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1. Introduction

Phalacrocorax carbo (P. carbo; Great Cormorant) is a fish‐eating bird having worldwide
distribution including Japan, Europe and North America (Fukuda et al., 2000; Bzoma et al., 2003;
van Eerden et al, 2012; Doucette et al., 2011) and each individual adult bird eats 500 (g) offishes
per day (Yamamoto, 2008, 2009). Their population in Japan has recently been rapidly increasing,
which leads to the excessive predation from the bird to riverine fishes in the country (Yamamoto,
2008, 2009). To overcome this severe situation, local fishery cooperatives and governments have
empirically taken various countermeasures, such as gun shooting (sharp shooting especially in
Lake Biwa), expulsion by fireworks and guns, and freezing eggs using dry ice (Yamamoto, 2008,
2009). On the other hand, P. carbo is not an alien species at least in Japan. Thus, P. carbo should
not be exterminated in the management policies. Furthermore, they provide ecosystem services,
such as nutrient cycling if it is not excessive as mentioned above (Green and Elmberg, 2014;
Kameda et al., 2006).

Feeding damage from P. carbo to Plecoglossus altivelis (P. altivelis; Ayu), which is one
of the most economically and culturally important inland fishery resources in Japan (Takahashi
et al., 2006), is severe in particular. The fish catch of P. altivelis accounts for 7.3% (2.4\cross 10^{6}
(kg)) in Japanese inland fisheries (Ministry ofAgriculture, Forestry, and Fisheries, 2016) and has
served as their main source of income. For maintaining population of P. altivelis, inland fishery
cooperatives have released the farmed fish in rivers. Hence, we need to establish a sustainable
management policy of the bird population that can effectively suppress the predation from the
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bird to riverine fishes while the bird population should not totally be exterminate.
We approach the above‐mentioned issue from the perspective of mathematical modeıs.

In this paper, a singular stochastic optimal control model (Pham, 2009; Tsujimura and Maeda,
2016) is employed to find a sustainable management policy of the population of P. carbo
(Yaegashi et al.,  2017b , Yaegashi et al.,  2017c ; Yaegashi et al., 2018). A singular stochastic control
model is based on a controlled stochastic differential equation (SDE)  (\emptysetksendal,  2003) with a
performance index to be maximized or minimized by choosin g an appropriate control.  A

threshold‐type optimal policy is derived in the model. Singular stochastic control models have
been studied in detail in finance, economics, insurance, and related research areas (Al Motairi and
Zervos, 2017; Azcue and Muler, 20ı4; Cadenillas and Huamán‐Aguilar, 20ı6; Song and Zhu,
2016). They have been employed for finding simple resource management policies subject to
stochastic dynamics as well(Lungu and  \emptysetksendal, 1997; Alvarez, 1998; Alvarez, 1999). However,
its application to predator population management is stiıl rare to the authors’ knowledge. This
paper therefore focuses on an exploratory approach of a singular stochastic control model to a
predator management problem. Our approach reduces finding a management policy of the bird
population to an exactly‐solvable variational inequality. A threshold‐type, sustainable predator
suppression policy for the bird population is derived from this variational inequality.

The rest ofthis paper is organized as follows. The mathematical model with one variable
is presented in section 2. Section 3 presents the model with two variables and the numericaı
method for the associated variational inequality. Then, a demonstrating computation result is
shown. Section 4 concludes this paper and gives future perspectives of our research.

2. One variable model

In one‐variable model, the dynamics of P. carbo is only considered during an infmite period
(Yaegashi et al.,  2017b ; Yaegashi et al., 2018).

2.1 Stochastic differential equation

The temporal evolution ofthe population  ofP. carbo in a habitat is described by a controlled SDE.
The SDE is a linear stochastic population growth model driven by a multiplicative noise subject
to the population decrease by a countermeasure to the bird. In this paper, the bird population is
treated as a continuous variable assuming that it is sufficiently large. The bird population
dynamics is assumed to follow the Ito’s SDE (  \emptysetksendal, 2003; Pham, 2009)

 M_{l}=X_{t}(\mu dt+\sigma dB_{t})-d\eta_{t} ,  X_{\triangleleft}=x\geq 0 , (ı)

with the conventions   \lim_{s\nearrow t}X_{s}=X_{t-0} for  t>0 and   \lim_{s\nearrow 0}X_{s}=X_{-0} . Here,  X_{t} is the total

number of the bird at the time  t ,  \mu>0 is the deterministic growth rate of the population,
 \sigma>0 is the magnitude of stochastic fluctuation involved in the population dynamics, and  B_{t}
is the 1‐D standard Brownian motion on the complete probability space (Pham, 2009) whose
filtration is right‐continuous and satisfies the usual conditions (Karatzas and Shreve, 2012).
Hereafter, an assumption on the model parameters ofthe SDE (1) (Grigoriu, 2014)

  \mu>\frac{\sigma^{2}}{2} (2)

is employed, which means that the bird population without countermeasures (  \eta_{t}=0 for alı t)

does not become extinct. The variable  \eta_{t} represents the right‐continuous, adapted process
(Pham, 2009) that represents the decrease of the population through a countermeasure such as
gun shooting, which directly reduces the bird population. Formally, the increment  d\eta_{l} is
rewritten as

 d\eta_{p}=u_{\iota}dt (3)
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with a measurable process   u_{l}\in[0,\infty ) that represents the killed population by the
countermeasure per unit time. We assume  \eta_{\lrcorner)}=0 , meaning that  \eta_{l} is identified as the total

bird population that has been killed during the time interval  (0,t) .

2.2 Performance index

The decision‐maker of the present model (a local fishery cooperatives or a local government)
manages the population  ofP. carbo. The performance index is an index that should be maximized
by the decision‐maker through choosing an optimal control  \eta_{t}=\eta_{t}* . The performance index for

an admissible  \eta_{t} is denoted as  v=v(x;\eta) , and is set as

 v(x; \eta)=E[\int_{0}^{\infty}e^{-\delta s}(RX_{S}^{M}-SX_{s}^{m})ds-\int_{0}^{
\infty}e^{-\delta s}d\eta_{s}] (4)

where  E[\cdot] is the expectation conditioned on  X_{-0}=x\geq 0 ,  \delta>0 is the discount rate of the

profit,  S  R  m , and  M are model parameters which satisfy  S,R\geq 0 and
 0<M<1<m\leq 2 . The performance index  v represents the expected net profit ofthe decision‐
maker. The discount rate  \delta represents the attitude ofthe decision‐maker on management ofthe
bird population; larger  \delta means that  he/she performs the suppression from a longer‐term
viewpoint. This is because no sustainable management policy may be obtained with small  \delta.

Hereafter, the conditions for the parameters

  \delta>\mu m+\frac{\sigma^{2}}{2}  m (  m ‐ı) (5)
are assumed, meaning that the decision‐maker manages the bird population from a sufficiently

long‐term, sustainable viewpoint. The term  -SX_{s}^{m} quantifies the loss of the riverine fishes by

the predation from P. carbo per unit time and the term  RX_{S}^{M} represents the ecosystem services

per unit time that P. carbo can provide (Zedler and Kercher, 2005). The terms  SX_{s}^{m}-RX_{S}^{M} is

unimodaı and convex with respect to  X_{s} . When there is no bird population  (X_{s}=0) , neither the
cost nor the profit arises. The second term in the right‐hand side of (4) represents the cost of
taking the countermeasure. The parameters  S and  R are weights on the first and second terms
of the performance index  v , which depend on the attitude of the decision‐maker on the bird
population management.

2.3 Variational inequality

The value function  V(x) is defmed as the maximized performance index  v :

 V(x)= \sup_{\eta}v(x;\eta)=v(x;\eta^{*}) . (6)

Applying the dynamic programming principle (Pham, 2009) leads to the variational inequality

in f  ( EV+Sx^{m}-Rx^{M},\frac{dV}{dx}+1)=0 in  x>0 (7)

with the degenerate elliptic operator

  \mathcal{E}V=\delta V-\mu x\frac{dV}{dx}-\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}
V}{dx^{2}} . (8)

The boundary condition is prescribed as  V=0 at  x=0 . The boundary condition in (7) means
that neither the profit nor the loss arises if there is no bird population  (x=0) . The left part in
“min” operator corresponds to the situation where the countermeasure should not be taken, while
the right part corresponds to the situation where the countermeasure shouıd immediately be taken.
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2.4 Exact solution

An exact solution to the variational inequality (7) can be found in this case, which is the value
function defined in (6) and it is a classical solution. With the assumption (5), an application of
an analytical technique following Chapter 4.5 of Pham (2009) gives the unique solution

 V(x)=\{\begin{array}{ll}
ax^{k}+Ax^{m}+Bx^{M}   (0<x\leq\overline{x})
b-x   (x>\overline{x})
\end{array} (9)

with

 k= \frac{1}{2}(1-\frac{2\mu}{\sigma^{2}}+\sqrt{(\frac{2\mu}{\sigma^{2}}-1)^{2}+
\frac{8\delta}{\sigma^{2}}})(>m) (10)

and

 A= \frac{-S}{\delta-\mu m-\frac{\sigma^{2}}{2}m(m-1)}<0, B=\frac{R}{\delta-\mu 
M-\frac{\sigma^{2}}{2}M(M-1)}>0 . (11)

Here  a ,  b , and  \overline{x} are the unknowns that solve the flowing system of nonlinear equations

 \{\begin{array}{l}
a\overline{x}^{k}+A\overline{x}^{m}+x^{M}=b-\overline{x}
ka\overline{x}^{k-1}+mA\overline{x}^{m-1}+MF\overline{x}^{M-1}=-1
k (k-{\imath}) a\overline{x}^{k-2}+m(m-1)A\overline{x}^{m-2}+M(M-1)F\overline{x}
^{M-2}=0
\end{array} (12)

and  \overline{x} is the threshold for suppression. Combining the second and third equations of (12) leads
to the goveming algebraic equation of  \overline{x} as

  \overline{x}^{m-1}=\frac{-[Jw_{\overline{X}^{M-1}}(k-M)+k-1]}{mA(k-m)} . (13)

By the classical intermediate value theorem, Eq.(13) has a unique solution such that  0<\overline{x}<\infty.

The other unknowns  a and  b are obtained from the first and second equations of (12) with

determined T. Note that the solution (9) is a classical solution:   V\in C^{2}(0,\infty)\cap C[0,\infty). The
solution (9) indicates that the countermeasure should be taken only when the bird population
 X_{t} is about to exceed the threshold  \overline{x} : otherwise, the countermeasure should not be taken.

3. Two variable model

In two‐variable model, the population dynamics of P. carbo and P. altivelis are simultaneously
considered during a finite period (Yaegashi et al.,  2017c).

3.1 Stochastic differential equations

A predator‐prey dynamics between P. carbo and P. altivelis during a finite period, spring to the
coming autumn in a year, is considered. The dynamics  ofP. carbo is renewable while that of  P.

altivelis is not. The time is denoted as  t\in[0,T) with the terminal time  T , which is the time
when all the P. altivelis die. The dynamics of P. altivelis consist of its total population  N_{t} and

the weight  W_{t} , and are assumed to be deterministic. The goveming equations of  N_{l} and  W_{l}
for  t\underline{〉}0 are described as

 M_{t}=-(D+M_{l}+\chi_{\tau\geq t}c)N_{t}dt (14)
and
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  dW_{t}=r(1-\frac{W_{t}}{K})W_{t}dt (15)

where  D is the mortality rate of P. altivelis,  a is a positive constant that modulates the
predation pressure from P. carbo to P. altivelis,  \tau is the opening time of harvesting P. altivelis,

 \chi_{r\geq t} is the indicator function such that  \chi_{\tau\geq t}=1 for   t\geq\tau and  \chi_{\tau\geq l}=0 otherwise,  c is the
harvesting pressure by human,  r is the intrinsic growth rate of P. altivelis, and  K is the
maximum body weight of P. altivelis. In the two‐variable model, the population dynamics of  P.

carbo for  t\geq 0 is described by the following Itô’s SDE

 M_{l}=X_{t}(\mu dt+\sigma dB_{t}-d\eta_{t}) (ı6)

where  \eta_{l} represents decrease ofthe growth rate ofthe bird by an indirect countermeasure.

3.2 Performance index

The performance index in two‐variable model is set as

 v(t,x,n; \eta)=E[\alpha\int_{t}^{T}e^{-\delta s}(RX_{S}^{M}-SX_{s}^{m})N_{t}ds+
\beta\int_{\tau}^{T}e^{-\delta s}cN_{l}W_{l}ds-\gamma\int_{t}^{T}e^{-\delta s}
d\eta_{s}] (ı7)

where  E[\cdot] is the expectation conditioned on  X_{-0}=x\geq 0 and  N_{\triangleleft}=N_{0}=n\geq 0 , and  \alpha>0,

 \beta>0 and  \gamma>0 are weight constants. Without loss of generality,  \gamma=1 is assumed.

3.3 Variational inequality

The value function  V(x) is defmed as the maximized performance index  v :

 V(t,x,n)= \sup_{\eta}v(t,x,n;\eta)=v(t,x,n;\eta^{*}) . (ı8)

By applying the dynamic programming principle (Pham, 2009) leads to the variational inequality,

in   f\{PV+\alpha(Sx^{m}-Rx^{M})n-\chi_{\tau\geq t}\beta cnW_{t}, x\frac{\partial 
V}{\partial x}+1\}=0 in  [0,T)\cross\Omega (19)

with the degenerate parabolic operator

  rv=-\frac{\partial V}{\partial t}+\delta V-\mu x\frac{\partial V}
{\partial\kappa}-\frac{\sigma^{2}x^{2}\partial^{2}V}{2\partial\kappa^{2}}+(D+ox+
\chi_{\tau\geq}c)n\frac{\partial V}{\partial n} (20)

where the domain  \Omega of  (x,n) is defined as  (0,+\infty)\cross(0,+\infty) . The terminal condition  V=0

is prescribed at  t=T and the boundary condition  V=0 along  x=0 and  n=0 . The
boundary conditions mean that there is no profit and loss when there is no P. altivelis or no  P.

carbo (  x=0 or  n=0 ). It is expected that there exists the free boundary  C fulfilling the

following requirement uniquely exists; at each time  t\in[0,T) , the domain  \Omega is divided as
 \Omega=\Omega_{L}\cup\Omega_{R}\cup C with  \Omega_{L}\cap\Omega_{R}=\emptyset where  \Omega_{L} and  \Omega_{R} are sub‐domains defined as

  \Omega_{L}=\{(x,n)PV+\alpha(Sx^{m}-Rx^{M})n-\chi_{\tau\geq t}\beta cnW_{t}=0, 
x\frac{\partial V}{\partial x}+1>0\} (21)

and

  \Omega_{R}=\{(x,n)PV+\alpha(Sx^{m}-Rx^{M})n-\chi_{\tau\geq t}\beta cnW_{t}>0, 
x\frac{\partial V}{\partial x}+1=0\} . (22)

In the sub‐domain  \Omega_{L} the countermeasure should not be performed, while it should immediately
be performed in the sub‐domain  \Omega_{R}.

3.4 Numerical method
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The domain  \Omega is divided into the 1‐D domains  x\in(0,L) and  n\in(0,N_{0}) with a large

truncated parameter  L>0 and the number of the initial population of P. altivelis  N_{0} for the
sake of numerical computation. For numerically solving the variational inequality (19),  a

conventional penalty method and the three‐stage operator‐splitting technique (Glowinski et al.,
2016) are adopted as

‐   \frac{\partial V}{\partial t}+\delta V-\mu x\frac{\partial V}{\partial x}-
\frac{\sigma^{2}x^{2}\partial^{2}V}{2\partial x^{2}}+\alpha(Sx^{m}-Rx^{M})n+
\lambda\min(0,x\frac{\partial V}{\partial x}+1)=0 (23)

in  (t,x)\in(0,T)\cross(0,L) and

‐   \frac{\partial V}{\partial t}+(D+ax+\chi_{\tau\geq t}c)n\frac{\partial V}
{\partial n}-\chi_{\tau\geq t}\beta cnW_{t}=0 (24)

in  (t,n)\in(0,T)\cross(0,N_{0}) . Here,  \lambda is the penalty parameter, which should be taken as a large

number. Each time step is marched as the following process: Eq.(24) is integrated with the half
increment  \Delta tl2 , then Eq.(23) is integrated with the increment  \Delta t , and finally Eq.(24) is again
integrated with the half increment  \Delta tl2 . A fully implicit discretization is employed at each stage
for both Eqs.(23) and (24). The Petrov‐Galerkin finite element scheme (Yoshioka et al., 2014) is
adopted for spatial discretization of Eq.(23) except for the penalty term. The conventional first
order upwind difference method is used for the penalty term in (23) and is also applied to the
spatial discretization of (24). For the numerical computation, the boundary conditions are

supplemented as  x \frac{\partial V}{\partial x}+1=0 along  x=L . No boundary condition is unnecessary along

 n=N_{0} considering the characteristics of the first equation of (14). Note that the scheme has
preliminary been applied to an exactly solvable, simpler variational inequality for its accuracy
verification.

3.5 Results

The 1‐D domains  (0,L) and  (0,N_{0}) are discretized into 250 elements. The time increment for

temporal integration is set as  \Delta t=0.01 . The parameter values are estimated based on the
previous research (Yaegashi et al.,  2017a, Yaegashi et al.,  2017b) and are set as  D=3.9\cross 10^{-3}

 (1/day) ,  a=1.0\cross 10^{-2}  (1/day) ,  c=1.0\cross{\imath} 0^{-2}  (1/day) ,  N_{0}=1.0\cross 10^{6}  (-) ,  r=3.7\cross 10^{-2}

 (1/day) ,  K=6.5\cross{\imath} 0^{-2} (kg),  W_{0}=4.0\cross{\imath} 0^{-3} (kg),  \mu= 4.7  \cross ı0‐4  (1/day) ,  \sigma=4.0\cross 10^{-4}

 (1/day^{1/2}) ,  S=2.0  (-) ,  R=1.0\cross{\imath} 0^{-{\imath} 0}  (-) ,  m=4.0  (-) ,  M=0.5  (-) ,  T=180 (day) and
 L={\imath}.0\cross 10^{4}  (-) . The decision‐maker‐dependent parameters are  \delta=1.0\cross 10^{-9}  (1/day),
 \alpha=1.0\cross{\imath} 0^{-2}  (-) and  \beta=1.0\cross 10^{-7} (ı/kg). Figure 1 shows the sub‐domains  \Omega_{L} and  \Omega_{R}
and the profiles ofthe free boundary at  t=30 (day); green,  t=60 (day); blue,  t=178 (day);
pink, and  t=179 (day); red. Figure 1 indicates that the free boundary  C depends on both the
predator population  x and the fish population  n. In addition, the assumption on the existence
ofthe free boundary is satisfied; the domain  \Omega is indeed divided into the sub‐domains  \Omega_{L} and

 \Omega_{R} . For large  x , performing the countermeasure is optimal  (\Omega_{L}) , while for small  x not

performing the countermeasure is optimal  (\Omega_{R}) . The profiles of the free boundary  C implies
that the threshold  \overline{x} should be decreased as the number of remaining fish  n increases for all
 t against this model parameters. The free boundary  C seems not to move between  t=0

(day) and  \tau=60 (day), the opening time of harvesting P. altivelis; green line. Then, the free
boundary suddenly moves downwardjust after  \tau , and after  \tau the free boundary  C seems not
to move until  t=176 (day); blue line. After  t=176 (day), the free boundary finally begins to
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move upward around the terminal time; pink line and red line.

 N_{0}

 n \Omega_{R}

 \Omega_{L}

 0_{0} Ll2
 X

Figure 1. The sub‐domains  \Omega_{L} and  \Omega_{R} and the profiles ofthe free boundary at  t=30

(day); green,  t=60 (day); blue,  t=178 (day); pink, and  t=179 (day); red.

4. Conclusions and future plans

This paper proposed singular stochastic control models for a sustainable population management
policy  ofP. carbo. In addition, the numerical method for the associated variational inequality was
also presented.

Future research topics are summarized as follows.

1) To estimate the model parameters (especially the ecosystem services)
2) To extend the one‐variable model to a seasonaly‐dependent counterpart
3) To compare the extended one‐variable model and the two‐variable model (especially

profiles of the free boundary)
4) To extend the population dynamics  ofP. carbo to Verhulst model
5) To extend the model parameters in Verhulst model to time‐dependent (  \mu and  \sigma )
6) To incorporate an age structure into the population dynamics  ofP. carbo
7) To validate the current threshold in Lake Biwa  (\overline{x}=4,000)
8) To validate the feasibility of a singular controı
9) To construct a model with based on an impulse control (Tsujimura and Maeda, 2016)
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