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Abstract

This paper deals with valuing defaultable and non‐callable convertible bonds (CBs) with
continuous coupon payments. The setup is the Black‐Scholes‐Merton framework where the

underlying firm value evolves according to a geometric Brownian motion. The valuation of

CBs can be formulated as an optimal stopping problem, due to the possibility of voluntary
conversion prior to maturity. We focus on the notion of premium decomposition, which

separates the CB value into the associated European CB value and an early conversion

premium. By the Laplace‐Carson transform (LCT) approach combined with the premium
decomposition, we obtain closed‐form LCT solutions for the CB value and the early con‐
version boundary. They have much simpler expressions than plain LCT solutions without

using the premium decomposition. By virtue of the simplicity, we can easily characterize
asymptotic properties of the early conversion boundary close or at infinite time to expiry.

1 The PDE Approach

1.1 Assumptions

Following the framework of Merton (1974) and Ingersoll (1977), we consider a CB issued by a
firm in frictionless markets, assuming that the CB is the only senior debt in the firm’s capital
structure except for common stock. Hence, a default would occur when the firm value falls below

the total redemption value of the CBs. Let V_{t} denote the firm value per bond at time  t(\geq 0) .
Assume that  (V_{t})_{t\geq 0} is a diffusion process with the Black‐Scholes‐Merton dynamics

 dV_{t}=(r-\delta)V_{t}dt+\sigma V_{t}dW_{t}, t\geq 0 (1)

where  r>0 is the risk‐free rate of interest,  \delta>0 is the instantaneous rate of the cash payments

by the firm to either its shareholders or liabilities‐holders (e.g., dividends or interest payments),
and  \sigma>0 is the volatility coefficient of the firm value, all of which are assumed to be constants.

Suppose an economy with finite time period  [0, T] , a complete probability space  (\Omega, \mathcal{F}, \mathbb{P}) , and
a filtration  \Gamma\equiv(\mathcal{F}_{t})_{t\in[0,T]}.  W\equiv(W_{t})_{t\in[0,T]} is a one‐dimensional standard Brownian motion

process defined on  (\Omega, \mathcal{F}) and takes values in  \mathbb{R} . The filtration  \Gamma is the natural filtration

generated by  W and  \mathcal{F}_{T}=\mathbb{F} . The firm value process defined in (1) is represented under the
equivalent martingale measure  \mathbb{P} , which implies that the firm value has mean rate of return  r,

and the conditional expectation  \mathbb{E}_{t}[\cdot]\equiv E[\cdot|\mathcal{F}_{t}] is calculated under the measure  \mathbb{P}.

 *

This is an early draft of my paper Kimura (2018) in preparation. All of the proofs of Lemmas/Theorems and
computational results are omitted here.
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Figure 1: CB payoff at maturity as a function of  V_{T}.

Consider a defaultable CB with maturity date  T and face value  F . The CB holders receive

coupon payments continuously at rate  q>0 per unit face value, which means that the holder

receives an amount  qFdt in time dt per bond. For simplicity, we focus on CBs with no call

provision and defaultable only at maturity. Assume that there are  \ell outstanding CBs of this
firm in markets, and each CB is convertible into  n shares. The holders who choose to convert

their CBs into shares will dilute current shareholders’ ownership. If there are  m shares of

common stock outstanding, the conversion value is given by  \gamma V_{t} , where  \gamma is defined by

  \gamma=\frac{n}{m+\ell n} , (2)

for which  \gamma\ell(<1) is called the dilution factor, indicating the fraction of the common stock held
by the CB holders.

1.2 PDE for the CB value

Let  B(t, V_{t}) denote the CB value at time  t\in[0, T). From the assumptions on the capital
structure and the default time, we see that there are three possible payoffs at maturity: CB

holders receive either the conversion value  \gamma V_{T} if it exceeds the face value  F , the face value  F

if it exceeds the conversion value  \gamma V_{T} , or the proportional firm value   V_{T}/\ell if the firm value is

less than the par value of outstanding CBs, i.e.,

 B(T, V_{T})= \max(\gamma V_{T}, \min(\frac{1}{\ell}V_{T}, F))
 = \frac{1}{\ell}V_{T}1_{\{V_{T}\leq F\ell\}}+F1_{\{F\ell<V_{T}\leq\frac{F}
{\gamma}\}}+\gamma V_{T}1_{\{V_{T}>\frac{F}{\gamma}\}}
 = \frac{1}{\ell}V_{T}-\frac{1}{\ell}(V_{T}-F\ell)^{+}+\gamma(V_{T}-\frac{F}
{\gamma})^{+} (3)

where  (x)^{+} \equiv\max(x, 0) for  x\in \mathbb{R} . Figure 1 illustrates the payoff value  B(T, V_{T}) at maturity as
a function of the firm value  V_{T} . Let  p(V_{t}) be a virtual payoff if the conversion occurs at time  t,

which is defined by

 p(V_{t})= \frac{1}{\ell}V_{t}-\frac{1}{\ell}(V_{t}-F\ell)^{+}+\gamma(V_{t}-
\frac{F}{\gamma})^{+} 0\leq t\leq T . (4)
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Then, from the theory of arbitrage pricing, the fair CB value at time  t is given by solving the
optimal stopping problem

 B(t, V_{t})= ess\sup_{\tau_{c}\in[t,T]}\mathbb{E}_{t}[e^{-r(\tau_{c}-t)}
p(V_{\tau_{c}})+\frac{qF}{r}(1-e^{-r(\tau_{c}-t)})], 0\leq t\leq T , (5)

where  \tau_{c} is a stopping time of the filtration  (\mathcal{F}_{t})_{t\in[0,T]} , and the term  L_{\frac{F}{r}}(1-e^{-r(\tau_{c}-t)}) is the NPV

of the coupon payment stream at time  t prior to conversion. The random variable  \tau_{c}^{*}\in[t, T] is

called the optimal conversion time if it gives the supremum value of the right‐hand side of (5).
Let  \mathcal{D}=[0, T]\cross \mathbb{R}+\cdot Solving the optimal stopping problem (5) is equivalent to finding the

points  (t, V_{t}) in  \mathcal{D} for which early conversion is optimal. Let  \mathcal{E} and  C denote the early conversion

region and continuation region, respectively. The early conversion region  \mathcal{E} is defined by

 \mathcal{E}=\{(t, V_{t})\in \mathcal{D}|B(t, V_{t})=p(V_{t})\}.

No doubt, the continuation region  C is the complement of  \mathcal{E} in  \mathcal{D} . The boundary that separates
 \mathcal{E} from  C is referred to as the early conversion boundary (ECB), which is defined by

 V_{c}(t)= \inf\{V_{t}\in \mathbb{R}_{+}|B(t, V_{t})=p(V_{t})\} , 0\leq t\leq T.

For simplicity, let  V\equiv V_{t} . In much the same way as in the valuation of American op‐

tions, the value  B(t, V) and the ECB  V_{c}(t) can be jointly obtained by solving a free boundary
problem (Brennan and Schwartz, 1977). From the standard argument of constructing a hedged
portfolio consisting of one option and an amount −   \frac{\partial B}{\partial V} of the underlying asset, we see that the

CB value  B(t, V) satisfies an inhomogeneous partial differential equation (PDE)

  \frac{\partial B}{\partial t}+\frac{1}{2}\sigma^{2}V^{2}\frac{\partial^{2}B}
{\partial V^{2}}+(r-\delta)V\frac{\partial B}{\partial V}-rB=-qF, V<V_{c}(t) , (6)

together with boundary conditions

  \lim_{V\downarrow 0}B(t, V)=Q_{t}
  \lim B(t, V)=\gamma V_{c}(t)

 V\uparrow V_{c}(t) (7)

  \lim_{V\uparrow V_{c}(t)}\frac{\partial B}{\partial V}=\gamma,
and a terminal condition

 B(T, V)=p(V) , (8)

where the boundary value at the origin  V=0 is defined by

 Q_{t}= \frac{qF}{r}(1-e^{-r(T-t)}) , 0\leq t\leq T, (9)

which is the NPV of the future coupon payment stream at time  t prior to maturity. The second
condition in (7) is often called the value‐matching condition, while the third one is called the
smooth‐pasting condition.
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1.3 The plain Laplace‐Carson transform method

With the change of variables  \tau=T-t , let

 \overline{B}(\tau, V)=B(T-\tau, V)=B(t, V) and  \overline{V}_{c}(\tau)=V_{c}(T-\tau)=V_{c}(t) ,  \tau\geq 0.

For  \lambda\in \mathbb{C}({\rm Re}(\lambda)>0) , define the LCT of these time‐reversed functions with respect to  \tau as

  B^{*}( \lambda, V)=\mathcal{L}C[\overline{B}(\tau, V)](\lambda)\equiv\int_{0}^
{\infty}\lambda e^{-\lambda\tau}\overline{B}(\tau, V)d\tau
and

 V_{c}^{*}( \lambda)=\mathcal{L}\mathcal{C}[\overline{V}_{c}(\tau)](\lambda)
\equiv\int_{0}^{\infty}\lambda e^{-\lambda\tau}\overline{V}_{c}(\tau)d\tau.
Obviously, there is no essential difference between the LCT and the Laplace transform (LT),
i.e.,

  \mathcal{L}[\overline{B}(\tau, V)](\lambda)\equiv\int_{0}^{\infty}e^{-
\lambda\tau}\overline{B}(\tau, V)d\tau=\frac{B^{*}(\lambda,V)}{\lambda}, {\rm 
Re}(\lambda)>0.
This relation implies that the LCT can be inverted by using previously established methods for

inverting LTs; see Abate and Whitt (1992). Also, for a constant  A , the LCT is an identity map,
i.e.,  \mathcal{L}C[A](\lambda)=A , whereas  \mathcal{L}[A](\lambda)=A/\lambda . This invariant property of the LCT is effective to
generate much simpler valuation formulas than the LT.

Remark 1. In the context of option pricing, LCTs have been first adopted in the randomization

of Carr (1998) for valuing an American vanilla put option, of which maturity  T is assumed to be
exponentially distributed random variable with mean  E[T]=1/\lambda . The idea of randomization

gives us another interpretation that the LCT  B^{*}(\lambda, V) can be regarded as an exponentially

weighted sum (integral) of the time‐reversed value  \overline{B}(\tau, V) for (infinitely many) different values
of the maturity  T\in \mathbb{R}+ , and hence for  \tau\in \mathbb{R}_{+} , which makes LCTs be well defined. From the

viewpoint of Carr’s randomization, we assume  \lambda is a positive real number.

From the PDE (6) with the conditions (7) and (8), we see that the LCT  B^{*}(\lambda, V) satisfies
the ordinary differential equation (ODE)

  \frac{1}{2}\sigma^{2}V^{2}\frac{d^{2}B^{*}}{dV^{2}}+(r-\delta)V\frac{dB^{*}}
{dV}-(\lambda+r)B^{*}+\lambda p(V)+qF=0, V<V_{C}^{*} , (10)

together with the boundary conditions

  \lim_{V\downarrow 0}B^{*}(\lambda, V)=\frac{qF}{\lambda+r}
  \lim_{V\uparrow V_{c}^{*}}B^{*}(\lambda, V)=\gamma V_{c}^{*} (11)

  \lim_{V\uparrow V_{c}^{*}}\frac{dB^{*}}{dV}=\gamma,
where we used

  \mathcal{L}C[\overline{Q}_{\tau}](\lambda)=\frac{qF}{\lambda+r} with   \overline{Q}_{\tau}=Q_{T-\tau}=\frac{qF}{r}(1-e^{-r\tau}) .
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For a given  V_{c}^{*} , it is straightforward but cumbersome to solve (10) with the boundary conditions
(11) and the continuity conditions of  B^{*}(\lambda, V) and its first derivatives at  V=F\ell,   V=F/\gamma and

 V=V_{c}^{*} . By this plain LCT approach, we obtain

 B^{*}(\lambda, V)=\{\begin{array}{ll}
A_{1}V^{\theta_{1}}+\frac{1}{\ell}\frac{\lambda V}{\lambda+\delta}+\frac{qF}
{\lambda+r},   V\leq F\ell
 A_{2}V^{\theta_{1}}+A_{3}V^{\theta_{2}}+\frac{(\lambda+q)F}{\lambda+r},   
F\ell<V\leq\frac{F}{\gamma}
A_{4}V^{\theta_{1}}+A_{5}V^{\theta_{2}}+\gamma\frac{\lambda V}{\lambda+\delta}+
\frac{qF}{\lambda+r},   \frac{F}{\gamma}<V<V_{c}^{*}
\gamma V,   V\geq V_{c}^{*},
\end{array} (12)

where  A_{i}(i=1, \ldots, 5) are constants given by

 A_{1}= \frac{\lambda(\lambda+r+(\delta-r)\theta_{2})(\gamma^{\theta_{1}}-\ell^{
-\theta_{1}})F^{1-\theta_{{\imath}}}}{(\theta_{1}-\theta_{2})(\lambda+\delta)
(\lambda+r)}
 - \frac{\theta_{2}\lambda(\lambda+r+(\delta-r)\theta_{1})(\gamma^{\theta_{2}}-
\ell^{-\theta_{{\imath}}})F^{1-\theta_{2}}}{\theta_{1}(\theta_{1}-\theta_{2})
(\lambda+\delta)(\lambda+r)}(V_{c}^{*})^{\theta_{2}-\theta_{1}}+
\frac{\delta\gamma}{\theta_{1}(\lambda+\delta)}(V_{c}^{*})^{1-\theta_{1}},

 A_{2}= \frac{\lambda(\lambda+r+(\delta-r)\theta_{2})\gamma^{\theta_{1}}F^{1-
\theta_{{\imath}}}}{(\theta_{1}-\theta_{2})(\lambda+\delta)(\lambda+r)}
 - \frac{\theta_{2}\lambda(\lambda+r+(\delta-r)\theta_{1})(\gamma^{\theta_{2}}-
\ell^{-\theta_{2}})F^{1-\theta_{2}}}{\theta_{1}(\theta_{1}-\theta_{2})(\lambda+
\delta)(\lambda+r)}(V_{c}^{*})^{\theta_{2}-\theta_{1}}+\frac{\delta\gamma}
{\theta_{1}(\lambda+\delta)}(V_{c}^{*})^{1-\theta_{1}},

 A_{3}=- \frac{\lambda(\lambda+r+(\delta-r)\theta_{1})\ell^{-\theta_{2}}F^{1-
\theta_{2}}}{(\theta_{1}-\theta_{2})(\lambda+\delta)(\lambda+r)},
 A_{4}=- \frac{\theta_{2}\lambda(\lambda+r+(\delta-r)\theta_{1})(\gamma^{\theta_
{2}}-p^{-\theta_{2}})F^{1-\theta_{2}}}{\theta_{1}(\theta_{{\imath}}-\theta_{2})(
\lambda+\delta)(\lambda+r)}(V_{c}^{*})^{\theta_{2}-\theta_{1}}+
\frac{\delta\gamma}{\theta_{1}(\lambda+\delta)}(V_{c}^{*})^{1-\theta_{1}},
 A_{5}= \frac{\lambda(\lambda+r+(\delta-r)\theta_{1})(\gamma^{\theta_{2}}-\ell^{
-\theta_{2}})F^{1-\theta_{2}}}{(\theta_{1}-\theta_{2})(\lambda+\delta)(\lambda+
r)} ;

see Appendix A for a more unified and simpler expression of these coefficients. The parameters
 \theta_{1}\equiv\theta_{1}(\lambda)>1 and  \theta_{2}\equiv\theta_{2}(\lambda)<0 are two real roots of the quadratic equation

  \frac{1}{2}\sigma^{2}\theta^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\theta-
(\lambda+r)=0 . (13)

i.e., for  i=1,2,

  \theta_{i}(\lambda)=\frac{1}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})-(-
1)^{i}\sqrt{(r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+r)}\} . (14)

From the value‐matching condition in (11), we see that  V_{c}^{*} satisfies the nonlinear functional
equation

  \frac{\lambda(\lambda+r+\theta_{1}(\delta-r))(1-(\gamma\ell)^{-\theta_{2}})}
{\theta_{1}(\lambda+\delta)(\lambda+r)}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}
+\frac{(1-\theta_{1})\delta}{\theta_{1}(\lambda+\delta)}\frac{\gamma V_{c}^{*}}
{F}+\frac{q}{\lambda+r}=0 . (15)

Note that the existence and uniqueness of the root of (15) will be proved in Section 3; see
Theorem 3.
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2 Premium‐Decomposition Refinement

From the complex solutions (12) and (15), it is really hard to have any prospect of further
analysis. To refine these solutions, we will use the notion of premium decomposition: For the

CB value  B(t, V) , we can decompose it into two parts, i.e.,

 B(t, V)=b(t, V)+\pi(t, V) , 0\leq t\leq T , (16)

where  b(t, V) is the value of the European CB associated with the target American CB, and

 \pi(t, V) is the premium for early conversion. Clearly,  B(t, V) and  b(t, V) satisfy the common

inhomogeneous PDE (6) and they have the same terminal value at  t=T , i.e.,

 b(T, V)=B(T, V)=p(V) , (17)

which is an important key of our refinement; see Remark 3 below for checking  \pi(T, V)=0.
Furthermore, the European CB value also can be decomposed as

 b(t, V)=b_{0}(t, V)+Q_{t}, 0\leq t\leq T , (18)

where  b_{0}(t, V) is the corresponding zero‐coupon European CB value and  Q_{t} is given in (9).
Because of  QT=0,  b_{0}(t, V) have the same terminal value  p(V) as  B(t, V) in (17). Hence,
applying the risk‐neutral valuation method to  b_{0}(t, V) , we obtain

 b_{0}(t, V)=\mathbb{E}_{t}[e^{-r(T-t)}p(V)]

 = \frac{1}{\ell}\mathbb{E}_{t}[e^{-r(T-t)}V]-\frac{1}{\ell}E_{t}[e^{-r(T-t)}(V-
F\ell)^{+}]+\gamma E_{t}[e^{-r(T-t)}(V-\frac{F}{\gamma})^{+}]
 = \frac{1}{\ell}c(t, V;0)-\frac{1}{\ell}c(t, V;F\ell)+\gamma c(t, V;F/\gamma) , (19)

where  c(t, V;K) denotes the value of a European vanilla call option with maturity  T and strike

price  K  (K=0, Fl, F/\gamma) . The European call value  c(t, V;K) has been well known as the

Black‐Scholes formula, which is given by

 c(t, V;K)=Ve^{-\delta(T-t)}\Phi(d_{+}(V, K, T-t))-Ke^{-r(T-t)}\Phi(d_{-}(V, K, 
T-t)) , (20)

where  \Phi(\cdot) is the standard normal cumulative distribution function defined by

  \Phi(x)=\int_{-\infty}^{x}\phi(y)dy with   \phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}  x\in \mathbb{R},

and

 d_{\pm}(x, y,  \tau)=\frac{\log(x/y)+(r-\delta\pm\frac{1}{2}\sigma^{2})\tau}
{\sigma\sqrt{\tau}}.
Clearly,  c(t, V;0)=Ve^{-\delta(T-t)} . With the change of variables  \tau=T-t , let  \tilde{c}(\tau, V;K)=

 c(T-\tau, V;K)=c(t, V;K) and  \tilde{b}_{0}(\tau, V)=b_{0}(T-\tau, V)=b_{0}(t, V) . For  \lambda>0 , define the LCTs

 c^{*}(\lambda, V;K)=\mathcal{L}C[\tilde{c}(\tau, V;K)](\lambda) and  b_{0}^{*}(\lambda, V)=\mathcal{L}C[\tilde{b}_{0}(\tau, V)](\lambda) . Then, from (19), the LCT

 b_{0}^{*}(\lambda, V) can be represented as

 b_{0}^{*}( \lambda, V)=\frac{1}{\ell}\frac{\lambda V}{\lambda+\delta}-\frac{1}{
\ell}c^{*}(\lambda, V;F\ell)+\gamma c^{*}(\lambda, V;F/\gamma) . (21)

In order to carry out a further analysis, we need the following lemmas:
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Lemma 1.

 \{\begin{array}{l}
\lambda+r=-\frac{1}{2}\sigma^{2}\theta_{1}\theta_{2},
\lambda+\delta=-\frac{1}{2}\sigma^{2}(\theta_{1}-1)(\theta_{2}-1) ,
\lambda+r+\theta_{i}(\delta-r)=\frac{{\imath}}{2}\sigma^{2}\theta_{\dot{i}}
(\theta_{i}-1) , i=1,2.
\end{array}
Lemma 2.

 c^{*}(\lambda, V;K)=\{\begin{array}{ll}
\xi_{1}(V) ,   V<K
\xi_{2}(V)+\frac{\lambda V}{\lambda+\delta}-\frac{\lambda K}{\lambda+r},   V\geq
K,
\end{array}
where for  i=1,2,

  \xi_{i}(V)\equiv\xi_{i}(V;K)=\frac{2}{\sigma^{2}}\theta_{i}(\theta_{i}-1)
(\theta_{1}-\theta_{2})\lambda K(\frac{V}{K})^{\theta_{\iota}}
For ease of exposition, for  i=1,2 , we write

 \eta_{i}\equiv\eta_{i}(V)=\xi_{i}(V;F\ell) and  \zeta_{i}\equiv\zeta_{i}(V)=\xi_{i}(V;F/\gamma) .

Then, from (21) and Lemma 2, we obtain

 b_{0}^{*}(\lambda, V)=\{\begin{array}{ll}
-\frac{1}{\ell}\eta_{1}(V)+\gamma\zeta_{1}(V)+\frac{1}{\ell}\frac{\lambda V}
{\lambda+\delta},   V\leq FP
-\frac{1}{\ell}\eta_{2}(V)+\gamma\zeta_{1}(V)+\frac{\lambda F}{\lambda+r},   
F\ell<V\leq\frac{F}{\gamma}
-\frac{1}{\ell}\eta_{2}(V)+\gamma\zeta_{2}(V)+\gamma\frac{\lambda V}{\lambda+
\delta},   V>\frac{F}{\gamma}.
\end{array} (22)

As we saw in Section 2, the LCT  B^{*}(\lambda, V) satisfies the boundary conditions in (11), from
which the corresponding boundary conditions for the LCT  \pi^{*}(\lambda, V)=\mathcal{L}C[\tilde{\pi}(\tau, V)](\lambda) for  \tilde{\pi}(\tau, V)=
 \pi(T-\tau, V)=\pi(t, V) can be written as

  \lim_{V\downarrow 0}\pi^{*}(\lambda, V)=0

  \lim_{V\uparrow V_{c}^{*}}\pi^{*}(\lambda, V)=\gamma V_{c}^{*}-(b_{0}^{*}
(\lambda, V_{c}^{*})+\frac{qF}{\lambda+r}) (23)

  \lim_{V\uparrow V_{c}^{*}}\frac{d\pi^{*}}{dV}=\gamma-\frac{db_{0}^{*}}{dV}|_{V
=V_{c}^{*}}
Since both of  B(t, V) and  b(t, V) satisfy the common inhomogeneous PDE (6), their difference
 B(t, V)-b(t, V)=\pi(t, V) satisifies the corresponding homogeneous PDE, which means that
the LCT  \pi^{*}(\lambda, V) satisfies the ODE

  \frac{1}{2}\sigma^{2}V^{2}\frac{d^{2}\pi^{*}}{dV^{2}}+(r-\delta)
V\frac{d\pi^{*}}{dV}-(\lambda+r)\pi^{*}=0, V>0 . (24)

From the first boundary condition   \lim_{V\downarrow 0}\pi^{*}(\lambda, V)=0 , we have

 \pi^{*}(\lambda, V)=A_{0}V^{\theta_{1}}, V\geq 0 , (25)
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where  A_{0} is a constant. Applying the smooth‐pasting condition in (23) to  \pi^{*}(\lambda, V) and using
 b_{0}^{*}(\lambda, V) for   V>F/\gamma , we obtain

 A_{0}= \frac{1}{\theta_{1}}[\frac{\delta\gamma V_{c}^{*}}{\lambda+\delta}+
\theta_{2}\{\frac{1}{\ell}\eta_{2}(V_{c}^{*})-\gamma\zeta_{2}(V_{c}^{*})\}]
(V_{c}^{*})^{-\theta_{1}},
so that for  V<V_{c}^{*}

  \pi^{*}(\lambda, V)=\frac{1}{\theta_{1}}[\frac{\delta\gamma V_{c}^{*}}{\lambda
+\delta}+\theta_{2}\{\frac{1}{\ell}\eta_{2}(V_{c}^{*})-\gamma\zeta_{2}(V_{c}^{*}
)\}](\frac{V}{V_{c}^{*}})^{\theta_{1}}
 = \frac{1}{\theta_{1}}[\frac{\delta\gamma V_{c}^{*}}{\lambda+\delta}+
\frac{\theta_{1}-1}{\theta_{1}-\theta_{2}}\frac{\lambda F}{\lambda+\delta}(1-
(\gamma\ell)^{-\theta_{2}})(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}](\frac{V}
{V_{c}^{*}})^{\theta_{1}} (26)

In addition, from the value‐matching condition in (23), we see that the LCT  V_{c}^{*} satisfies the
functional equation

  \lambda(1-(\gamma\ell)^{-\theta_{2}})(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}
+\theta_{2}\delta\frac{\gamma V_{c}^{*}}{F}+(1-\theta_{2})q=0 , (27)

which enables us to simplify  \pi^{*}(\lambda, V) in (26) down to

  \pi^{*}(\lambda, V)=\frac{1}{\theta_{1}(\lambda+\delta)}[\delta\gamma V_{c}
^{*}+\frac{\theta_{1}-1}{\theta_{1}-\theta_{2}}\lambda F(1-(\gamma\ell)^{-
\theta_{2}})(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}](\frac{V}{V_{c}^{*}})
^{\theta_{1}}
 = \frac{1}{\theta_{1}(\lambda+\delta)}[\delta\gamma V_{c}^{*}+\frac{\theta_{1}-
1}{\theta_{1}-\theta_{2}}\{-\theta_{2}\delta\gamma V_{c}^{*}-(1-\theta_{2})qF\}]
(\frac{V}{V_{c}^{*}})^{\theta_{{\imath}}}
 = \frac{(1-\theta_{2})(\theta_{1}\delta\gamma V_{c}^{*}-(\theta_{1}-1)qF)}
{\theta_{1}(\theta_{1}-\theta_{2})(\lambda+\delta)}(\frac{V}{V_{c}^{*}})
^{\theta_{1}}
 = \frac{2}{\sigma^{2}(\theta_{1}-\theta_{2})}(\frac{\delta\gamma V_{c}^{*}}
{\theta_{1}-1}-\frac{qF}{\theta_{1}})(\frac{V}{V_{c}^{*}})^{\theta_{{\imath}}} (28)

Remark 2. It is easy to check the equivalence between two expressions in (15) and (27) for
 V_{c}^{*}(\lambda) : Using Lemma 1, we have

  \frac{\lambda(\lambda+r+\theta_{1}(\delta-r))(1-(\gamma\ell)^{-\theta_{2}})}
{\theta_{1}(\lambda+\delta)(\lambda+r)}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}
+\frac{(1-\theta_{1})\delta}{\theta_{1}(\lambda+\delta)}\frac{\gamma V_{c}^{*}}
{F}+\frac{q}{\lambda+r}
 = \frac{2}{\sigma^{2}}[\frac{\lambda(1-(\gamma\ell)^{-\theta_{2}})}{\theta_{1}
\theta_{2}(\theta_{2}-1))}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}+
\frac{\delta}{\theta_{1}(\theta_{2}-1)}\frac{\gamma V_{c}^{*}}{F}-\frac{q}
{\theta_{1}\theta_{2}}]
 = \frac{2}{\theta_{1}\theta_{2}(\theta_{2}-1)\sigma^{2}}[\lambda(1-(\gamma\ell)
^{-\theta_{2}})(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}+\theta_{2}
\delta\frac{\gamma V_{c}^{*}}{F}+(1-\theta_{2})q]=0,

and hence the coincidence between the equations (27) and (15) can be checked.

Since the zero‐coupon European CB value  b_{0}(t, V) is explicitly given in (19) and (20), it
would suffice to invert  \pi^{*}(\lambda, V) for obtaining the target CB value  B(t, V) . Hence, we summarize
the results as
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Theorem 1. The value  B(t, V) of the  CB with voluntary conversion prior to maturity and
continuous coupon payments is given by

 B(t, V)=\{\begin{array}{ll}
b_{0}(t, V)+\frac{qF}{r}(1-e^{-r(T-t)})+\mathcal{L}C^{-1}[\pi^{*}(\lambda, V)](T
-t) ,   V<\mathcal{L}C^{-1}[V_{c}^{*}(\lambda)](T-t)
\gamma V,   V\geq \mathcal{L}C^{-1}[V_{c}^{*}(\lambda)](T-t) ,
\end{array}
(29)

where  b_{0}(t, V) is the associated zero‐coupon European  CB value given by

 b_{0}(t, V)= \frac{1}{\ell}Ve^{-\delta(T-t)}-\frac{1}{\ell}c(t, V;F\ell)+\gamma
c(t, V;F/\gamma) ,

 c(t, V;K) is the value of the associated vanilla call option with strike price  K(K=F\ell, F/\gamma)
given by (20), and

  \pi^{*}(\lambda, V)=\frac{2}{\sigma^{2}(\theta_{1}-\theta_{2})}
(\frac{\delta\gamma V_{c}^{*}}{\theta_{1}-1}-\frac{qF}{\theta_{{\imath}}})(\frac
{V}{V_{c}^{*}})^{\theta_{1}} V<V_{C}^{*}.
The LCT  V_{c}^{*}\equiv V_{c}^{*}(\lambda) for the early conversion boundary satisfies the functional equation

  \lambda(1-(\gamma\ell)^{-\theta_{2}})(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}}
+\theta_{2}\delta\frac{\gamma V_{c}^{*}}{F}+(1-\theta_{2})q=0.
Corollary 1.1. If  \delta=0 , then it is not optimal for the  CB holders to convert early before
maturity.

Corollary 1.2 (Kimura (2017)). If  q=0 , then  V_{c}^{*}(\lambda) is explicitly given by

 V_{c}^{*}( \lambda)=\frac{F}{\gamma}[-\frac{\delta\theta_{2}}{A(1-(\gamma^{p})^
{-\theta_{2}})}]^{\frac{1}{\theta_{2}-1}} (30)

Theorem 2. For the time‐reversed early conversion boundary  (\overline{V}_{c}(\tau))_{\tau\geq 0} , we have

  \lim_{\tauarrow 0}\overline{V}_{c}(\tau)=\lim_{tarrow}V_{c}(t)=\max(1, 
\frac{q}{\delta})\frac{F}{\gamma} . (31)

Remark 3. We see from Theorems 1 and 2 that the desired result  \pi(T, V)=0 certainly holds
by virtue of the initial‐value theorem, i.e.,

  \pi(T, V)=\lim_{\tauarrow 0}\tilde{\pi}(\tau, V)=\lim_{\lambdaarrow\infty}\pi^
{*}(\lambda, V)=0,
because  V<V_{c}^{*},   \lim_{\lambdaarrow\infty}\theta_{1}(\lambda)=\infty and   \lim_{\lambdaarrow\infty}\delta\gamma V_{c}^{*}(\lambda)=\max(q, \delta)
F<\infty.

Theorem 3. The functional equation (27) for the LCT  V_{c}^{*} has a unique solution larger than

  \max(1,\delta q)\frac{F}{\gamma}.
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Theorem 4. For the time‐reversed early conversion boundary  (\overline{V}_{c}(\tau))_{\tau\geq 0} , its perpetual value is

given by

  \tauarrow\infty 1\dot{{\imath}}m\overline{V}_{c}(\tau)=Tarrow\infty 
1\dot{{\imath}}mV_{c}(t)=\frac{\theta_{2}^{\circ}-1}{\theta_{2}^{\circ}}
\frac{qF}{\delta\gamma}=\frac{\theta_{1}^{\circ}}{\theta_{1}^{\circ}-1}\frac{qF}
{r\gamma} , (32)

where   \theta_{i}^{o}\equiv\lim_{\lambdaarrow 0}\theta_{i}(\lambda)(i=1,2) .

Corollary 4.1. If  q=0 and   T=+\infty , then it is optimal for the  CB holders to convert quickly
after purchase.
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A A unified expression for  \{A_{i}\} in Equation (12)

By Lemma 1, the coefficients  A_{i}(i=1, \ldots, 5) in (12) can be further simplified in a unified way
as follows:

 A_{1}= \frac{2\gamma(V_{c}^{*})^{1-\theta_{1}}}{\theta_{1}\sigma^{2}}
[\frac{\lambda}{\theta_{1}-\theta_{2}}\{\frac{1-(\gamma\ell)^{-\theta_{1}}}
{\theta_{1}-1}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{1}-1}-\frac{1-(\gamma\ell)^{
-\theta_{2}}}{\theta_{2}-1}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}-1}\}
 - \frac{\delta}{(\theta_{1}-1)(\theta_{2}-1)}],

 A_{2}= \frac{2\gamma(V_{c}^{*})^{1-\theta_{{\imath}}}}{\theta_{1}\sigma^{2}}
[\frac{\lambda}{\theta_{1}-\theta_{2}}\{\frac{1}{\theta_{1}-1}(\frac{\gamma 
V_{c}^{*}}{F})^{\theta_{1}-1}-\frac{1-(\gamma\ell)^{-\theta_{2}}}{\theta_{2}-1}(
\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}-1}\}
 - \frac{\delta}{(\theta_{1}-1)(\theta_{2}-1)}],

 A_{3}=- \frac{2\gamma(V_{c}^{*})^{1-\theta_{2}}}{\theta_{2}\sigma^{2}}
\frac{\lambda(\gamma\ell)^{-\theta_{2}}}{(\theta_{1}-\theta_{2})(\theta_{2}-1)}(
\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}-1}
 A_{4}=- \frac{2\gamma(V_{c}^{*})^{1-\theta_{1}}}{\theta_{1}\sigma^{2}}
[\frac{\lambda(1-(\gamma\ell)^{-\theta_{2}})}{(\theta_{1}-\theta_{2})(\theta_{2}
-1)}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}-1}+\frac{\delta}{(\theta_{1}-1)
(\theta_{2}-1)}],
 A_{5}= \frac{2\gamma(V_{c}^{*})^{1-\theta_{2}}}{\theta_{2}\sigma^{2}}
\frac{\lambda(1-(\gamma\ell)^{-\theta_{2}})}{(\theta_{1}-\theta_{2})(\theta_{2}-
1)}(\frac{\gamma V_{c}^{*}}{F})^{\theta_{2}-1}
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