日本のクレジット市場における信用サイクルの変動要因

野村アセットマネジメント株式会社 廣中 純
Jun Hironaka
Nomura Asset Management Co., Ltd.

1. はじめに

銀行等の金融機関はバーゼル規制の下で、自社が保有する信用リスクのあるポートフォリオ(以下「信用ポートフォリオ」という)について、デフォルト確率、デフォルト時損失(Loss Given Default, LGD)、景気後退期を考慮した LGD および信用 VaR(Value at Risk)等のリスク量を算出する. 2007 年に顕在化したサブプライム問題や 2008 年 9 月のリーマン・ブラザーズの破綻を契機に拡大したグローバルな金融・経済危機における状況を鑑み、金融機関の自己資本比率の安定的な維持を目的に導入されたバーゼルⅢでは、金融機関に対して自己資本の質・量の改善や景気後退期に取り崩しが可能となる追加的な資本の積み増し(資本バッファー)等を要請¹する. こうした新しい規制が金融機関の経営戦略や信用ポートフォリオのリスク量の算出プロセスに及ぼす影響は大きいと考えられる.

しかしながら、金融機関の自己資本比率は経済や金融環境に大きく左右されるため、その水準を安定的に維持することは容易ではない。例えば景気拡大(好況)時においては自己資本比率を高い水準に維持できるため、金融機関は過度にリスクを取ることが可能となる。一方、景気後退(不況)時には、債務者のデフォルト確率やデフォルト時損失が悪化、金融機関のリスクアセットの増加に伴う自己資本比率の低下を通じて、企業や個人に対する貸出等の信用供与が抑制される。その結果、景気の変動をより増幅させる傾向がある点が指摘されている2.

また格付機関は、投資対象の信用リスク判断の基準となる格付方式として、短期的な景気変動に左右されない「スルー・ザ・サイクル(Through-the-Cycle, TTC)格付3」を採用している。これはバーゼルIIIにおける格付の考え方に準拠するものである。

以上により、金融機関はバーゼルIIIへの対応のため、金利・株価等のマクロ要因や、社債市場等の、日本のクレジット市場全体の信用リスクの変動、すなわち、信用サイクル(例:金融機関による信用供与額の拡大・縮小のトレンド)を踏まえた信用ポートフォリオのリスク管理を行なう必要があると考える。

本研究は、上記を踏まえた信用ポートフォリオ管理方法として、Yamanaka et al.(2012)やAzizpour et al.(2017)で示された強度モデルを拡張し、市場で観測可能なファクター「マクロ要因

¹ 主な内容は次の通り. ①自己資本の質・量の改善策としての最低自己資本比率の引き上げ(最低所要普通株等 Tier1 比率および Tier1 比率の最低水準を,各々4.5%,6.0%に引き上げ),②国際的に活動する銀行に対する流動性基準の導入[流動性カバレッジ比率(LCR),安定調達比率(NSFR)]の導入,③レバレッジを抑制するレバレッジ比率の導入,④ストレス時に取り崩しが可能な資本バッファーを好況時に積み立て,⑤ストレス・テストの高度化.

² プロシクリカリティ(景気変動増幅効果)という.

³ スルー・ザ・サイクル格付は、格付の対象となる債務者の直近の決算期の状況ではなく、長期の景気変動の影響を勘案して決定される。そのため、景気の局面に応じて、格付毎のデフォルト確率を変動させる(そのため、ある債務者に付与された格付は景気の局面に関わらず一定)という特徴がある。一方、格付機関の従来の格付手法であるポイント・イン・タイム(Point in Time, PIT)格付は、債務者の直近の決算期の状況を重視して決定される、PIT 格付は、景気の局面に応じて債務者に付与される格付が変動する(景気悪化局面では格下げ、景気改善局面では格上げが付与されやすい)点に特徴がある。

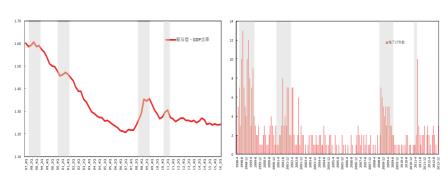
および信用イベント(格付機関による発行体格付の変更:格上げ・格下げ・デフォルト)]のほか,市場で直接観測することができないあるファクター(それを frailty と名付ける)の存在を仮定し,これらを考慮した信用イベントの発生しやすさ(強度)を表すモデルを提案する. また本モデルにより,信用サイクル変動要因の説明を試みる.

具体的には、信用イベントを信用サイクルの代理変数と仮定したうえで、「格上げ・格下げ・デフォルト」の3つの信用イベントの発生しやすさ(強度)を表すモデルを構築し、そのパラメーターを推定する.次に、本モデルを構成するファクター(マクロ要因、frailty および過去の信用イベントの影響)の組み合わせの違いによる、本モデルの説明力の差異に対する検証を行なう。また、信用サイクルの変動要因を探るため、frailty と信用サイクルとの関連性について、1)レジーム・スイッチモデルによる、frailty と信用サイクルのレジーム推移の比較、2)信用サイクルを構成する要素(GDP・総与信)を状態空間モデルで表現した場合における各成分[水準(level)・傾き(slope)]と frailty との間で、グレンジャーの意味での因果性の存在の有無、および3)インパルス応答関数による、信用サイクルの構成要素にショックを与えた場合の frailty の変化の推移、の3点から検証を行なう。

日本のクレジット市場における信用サイクルを示す例として、日本銀行が公表する「総与信・GDP 比率」を挙げることができる⁴. 総与信・GDP 比率は、同行が公表する資金循環統計における企業・家計等向けに対する民間金融機関貸出等の合計値を GDP で除した数値と定義される.

図 1 は、総与信・GDP 比率の推移(左図. 対象期間:1997 年 12 月・2016 年 6 月)、および株式会社格付投資情報センター(R&I)が公表する発行体格付のうち、格下げ件数の推移(右図. 対象期間:1998 年 4 月・2012 年 12 月)を示したものである。また、図中の網掛けは「景気後退期」を表し、同行が公表する景気動向指数のうち Composite Index 値が 3 期以上にわたり連続して下落した期間とした(総与信・GDP 比率が上昇している期間5が「景気後退期」に相当する).

(図 1) 総与信・GDP 比率の推移(左図)および格下げ件数(R&I)の推移(右図)



(出所) 日本銀行「資金循環統計」, 内閣府「国民経済計算」

(出所) Bloomberg

上記の対象期間を通じ、金融機関の総与信額はほぼ一定の水準で推移する一方で、GDP は景気動向により変化するため、これが信用サイクルの変動要因となっている。そのため、金融機関が

⁴ 金融システムレポートにて公開している. なお各国の中央銀行が公表する信用サイクルの定義もほぼ同様である.

⁵ 図 1 の網掛け部分(景気後退期)は,各々,1997年第4 四半期·1998年第3 四半期:アジア通貨危機時,2001年第1 四半期 - 2002年第1 四半期:ネットバブル崩壊時,2008年第2 四半期·2009年第1 四半期:リーマン・ショック時,2011年第1 四半期 - 同年第2 四半期:東日本大震災時を示している.

信用サイクルを勘案したうえで自社ポートフォリオの信用リスク管理を実施することには困難が伴う. また、格下げ件数が増加している期間は景気後退期とほぼ一致していることがわかる.

以上より、日本のクレジット市場全体の信用サイクルは、格付機関による信用イベント(格上げ・格下げ・デフォルト)にて代替し得ると考えられる。⁶

2. 先行研究

過去のデフォルト実績,経済指標等のマクロ要因や frailty をファクターとして,デフォルトの集積(default clustering)要因の説明や信用ポートフォリオの格付推移確率の推定を行なった先行研究を紹介する.

まず Koopman et al.(2009)は、Standard & Poor's による格付推移データおよび格付対象企業のデフォルトデータに基づき、マクロ要因(GDP・マネーサプライ・インフレ率等)と格付推移との関連性を検証し、格付の変更事象、特に格下げとデフォルトに大きく影響するのは潜在変数(latent factor)、すなわち frailty であり、マクロ要因が格付変更に及ぼす影響は限定的であるとの分析結果を示した。

なお Koopman et al.(2009)では、格付推移の強度(ある企業の格付が特定の格付に推移する強度)を比例ハザード過程で表すとともに、AR(1)過程に従う frailty を仮定した.

次に Duffie et al.(2009)は、金融機関を除く米国上場企業のデフォルト発生強度モデルにより、マクロ要因(株価指数・米国債利回り等)や Moody's による過去のデフォルト実績(対象期間:1974年-2004年)等の観測可能なファクターに加え、個別企業間のデフォルトの依存構造に強い影響を及ぼすと考えられる観測不可能な common dynamic latent ファクター、すなわち frailty の存在を検証した.

Duffie et al.(2009)では、個別企業のデフォルト発生強度を比例ハザード過程で表すとともに、frailty は Ornstein-Uhlenbeck(OU)過程に従うとした。これらの仮定に基づき、デフォルト発生強度の尤度関数を最大にするパラメーター・セットを最尤法により推定し、個別企業に共通かつ観測不可能なファクター(frailty)の時系列の推移および条件付きの事後分布の推定を行なった。7

また Yamanaka et al.(2012)は、R&I による日本企業の格付変更データに基づき、日本経済全体の信用イベント(格上げ・格下げ・デフォルト)を表す強度モデルを提案した。なおモデルは自励的(self-exciting)過程に従い、かつ状態依存するものと仮定した8.

更に確率的細分化(random thinning)により、日本経済全体の信用イベントの発生強度を個別ポートフォリオの信用イベント発生強度に割り当てたうえで、個別ポートフォリオの信用 VaR 等のリスク量を推定した。

⁶ 日本銀行が公表する総与信額には、格付機関による格付が付与されていない企業に対する与信額が含まれており、これも信用サイクルを構成する要素であると考えられるが、本研究では勘案しない、また上場企業を含め約120万社の企業の信用状況の調査業務を行なう株式会社帝国データバンクが公表する倒産データ(倒産時の負債総額が1,000万円以上の企業で構成)によると、2000年4月以降の月間倒産件数は約900件に及ぶ、リーマン・ショック前後においても約1,100件と大きな変化はないことから、金融機関の与信先企業に対する与信の内容が変化しているものと考えられる。そのため、本研究における信用サイクル分析のためのデータには適さないと考えられる。

⁷ 具体的には EM(Expectation Maximization) algorithm を応用し, frailty のパラメーターkおよびhを推定するため, frailty のサンプル・パスを Markov Chain Monte Carlo の Gibbs Sampler にて生成する.

⁸ スタンフォード大学の Gresecke 等が提唱する「トップダウン・アプローチ」を信用リスクモデルの基本概念とする。トップダウン・アプローチでは、ポートフォリオを構成する個別債務者の信用リスクの特性をひとまず置き、ポートフォリオ内でデフォルトイベントがいつ発生するのかに注目する。

最後に、本研究で提案する信用イベント発生強度モデルを構築する際に参考とした Azizpour et al.(2017)では、Moody's による過去のデフォルト実績(対象期間:1970年-2010年)、マクロ要因 および frailty の 3 つのファクターにて米国経済全体のデフォルト強度モデルを構築し、米国企業 におけるデフォルト集積(default clustering)の源泉が、主として frailty とデフォルトの伝播 (default contagion)にある点を明らかにした。なお末尾に、主な先行研究における frailty の前 提やマクロ要因の種類等をまとめた。

なおこれまでに、日本のクレジット市場全体の信用リスクの変動を説明することを目的として、市場で観測可能なファクターに加え、市場で観測できない frailty ファクターを考慮した信用イベントの発生強度モデルを提示した先行研究は存在しないと考える。また信用サイクルの変動と frailty との関連性を検証する試みは、金融機関による資本バッファー規制への対応やシステミック・リスクの計測手法等への適用につながる可能性があると考えるため、新規性を有すると思われる。

3. 信用イベント発生強度モデル

本章では、Koopman et al.(2009)、Yamanaka et al.(2012)および Azizpour et al.(2017)9で 提示された強度モデルを拡張し、観測可能なファクター(マクロ要因・信用イベント)と観測不可能なファクター(frailty)を考慮した、信用イベントの発生強度(intensity)を表すモデルを示す.

また信用イベントを、R&I が公表する発行体格付の変更([i=1(格上げ),i=2(格下げ),i=3(デフォルト)]とし、「格上げ・格下げ・デフォルト(ただし BBB 格未満とする)」の 3 つの信用イベントが発生する強度を表すモデルを考える。また、信用イベントである格付の変更が、日本のクレジット市場全体の信用拡張・信用収縮(信用サイクル)の代理変数であると仮定する。

以上の前提に基づき、信用イベント発生の強度(スト)を次の式で表す.

$$\lambda_t^i = exp(a_0 + \sum_{k=1}^d a_k X_{k,t}) + bY_t + \delta \sum_{n \le N_t^i} exp(-\kappa(t - T_n^i)) \ell(R_n^i)$$
 (1)

各々の変数は以下の通りである.

X_t: マクロ要因(観測可能なファクター)¹¹

Y_t: frailty(観測不可能なファクター)¹²

working paper の直近のバージョンは Azizpour et al.(2017)であるが、本研究の軸となる filtered intensity の計算方法については、旧バージョンである Azizpour et al.(2012)に詳しく記述されている。また、本研究の理論面の背景については、Giesecke and Schwenkler (2017)を参照した。

¹⁰ 観測値は、「マクロ要因」「信用イベント(格付の変更)の発生件数」の2種類である.

¹¹ GDP 成長率, 鉱工業生産成長率, 株価指数(TOPIX・日経平均株価指数等)の収益率, 株価指数のボラティリティ, 日本国債 10 年物利回り, 短期国債・長期国債のイールドスプレッド, 社債のイールドスプレッド(AAA 格・BBB 格), M3(マネーストッか)

¹² Duffie et al.(2009)では、frailty は中心回帰性を有すると主張している. OU 過程では frailty が負となる可能性がある点を踏

$$dY_t^i=z^i\big(c^i-Y_t^i\big)dt+\sqrt{Y_t^i}dW_t,\quad z,c\geq 0,\quad 2zc\geq 1$$

 $\sum_{n\leq N_t^1} exp\left(-\kappa(t-T_n^i)\right)\ell(R_n)$: 過去の信用イベントの影響(観測可能なファクター)13

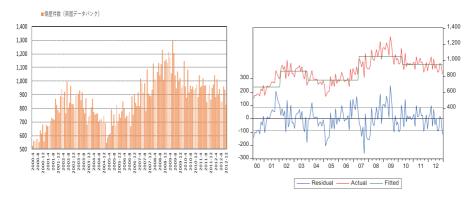
$$R_t = \sum_{k=1}^{N_t} \eta_k$$
, η : 企業の倒産件数

マクロ要因のファクターは、格付け変更件数(被説明変数)とファクター候補(説明変数)とのポアソン回帰により、GDP 成長率、M3(マネーストック、対数値)、東証株価指数(TOPIX)の収益率(日次)、社債のイールドスプレッド(AAA 格-BBB 格、日次)および非流動性指標(対数値)の5種類を選択した。なお非流動性指標については、東証株価指数を対象とし、Amihud(2012)に従い以下の式で算出する.

$$\frac{1}{D}\sum_{d=1}^{D}\frac{\frac{(H_d-L_d)}{((H_d-L_d)/2)}}{\frac{(V_d\cdot(H_d+L_d)/2)}{(V_d\cdot(H_d+L_d)/2)}}$$
 H_d : 第 d 日目の高値, L_d :第 d 日目の安値, V_d :出来高

また、株式会社帝国データバンクが公表する負債総額 10 億円以上の企業倒産件数を、過去の信用イベントの影響を表す代理変数とした。図 2 は、同社が公表する企業倒産件数の月次推移(左)と、Bai(1997)により示されたブレークポイント付き回帰に基づく企業倒産件数のレジーム分割(右)である。これらにより、図 1 の景気後退期(2001 年第 1 四半期・2002 年第 1 四半期,2008 年第 2 四半期・2009 年第 1 四半期等)には企業の倒産件数も増加していること、および同時期には連鎖的な企業倒産を示唆するレジームの変化が見て取れる。

(図 2) 企業倒産件数の推移(左)および企業倒産件数のレジーム分割(右) (期間:2000 年 4月・2012 年 12月)



以上より、本研究における信用イベント発生強度モデルは「観測可能なファクター」「frailty」「過去の信用イベントの影響」の3つで構成されるものとする.

まえ、本研究では frailty を Cox·Ingersoll·Ross(CIR)タイプに類似する形とした。 なお、Azizpour et al.(2016)では、CIR モデルのパラメーターであるボラティリティ項 σ の有無がパラメーター推定値に及ぼす影響は極めて小さいことを示している。

¹³ 過去の信用イベントの影響は Hawkes 過程に従い、ある企業の信用力の変化が他の企業に伝搬すると仮定する. また 1 日に複数件の信用イベントが同時に発生した場合においても、これらは互いに独立に発生したものと見做す.

次に、信用イベント発生強度モデルのパラメーターの推定方法について説明する. (1)式に基づく下記の尤度関数 $\mathcal{L}_{\tau}(\theta)$ を最大にするパラメーターを最尤法により推定する.

$$\mathcal{L}_{\tau}(\theta) \propto \mathbb{E}^*[1/Z_{\tau}|\mathcal{G}_{\tau}], \quad \mathbb{E}[Z_{\tau}|\mathcal{G}_{\tau}] = 1$$
 (2)

推定すべきパラメーターのセットは、 $\theta = (a_0, a_k, b, z, c, \delta, \kappa)$ である $[(a_0, a_k): マクロ要因, (b, z, c): frailty, (\delta, \kappa): 過去の信用イベントの影響].$

(2)式におけるE*は、Radon-Nikodym 微分による測度変換

$$\frac{d\mathbb{P}^*}{d\mathbb{P}} = Z_t = exp\left(-\int_0^t log(\lambda_{s-})dNs + \int_0^t (1-\lambda_t)ds\right)$$

で定義される、パラメーター θ を所与とした場合の $\mathbb{P}^*($ リスク中立確率)の下での期待値である。 モデルのデータは観測値のみを含み、frailty を含んでいない。そのため、Azizpour et al.(2012) の Proposition 4.1 に基づき、観測フィルトレーションを条件とするフィルター付きの強度(filtered intensity) h_t に変換する[(3)式]¹⁴.

$$h_t = \mathbb{E}(\lambda_t | \mathcal{G}) = \mathbb{E}^*(\lambda_t / Z_t | \mathcal{G}) / \mathbb{E}^*(1/\lambda_t | \mathcal{G}), \ a.s.$$
 (3)

なお、filtered intensity h_t の具体的な形は以下の通りである.

$$h_t^i = \frac{\mathbb{E}_{\theta}^* \left(\lambda_t^i exp \left(\int_0^t log(\lambda_{s-}^i) dNs + \int_0^t (1 - \lambda_s^i) ds \right) | \mathcal{G}_t \right)}{\mathbb{E}_{\theta}^* \left(exp \left(\int_0^t log(\lambda_{s-}^i) dNs + \int_0^t (1 - \lambda_s^i) ds \right) | \mathcal{G}_t \right)}, \quad a.s.$$
 (4)

Azizpour et al.(2017)に従い、(4)式を下記の(5)式にて計算する.

$$\mathbb{E}^*(u(\lambda_t)/Z_t|\mathcal{G}_t) = exp(t)\mathbb{E}^*(u(\lambda_t)\phi(T_{N_t},t)\prod_{n=1}^{N_\tau}\lambda_{T_n^-}\phi(T_{n-1},T_n)|\mathcal{G}_t)$$
(5)
$$\text{$\not\sim t$} \text{\downarrow},$$

$$\Pi_{t} = u(\lambda_{t})exp\left(\int_{0}^{t}log(\lambda_{s-})dN_{s}\right)$$

$$\phi(m,n) = \Phi(m,n)exp\left(-\int_{m}^{n}\left[e^{a(1,X_{s})} + \delta\sum_{n\leq N_{t}^{l}}exp\left(-\kappa^{l}(s-T_{n}^{l})\right)\ell(R_{n}^{l})\right]ds\right)$$

$$\Phi(m,n) = \frac{l_{q}(\sqrt{\gamma_{m}\gamma_{n}})^{4l} \cdot e^{-0.5l(n-m)}}{1-e^{-l(n-m)}}{1-e^{-l(n-m)}} \cdot \frac{le^{-0.5(1-z)}(1-e^{-z(n-m)})}{z(1-e^{-z(n-m)})} \cdot e^{(\gamma_{m}+\gamma_{n})}\left[\frac{z(1+e^{-z(n-m)})}{1-e^{-z(n-m)}} \cdot \frac{l(1+e^{-l(n-m)})}{1-e^{-l(n-m)}}\right]$$

$$l = \sqrt{z^{2} + 2b} \qquad l_{q}:$$
修正ベッセル関数

尤度関数 $\mathcal{L}_{\tau}(\theta)$ のパラメーターを推定後、時間変更を行なったフィルター付きの強度 h_{t} に対して

¹⁴ λ_t の事後平均(posterior mean)であり、観測フィルトレーションへの射影(optional projection)となる.

適合度検定を行い、強度 h_t が標準ポアソン過程に従うか否かを確認する. 15

次に、格上げ・格下げ・デフォルトの各強度モデルのパラメーターについて、①全てのファクター(マクロ要因、frailty、過去の信用イベントの影響)を含むモデル、②マクロ要因のみのモデル、③マクロ要因と過去の信用イベントの影響のみのモデル、および④マクロ要因と frailty のみのモデル、の4パターンのモデルに対して、標準誤差の推定や時間変更に対する適合度検定を、格上げ・格下げ・デフォルトの各強度モデルに対して行い、95%水準で統計的有意性を検定する。なお、上記のモデル①・④の具体的な形は以下の通りである。

①
$$\lambda_t^i = exp(a_0 + \sum_{k=1}^d a_k X_{k,t}) + bY_t + \delta \sum_{n \le N_t^i} exp(-\kappa(t - T_n^i)) \ell(R_n^i)$$

$$2 \lambda_t^i = exp(a_0 + \sum_{k=1}^d a_k X_{k,t})$$

$$4) \lambda_t^i = exp(a_0 + \sum_{k=1}^d a_k X_{k,t}) + bY_t$$

また尤度比検定により、frailty や過去の信用イベントの影響を考慮する場合と考慮しない場合とにおけるモデルの説明力を検証する。以上について、out-of-sample 期間(2013年 1月-2016年 3月)にて検証を行なう。

なお格付変更データについては、Bloomberg 等を通じて R&I が提供する 1998 年 4 月から 2012 年 12 月までの日本国内企業の発行体格付の変更履歴データとした16

4. 推定結果

本章では、前章で示した方法に基づいて行なったモデルのパラメーター推定結果等を示す. まず、信用イベント別のモデルのパラメーター推定結果は表 1 の通りとなった.

(表 1)	信用イベ	ント別のモデルの	パラメーター推定結果	
-------	------	----------	------------	--

信用イベント	推定值	a ₀ (定数)	a ₁ (GDP 成長率)	a ₂ (M3:マネーストック)	a ₃ (TOPIX)	a ₄ (社債イールト [*] スプ レット [*])	a ₅ (LN 非流動性指 標)
格上げ	パラメーター	-1.421	0.063	-0.051	0.031	-0.023	-0.043
格工い	標準誤差	(0.503)	(0.022)	(0.024)	(0.004)	(0.009)	(0.021)
格下げ	パラメーター	-1.698	-0.219	0.011	-0.021	0.014	0.027
18 1 17	標準誤差	(0.602)	(0.036)	(0.005)	(0.007)	(0.003)	(0.009)
デフォルト	パラメーター	-0.911	-0.102	0.001	-0.0076	0.002	0.023
7 7 3 76 1:	標準誤差	(0.436)	(0.002)	(0.000)	(0.001)	(0.000)	(0.015)
信用イベント	推定値	b	Z	С	δ	κ	
格上げ	パラメーター	0.152	2.925	0.002	-0.013	0.034	
格工り	標準誤差	(0.074)	(1.369)	(0.001)	(0.008)	(0.020)	
格下げ	パラメーター	0.213	4.006	0.005	0.014	0.060	
4H 1.10	標準誤差	(0.089)	(1.823)	(0.002)	(0.005)	(0.012)	
デフォルト	パラメーター	0.099	2.063	0.0004	0.008	0.021	
7 7 3 70 1	標準誤差	(0.051)	(1.007)	(0.000)	(0.005)	(0.010)	

[※]マクロ要因は、ステップワイズ変数減少法により、AIC が最小となる組合せとした。また国債イールドスプレッドは、日本国債の短期債・長期 債間のイールドスプレッドとした。なお、M3、社債イールドスプレッドおよび非流動性指標は、2016 年度における本研究集会における発表 時から追加したファクターである。また表中の網掛け部分はパラメーターの推定値が改善した箇所を示す。

 $^{^{15}}$ $C_t & A_t = \int_0^t h_t d_s$ の右連続の逆関数とするとき,計数過程 N_{C_t} は $[0,A_T)$ は確率測度 \mathbb{P} およびフィルトレーション (g_{C_t}) について,標準ポアソン過程となる (cf. Azizpour et al.(2012) Proposition 4.2).

¹⁶ R&I 以外の格付機関(Moody's, Standard & Poor's, 日本格付研究所(JCR)等)も日本企業の発行体格付を公表しているが, R&I による日本企業の発行体格付け数が最も多いため、本研究のデータとして利用した.

表 1より、格上げ・格下げの場合について、frailty および過去の信用イベントの影響に関するパラメーターは、5%の有意水準で概ね統計的に有意であるとの結果を得た。また観測可能ファクターのうち、GDP 成長率は、格上げ・格下げ・デフォルトの全ての信用イベントについて 5%の有意水準で統計的に有意であると推定された。一方、TOPIX 収益率および国債イールドスプレッドは信用イベントの別により有意水準は異なる結果となった。

表 2 は、信用イベントが格下げである場合について、①全てのファクター、②マクロ要因のみ、 ③マクロ要因+過去の信用イベントの影響のみ、④マクロ要因+frailty のみ、で構成される各 モデルについて、パラメーターの推定値および Kolmogorov-Smirnov Test の結果を示してい る. これによると、マクロ要因・frailty・過去の信用イベントの影響の全てのファクターを含 むモデルは、Kolmogorov-Smirnov Test の結果、適合度に高い有意性が見られると考えられ る. また GDP 成長率は、①全てのファクター、②マクロ要因のみ、および③マクロ要因+過去 の信用イベントの影響のみ、で構成される各モデルにおいて説明力の高いファクターとなる点、 および frailty はファクターとしての寄与度が高い点が示された。

	① 全ファクター	② マクロ要因	③ マクロ要因 + 過去の 信用イベントの影響	④ マクロ要因 + frailty
a ₀ (定数)	-1 698 (0 602)	-1 013 (0 147)	-1 223 (0 489)	-1 200 (0 361)
a ₁ (GDP成長率)	-0 219 (0 053)	-0 157 (0 043)	-0 108 (0 029)	-0 093 (0 028)
a ₂ (M3 マネーストック)	0 011 (0 005)	-	-	
a ₃ (TOPIX)	-0 021 (0 007)	-0 009 (0 004)	-0 013 (0 006)	-0 010 (0 004)
a ₄ (社債イールドスプレッド)	0 014 (0 003)	0 006 (0 002)	0 004 (0 001)	0 003 (0 000)
a ₅ (LN非流動性指標)	-0 027 (0 009)	-	-	
ь	0 213 (0 089)	-	-	0 127 (0 045
z	4 006 (1 823)	-	-	3 421 (1 512
с	0 005 (0 002)	-	-	0 003 (0 001
δ	0 014 (0 005)	-	0 012 (0 006)	
к	0 060 (0 012)	-	0 047 (0 023)	
Kolmogorov - Smirnov Test	0 000	0 007	0 002	0 00
対数尤度	795 23	473 22	642 11	598 7

(表 2) モデル別のパラメーター推定値(信用イベント:格下げ)

表 3 は、表 2 と同様に、信用イベントが格下げである場合について、マクロ要因を含むベンチマークモデルに対して、①マクロ要因+過去の信用イベントの影響のみ、②マクロ要因+frailtyのみ、および③全てのファクターで構成されるモデルを、各々代替モデルとして尤度比検定を行なった結果を示す。

(表3) 各モデル間の適合度検定・尤度比検定(信用イベント:格下げ)

ベンチマークモデル	マクロ要因	マクロ要因	マクロ要因	マクロ要因 + 過去の信用イベント	マクロ要因 + frailty
(代替モデル)	(マクロ要因 + 過去の信用イベント)	(マクロ要因 + frailty)	(全ファクター)	(全ファクター)	(全ファクター)
検定統計量	321 78	301 22	330 62	317 55	275 28
自由度	3	2	5	2	2
ρ值	0 002	0 004	0 000	0 001	0 056

表 3 より、frailty を含むモデルを代替モデルとして尤度比検定を行なった場合には、いずれも統計的に有意であることが示された。

以上により、R&I による日本企業の格付変更履歴データを用いたモデルのパラメーター推定値、適合度検定および尤度比検定の結果を踏まえると、日本のクレジット市場において frailty の存在が示唆されると考えられる.¹⁷ また、frailty を含む全てのファクターにより構成されたモデルは、日本のクレジット市場の変動(信用サイクルの変動)をより良く説明できる可能性があると考えられる. 特に、過去の信用イベントの影響と frailty は、信用イベントの発生のしやすさを説明するファクターとして統計的に有意である点は、Azizpour et al.(2017)で示された結論と整合的であると考えられる.

図 2 は、上記の結果を踏まえ、格下げ件数と格下げ発生強度の推移を示したものである。本研究で提示する信用イベント発生強度モデルは、格下げ件数の推移を概ね捉えていると考えられる。 なお Out-of-sample 期間(2013 年 1 月-2016 年 3 月)についても同様の検証を行なったが、上記とほぼ同様の結果が示された。



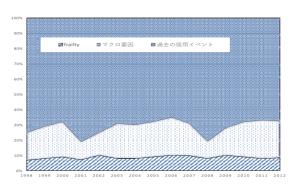
(図 2) 格下げ件数と格下げ発生強度の推移(1998年4月-2012年12月)

また図 3 は、格下げ発生強度モデルのパラメーター推定値に基づき、当該モデルの期待値 (事後平均)を算出したうえで、マクロ要因、frailty および過去の信用イベントの影響の各々について、1998 年から 2012 年までの間における各ファクターの構成比の月次推移を示した.

1998-40 1199

図3を見る限り、景気後退期において過去の信用イベントの影響および frailty の構成比が高くなるため、これらが日本のクレジット市場における信用サイクルの変動に何らかの影響を及ぼしている可能性があると想定される。ただしその影響度の推定にあたっては、更に精緻な検証を要する。

^{17 「}格上げ」および「デフォルト」の場合もほぼ同様の結果が得られた.



(図3) 格下げ発生強度の構成比推移(1998年4月-2012年12月)

※過去の信用イベントの影響の構成比は、他のファクターに比較して相対的に高い水準で推移している。 特に景気後退期(例: 2001 年, 2008 年)には顕著な傾向を示している。

5. 信用サイクルの変動要因

本章では、信用サイクルの変動要因の検証を試みる。まず、主な先行研究について紹介する.

Koopman et al. (2009)は, common latent factor(frailty)と GDP 成長率との間の相互依存性を検証した。また Koopman et al.(2011)は、景気拡大期および景気後退期における frailty の変動要因のモデル化を行なった。金子・中川(2010)では、景気動向の見通しに関する情報を利用した、信用ポートフォリオのリスク管理手法を提案した。

先行研究の多くは、信用サイクルの変動に大きく影響を与えるファクターは GDP 成長率であると結論付けている。

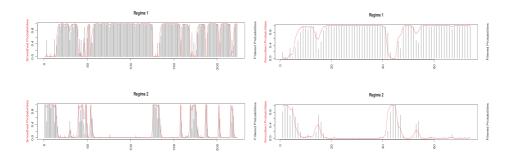
本章では、日本のクレジット市場における信用サイクルの総与信・GDP 比率に影響を及ぼす可能性のある過去の信用イベントの影響および frailty のうち、frailty と信用サイクルとの関連性について、1)レジーム・スイッチモデルによる、frailty と信用サイクルのレジーム推移の比較、2)信用サイクルを構成する要素(GDP・総与信)を線形ガウス状態空間モデルで表現した場合における各成分[水準(level)・傾き(slope)]と frailty との間で、グレンジャーの意味での因果性(グレンジャー因果性)存在の有無、および 3)インパルス応答関数による、信用サイクルの構成要素にショックを与えた場合の frailty の変化の推移、の 3 点から検証を行なう.

まず Hamilton(1994)に基づき、2 状態のレジーム(レジーム 1: 景気拡大、レジーム 2: 景気後退)を仮定する。以下の式に基づき尤度関数を最大化することにより、パラメーターの推定を行なう。

$$Y_t^i = \phi_{11} + \phi_{21} Y_{t-1}^i + \phi_1 \varepsilon_t, \quad S_t = 1$$
 (レジーム 1)
 $Y_t^i = \phi_{12} + \phi_{22} Y_{t-1}^i + \phi_2 \varepsilon_t, \quad S_t = 2$ (レジーム 2)

図 4 は、frailty(格下げの場合)と日本における信用サイクルを示すと考えられる総与信・GDP 比率のレジームの推移を示す(対象期間: 1998 年 4 月 - 2012 年 12 月). また表 4 は、各レジーム・スイッチモデルのパラメーター推定値を示す.

(図 4) 格下げの frailty(左)および総与信・GDP 比率(右)のレジームの推移(1998 年 4 月・2012 年 12 月)



(表 4) 格下げの frailty(左)および総与信・GDP 比率(右)のレジームの推移(1998 年 4 月・2012 年 12 月)

	推定值	標準誤差	t値	p値	
φ ₁₁	0 953	0 111	8 588	0 000	
φ ₁₂	5 999	0 981	6 118	0 000	
φ ₂₁	0 223	0 064	3 474	0 001	
φ ₂₂	-0 076	0 145	-0 520	0 603	

	推定値	標準誤差	t値	p値
Ø 11	0 061	0 026	2 373	0 018
φ ₁₂	0 145	0 057	2 554	0 011
Ø 21	0 948	0 020	47 894	0 000
φ ₂₂	0 907	0.038	23 982	0 000

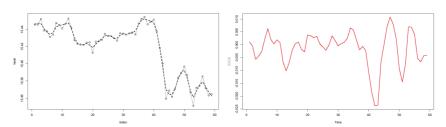
※残差項の標準偏差: frailty: 0.0109(レジーム 1), 3.506(レジーム 2) 総与信・GDP 比率: 0.8912(レジーム 1), 0.0160(レジーム 2)

上記により、frailty と総与信・GDP 比率のレジームの推移の傾向はほぼ同様であることが示された。その要因については、更に精緻な検証を要すると考える。

次に、総与信・GDP 比率の構成要素である GDP、総与信額(いずれも対数値)、および総与信・GDP 比率が frailty の挙動に及ぼす影響について検証する(対象期間:1998年4月・2012年12月)。 具体的には、まず、1) GDP、総与信額および総与信・GDP 比率について、2 次のトレンドを有する線形ガウス状態空間モデル(linear Gaussian state space model)の平滑化状態における水準(level)および傾き(slope)の2成分に分解(図5を参照)し18、2)各成分が frailty の挙動に及ぼす影響をインパルス応答関数により定量的に把握するともに、3)各成分・frailty 間におけるグレンジャーの意味での因果性(Granger causality)の存在の有無の検定を行なう.

(図 5) GDP, 総与信額, 総与信・GDP 比率および frailty の平滑化状態における各成分の推移

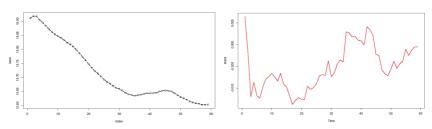
(a) GDP(対数値)



※左図の○線は原系列、破線は平滑化状態における水準成分、右図の実線は平滑化状態における傾き成分の推移を示す.

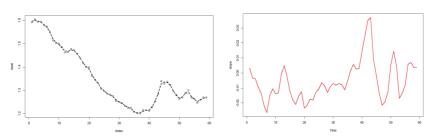
¹⁸ frailty については、線形非ガウス(ポアソン分布)状態空間モデルに従うものとして水準成分・傾き成分に分解した.

(b) 総与信額(対数値)



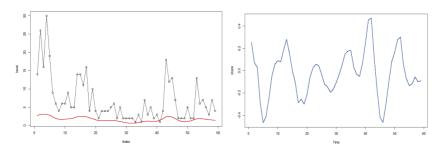
※左図の○線は原系列、破線は平滑化状態における水準成分、右図の実線は平滑化状態における傾き成分の推移を示す.

(c) 総与信· GDP 比率



※左図の○線は原系列、破線は平滑化状態における水準成分、右図の実線は平滑化状態における傾き成分の推移を示す.

(d) (参考)frailty



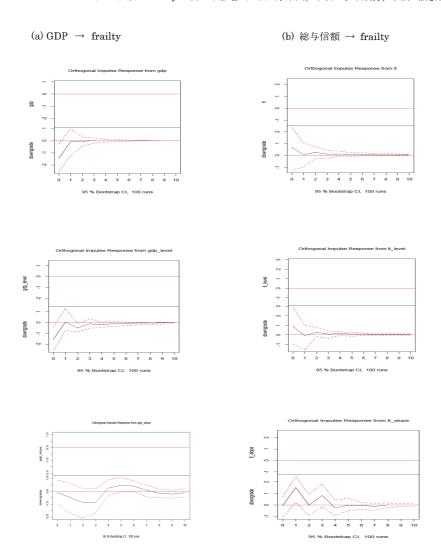
※左図の○線は原系列、破線は平滑化状態における水準成分、右図の実線は平滑化状態における傾き成分の推移を示す.

図 5 より,GDP,総与信額および総与信・GDP 比率は,景気後退期において傾き成分の変動が大きい点で共通している.また総与信・GDP 比率と frailty の傾き成分は通期にわたり似通った挙動を示している.

次に、GDP、総与信額、総与信・GDP 比率について、各々の原系列、水準成分および傾き成分にショックを与えた場合における frailty に及ぼす影響をインパルス応答関数により検証した(図6).19

¹⁹ 原系列および各成分が定常過程に従う点や共和分を考慮したうえで、グレンジャー因果性およびインパルス応答関数の推定を行なった。

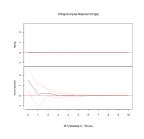
(図 6) GDP および総与信額が frailty に及ぼす影響 (上段: 原系列, 中段: 水準成分, 下段: 傾き成分)

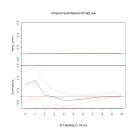


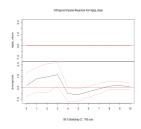
※10 期先までの予測. なお破線は、95%の信頼水準を示す.

(図 7) 総与信額・GDP 比率が frailty に及ぼす影響

(左図: 原系列, 中図: 水準成分, 右図: 傾き成分)







※10 期先までの予測. なお破線は,95%の信頼水準を示す.

図 6 および図 7 より, GDP, 総与信額および総与信・GDP 比率の各傾き成分が frailty に及ぼす影響が長期にわたると想定される.

また表 5 は、GDP、総与信額および総与信・GDP 比率の原系列および各成分から frailty に対する、あるいは frailty から GDP、総与信額および総与信・GDP 比率の原系列および各成分に対するグレンジャーの因果性の存在の有無について検定を行なった結果である.

(表 5) グレンジャーの因果性

from		to	p値	from		to	p値
GDP	⇒	frailty	0.264	frailty	⇒	GDP	0.664
GDP_lebel	\Rightarrow	frailty	0.024	frailty	⇒	GDP_lebel	0.666
GDP_slope	\Rightarrow	frailty	0.134	frailty	\Rightarrow	GDP_slope	0.651
TL	\Rightarrow	frailty	0.345	frailty	\Rightarrow	TL	0.228
TL_lebel	\Rightarrow	frailty	0.349	frailty	\Rightarrow	TL_lebel	0.217
TL_slope	\Rightarrow	frailty	0.006	frailty	\Rightarrow	TL_slope	0.130
TLGDP	\Rightarrow	frailty	0.176	frailty	\Rightarrow	TLGDP	0.599
TLGDP_lebel	\Rightarrow	frailty	0.009	frailty	\Rightarrow	TLGDP_lebel	0.990
TLGDP_slope	⇒	frailty	0.001	frailty	\Rightarrow	TLGDP_slope	0.423

※TL: 総与信額 TLGDP: 総与信・GDP 比率

表 5より, GDP の水準成分から frailty に対して、5%有意水準にてグレンジャーの因果性が存在するとともに、総与信額の傾き成分および総与信・GDP 比率の水準成分・傾き成分から frailty に対して、1%有意水準にてグレンジャーの因果性が存在するとの結論に至った. なお frailty から GDP, 総与信額および総与信・GDP 比率の原系列および各成分に対しては、グレンジャーの意味での因果性は存在しないと考えられる.

6. 結論および今後の課題

本研究では、信用イベント(格上げ・格下げ・デフォルト)の発生強度を表すモデルを提示した。モデルのファクターとして、マクロ要因、frailty および過去の信用イベントの影響を考慮した。信用

イベントのうち、格上げ・格下げを表すモデルのパラメーターの推定値は 5%有意水準で統計的に有意であるとの結果が示された。また、マクロ要因、frailty および過去の信用イベントの影響を全て含むモデルの場合、日本のクレジット市場の信用リスクの変動をより良く説明できる可能性があると考えられる。また、レジーム・スイッチモデルにより、frailty と信用サイクル(総与信・GDP 比率)の関連性の検証を試みた結果、frailty と信用サイクルのレジームの推移はほぼ同様の傾向を示した。さらに、GDP、総与信額および総与信・GDP 比率を状態空間モデルで表した場合における成分の一部はグレンジャーの意味で frailty と因果性があると考えられる。

今後の課題として, (1)GDP と総与信額の経時的な変化や景気の変動に伴う, 中長期的な frailty の振る舞いと信用サイクルとの関連性, (3)景気の転換点における本モデルの有効性, および(3)本モデルのシステミック・リスク指標への適用可能性等について検討する点を挙げる.

以 上

【参考文献】

- [1] 金子拓也・中川秀敏「信用ポートフォリオのリスク計量:金利変化見通しと個別企業価値変動を 考慮したトップダウン・アプローチ」, Discussion Paper Series No. 2010-J-13, 日本銀行金融 研究所
- [2]Amihud (2002), "Illiquidity and stock returns: cross-section and time-series effects", Journal of Financial Markets 5, 31-56
- [3] Azizpour, Giesecke and Schwenkler (2017), "Exploring the Sources of Default Clustering", forthcoming at *Journal of Financial Econometrics*
- [4]Bai (1997), "Estimating multiple breaks one at a time", Economic Theory, 13, 315-352
- [5]Delloye, Fermanian and Sbai (2006), "Dynamic frailties and credit portfolio modelling", *Risk*, October 2006, 100-105
- [6]Duffie, Eckner, Horel and Saita (2009), "Frailty Correlated Default", *Journal of Finance*, vol.64, 2089-2123
- [7]Giesecke and Schwenkler (2017), "Filtered likelihood for point processes" forthcoming at *Journal of Econometrics*

- [8] Hamilton (1994), "Time Series Analysis", Princeton University Press
- [9]Koopman, Kraussl, Lucas and Monteiro (2009), "Credit cycles and macro fundamentals", *Journal of Empirical Finance*, vol.16, 42-54
- [10]Koopman, Lucas and Schwaab (2011), "Modeling frailty-correlated defaults using many macroeconomic covariates", *Journal of Econometrics*, 162, 312-325
- [11] Yamanaka, Sugihara and Nakagawa (2012), "Modeling of Contagious Credit Events and Risk Analysis of Credit Portfolios", *Asia Pacific Financial Markets*, vol.19, 43-62

(参考) 主な先行研究における frailty の種類およびマクロ経済変数のパラメーター

先行研究	frailtyの種類	発行体格付データ	マクロ経済変数(バラメーター)の種類	分析の対象
Delloye et al. (2006)	Gamma 分布に従う確率変数	Standard and Poor's	米国鉱工業生産成長率 , S&P500 収益率 , 米国債イールドス ブレッド (3ヶ月 -10 年), FFレート (3ヶ月)	米国企業(金融機関を除く)の格付推移およびデ フォルト率
Koopman et al (2009)	AR(1)過程	Standard and Poor's	GDP 成長率,米国債イールドスブレッド (1年-10年),事業性 ローン揆高増加率 ・M2 成長率,インフレ率 ・FFレート ・米国 債と社債(BB格)スプレッド ・S&P500 収益率,S&P500 ポラ ティリティ	米国企業(金融機関を除く)の格付推移
Duffie et al. (2009)	Ornstein-Uhlenbeck (OU)過程	Moody's	米国短期国債 (3ヶ月物)レート , S&P500 収益率	米国企業(金融機関を除く)のデフォルトの集積
Azizpour et al. (2012)	Cox-Ingersoli-Ross(CIR) 過程	Moody's	GDP 成長年, 鉱工業生産成長率 , S&P500 収益率, S&P500 ポラ ティリティ , 米国版関関債 (3ヶ月第)レート , 米国権イールドス ブレッド (1年-10年, 米国債 (10年格) 判回り, 社債イールド スプレッド (1年 10年)、社債(AAA格) 利回り	米国企業(金融機関を除く)のデフォルトの集積

※本研究で用いたマクロ経済変数の候補については、上記の先行研究を参考とした.

Nomura Asset Management Co., Ltd., Tokyo 103-8260, Japan E-mail address: j-hironaka@nomura-am.co.jp

野村アセットマネジメント株式会社 廣中 純