam (1998) holds true with the following modifications.
 \sqrt{} Repıace  X_{t} and  x in the literature by  Z_{t} and  z.

 \sqrtr Replace  L=(r-R)z \frac{d}{\ }+\frac{1}{2}\sigma^{2}z^{2}\frac{d^{2}}{dz^{2}} in the literature by
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 L= \delta+(r-R)z\frac{d}{dz}+\frac{1}{2}\sigma^{2}z^{2}  o_{e^{2}}^{d^{2}}.
 \sqrt{} Repıace  f(X_{t}) by  f(X_{t})e^{-\delta t}
 \sqrt{} Replace  g(X_{\tau}) by  g(X_{\tau})e^{-\delta\tau}

 \square 

Consequently, it is shown that  \Phi_{0} , which is an explicit viscosity solution, is the vaıue function

 \Phi . A remaining question is that whether  \Phi_{0} is a unique viscosity solution to the VI(16) or not.

3.4 Uniqueness

As in the verification result, an application of Theorem 3.1 of Reikvam (1998) with sıight

modifications show the following theorem since  \tau^{*}<+\infty and  \{\Phi(Z_{\tau})\}_{\tau\in\Gamma} is uniformly

integrabıe for all  z\geq 0.

Theorem 3.1

 \Phi=\Phi_{0} is the unique viscosity solution to the  VI(16) .

4. Advanced topics

4.1 Lévy noise

The equation (1) is an ordinary differential equation, which can be naturally extended as

 M_{l}=-N_{l-0}(Rdt+dV_{t}) , t>0 , N_{0}=n (33)

where  V_{t} is a subordinator such as a compound Poisson process with positive jumps. This type

of geometric Lévy processes have been applied to economic modeling related to portfolio

optimization probıems (Ait‐Sahalia et al., 2009; Buckley et al., 2016; Pasin and Vargiolu, 2010; ).

In this case, the second term represents the discontinuous decrease ofthe popuıation such as due

to predation by waterfowls. If (1) is repıaced by (33), a non‐local term is added to the VI(16).

Assuming  \delta>0 is sufficiently large, a candidate of almost classical exact soıutions to the

integro‐differential VI is obtained as in Proposition 3.1 where the degrees and the coefficients of

the solutions change, but their qualitative structure remains the same. In addition, the viscosity

property of the candidate is also expıicitly verified, and it turns out to be the value function by

Theorem 2.2 of  \emptysetksendal and Sulem (2005). Therefore, incorporating a Lévy process, into the

present model in the above‐mentioned manner does not encounter significant mathematical
difficulties.
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4.2 Information delay

Population dynamics subject to delayed information can be a reasonable approach for analyzing

fish migration because theoreticaı analysis results based on SDEs implies that environmental

changes possibly cause time delays in population dynamics (Solbu et al., 2013). Linkages such as

transformation formuıas between problems with and without refractions have been studied in

 \emptysetksendal (2005), which provide key mathematical techniques to construct a solution to the

present optimal stopping problem. In the framework ofthe present mathematical modeı, the delay

can be incorporated into the definition of the value function  \Phi as

  \Phi(z)=\sup_{\tau\in\Gamma_{\theta}}J(z;\tau) (34)

where  \Gamma_{\theta} is the set of stopping times  \tau adapted to the filtration generated by the Brownian

motion  B_{t} such that  \tau\geq\theta>0 . A new parameter  \theta appears in the extended modeı and the

problem results in more complicated; however, Theorem 2.1 of  \emptysetksendal (2005) shows that the

value function  \Phi in (34) can be rewritten as a problem without apparent delay. In fact,

application of Theorem 2.1 of  \emptysetksendal (2005) to (34) shows

  \Phi(z)=\sup_{\tau\in\Gamma}E^{z}[\int_{0}^{\tau}\frac{q}{1-\alpha}Z_{s}^{1-a}
e^{-\delta s}ds+e^{-\delta\tau}\chi_{\{\tau<+\infty\}}\Psi(Z_{\tau})] (35)

with

  \Psi(z)=E^{Z}[\int_{0}^{\theta}\frac{q}{1-\alpha}Z_{s}^{1-a}e^{-\delta s}ds+e^
{-\delta\theta}(\frac{1}{1-\alpha}Z_{\theta}^{1-a}-k)] . (36)

The right‐hand side of (36) can be expıicitly expressed as a polynomial of  z since  Z_{t} is a

geometric Brownian motion. In fact, we have

  \Psi(z)=\frac{q+(A-q)e^{-\prime l\theta}}{(1-\alpha)\prime i}z^{1-a}-ke^{-
\delta\theta} (37)

Therefore,  \Psi(Z_{\tau}) in (35) is a polynomial of  Z_{r} . This implies that the boundedness and

continuity resuıts like Propositions 2.1 and 2.2 hold true for the problem with the information

delay. In addition, the free boundary  z=\overline{z} would not be found analytically.

4.3 Multiple optimal stopping

A life history of a fish typically contains many migrations. For example, P. altivelis in Japan has

the spring‐juvenile‐upstream migration from sea to river midstream for growth, and the autumn

downstream migration from river‐midstream to river‐downstream for spawning. The presented

mathematical model describes one migration event, and it cannot be directly applied to the
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problem with multiple migration events. The concept of multiple optimal stopping, which has

been investigated in mathematical finance and related research fields (Aıeksandrov and Hambly,

2010; Carmona and Touzi, 2008; Christensen and Lempa, 2015; Leung et al., 2015; Yamazaki,

2015) can be employed to tackle this issue. In this framework, a migration strategy is

characterized with sequential stopping times, and derivation of an optimal migration strategy

reduces to solving a cascading system of VIs. We have found that it is possible to formulate a

tractable multipıe optimal stopping problem for fish migration where the solution to the system

of VIs are expressed explicitly with coefficients uniquely determined from (uniquely solvable)

nonıinear algebraic equations.

4.4 Ambiguity

Fish migration may be a decision‐making problem of a population subject to model ambiguity, in

which the popuıation make decisions based on a biased model. The concept of muıtipıier robust

controı (Hansen and Sargent, 2006) has been an effective mathematical tool for modeling

decision‐making under ambiguity (Jang et aı., 2016; Tsujimura, 20ı6; Zhang et al., 2017).

Yoshioka and Yaegashi (2017b) have recently approached this issue numericaıly.

4.5 Numerical approximation

The present model can be made more realistic, but the resulting model will not be exactly solvable.

For example, the SDE(2) can be replaced by the logistic counterpart

 M_{t}=X_{t}(r(1-X_{t})dt+\sigma dB_{l}) , t>0, X_{0}=x (38)

with the upper‐bounded deterministic growth rate such that  r(1-X_{t})\leq r for  X_{t}\geq 0 . In this

case, the upper‐ and lower‐bounds of the value function  \Phi are obtained explicitly, but the

associated VI turns out to be not exactly solvable. In such a case, a numerical scheme with stabiıity

and consistency properties (Forsyth and Labahn, 2007) can be used for solving the VI. A practical

problem is to construct a computationally efficient numerical method for high‐dimensional VIs

like that in Darbon and Osher (20 ı6).

5. Conclusions

An exactly solvable stochastic optimal stopping problem was presented and it was shown that the

model is exactıy solvable. Its possible extensions to more realistic population dynamics modeling

were also discussed. There exist many other issues where the mathematical tools of financial

research fields are effectively utilized, such as optimal usage of water resources (Unami et al.,

2015; Sharifi et al., 2016), optimal management of fishery resources (Yaegashi et al., 2016;
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Yaegashi et al., 2017), and optimaı management of harmful bottom‐attached algae in rivers

(Yoshioka and Yaegashi,  2017a).
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