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1 Introduction

A gıobalization in capital markets and the development of technology have brought a highly‐
advanced financial markets. These facts have increased the risk for the global, immediate

spillover effects on volatilities in stock market. In last financial crisis, major markets got into

a global‐financial panic, and the aftershocks lasted for a long period from mid 2007 to 2010.

We can observe the spread of such global price volatihties as a change of intraday volatilities in
stock market.

Intraday volatilities have different features with daily volatilities. Generally, it is known

that intraday volatilities have a U‐shaped pattern during trading hours. Owing to the feature

of intraday voıatilities, we cannot make use of the method of time series for daily volatility

straightforwardly. So far, there is some literatures on the intraday volatility models, see Andersen

and Boılerslev [1, 2], and Engle and Sokalska [4]. These researches have basically used ARCH‐
type models. By contrast, Stroud and Johannes [7] has proposed a Bayesian modeling for
volatility of high‐frequency return. They have modeled intraday volatilities for   5- \min returns

by four components, and sampled the parameters for each component from a posterior density

using Markov Chain Monte Carlo (MCMC) method.
In this article, we introduce a theoretical framework of the intraday volatility modeling

which is proposed in Stroud and Johannes [7] in order to prepare for an estimation of Nikkei 225
Futures. In the next step, we would like to analyze the following: (i) we compare the empirical
results for Nikkei 225 Futures with those of previous studies, because there is little empirical

studies about intraday volatilitis in Japan, (ii) we examine the specific factors affecting intraday

volatilities in Japan, () In the light of data of last financial crisis, we test the characteristics
of volatilities in financial panic.

This article is organized as follows. Section 2 and 3 present the model and the estimation

algorithm proposed in Stroud and Johannes [7], respectively. Concluding remarks are contained
in Section 4.
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2 Stochastic Volatility Models

We consider a SV (Stochastic Volatility) model for   5- \min intraday financial returns. Intraday
logarithmic price returns are described by

 y_{t}=100 \cdot\log(\frac{P_{t}}{P_{t-1}})=\mu+v_{t}\varepsilon_{t}^{*}+J_{t}Z_
{t}^{y},  t=1,2 , . . . ,  T (2.ı)

where

 P_{t} is the future price,

 \mu is the mean return,

 v_{t} is volatility,

 \varepsilon_{t}^{*}=\sqrt{\lambda_{t}}\varepsilon_{t} , where  \varepsilon_{t}\sim i.i.d\mathcal{N}(0,1) and  \lambda_{t}\sim i.i.d\mathcal{I}\mathcal{G}  ( \frac{\nu}{2}, \frac{\nu}{2}) ,

 J_{t} is a jump indicator with   P[J_{t}=1]=\kappa , and

 Z_{t}^{y} is return jumps, where  Z_{t}^{y}\sim i.i.d\mathcal{N}(\mu_{y}, \sigma_{y}^{2}) .

Here,  \mathcal{N} is the normal distribution and  \mathcal{I}\mathcal{G} is the inverse gamma distribution. The volatilities,

 v_{t} , are expressed as a multiplicative form:

 v_{t}=\sigma\cdot X_{t,1}\cdot X_{t},{}_{2}S_{t}\cdot A_{t} , (2.2)

where  X_{t,1} and  X_{t,2} are SV (Stochastic Volatility) processes,  S_{t} is seasonal component, and  A_{t}

is announcement component. Then, the logarithm of the variance can be rewritten as

 h_{t}=\log(v_{t}^{2})=\mu_{h}+x_{t,1}+x_{t,2}+s_{t}+a_{t} , (2.3)

where  \mu_{h}=\log(a^{2}),  x_{t,i}=\log(X_{t,i}^{2}) for  i=1,2,  s_{t}=\log(S_{t}^{2}) , and  a_{t}=\log(A_{t}^{2}) .

In what follows, we explain each component in (2.3). The SV processes,  x_{t,1} and  x_{t,2} , are
given by

 x_{t+1,1}=\phi_{1}x_{t,1}+\sigma_{1}\eta_{t,1} , (2.4)

 x_{t+1,2}=\phi_{2}x_{t,2}+\sigma_{2} (\rho\varepsilon_{t}+ {\imath}-\rho 2 
\eta_{t,2})+J_{t}Z_{t}^{v} , (2.5)

where

 \eta_{t,i}\sim i.i.d\mathcal{N}(0,1) for  i=1,2,

 \rho=corr  (\varepsilon_{t}, \eta_{t,2}) represents the correlation between returns and the process  x_{t,2},

 J_{t} is the jump time, and

 Z_{t}^{v}\sim i.i.d\mathcal{N}(\mu_{v}, \sigma_{v}^{2}) are the jump size in  \log volatility.

Note that the jump time in the SV process  x_{t,2} corresponds to those in returns. The SV process

 x_{t,1} explains the persistence of interday volatility. On the other hand, the SV process  x_{t,2}

represents the short‐term impact of high‐frequency news or liquidity events. We refer to  x_{t,1}

and  x_{t,2} as “slow” and “fast” volatility factors, respectively, and assume that  0<\phi_{2}<\phi_{1}<1.
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Seasonal components explain the deterministic volatility patterns during trading hours. It is
known that the volatility patterns typically have the smooth  U‐shaped patterns. The seasonal

components,  s_{t} , are given by

 s_{t}= \sum_{k=1}^{K}H_{tk}\beta_{k} (2.6)

where  H_{tk} is an indicator, and  \beta_{k} is the seasonal effect at period  k . The coefficients  \beta_{k} for

seasonal components are estimated using state‐space form for cubic smoothing splines.
Announcement components are factors for the effect of macroeconomic announcements and

specific events. Stroud and Johannes [7] assumes that it has a short‐term impact, an increasing
of volatility lasts for 30 minutes. Announcement component is

 a_{t}= \sum_{i=1}^{n}\sum_{k=1}^{5}I_{itk}\alpha_{ik} , (2.7)

where  a_{ik} is the announcement effect for news type  i at  k period after the news release for

 i=1,2,  n and  k=1,2 , 5, and  I_{\dot{i}}tk is an indicator for news type  i at period  k . The coef‐

ficients  \alpha_{ik} for announcement components are modeled by a state‐space form as with seasonal
components.

3 Estimation Procedure

We introduce the estimation method for intraday volatility proposed in Stroud and Johannes

[7]. The  \log‐return equation

 y_{t}= \mu+\exp(\frac{h_{t}}{2})\sqrt{\lambda_{t}}\varepsilon_{t}+J_{t}Z_{t}
^{y} (3. ı)

can be written as

 y_{t}^{*}=h_{t}+\log(\varepsilon_{t}^{2}) , (3.2)

where

 y_{t}^{*}= \log[\frac{(y_{t}-\mu-J_{t}Z_{t}^{y})^{2}}{\lambda_{t}}] , d_{t}=
sign(y_{t}-\mu-J_{t}Z_{t}^{y}) , (3.3)

and we let  y^{*}=(y_{1}^{*}, \ldots, y_{T}^{*})' . Following Kim et al. [5] and Omori et al. [6], we set  \zeta_{t}=\log(\varepsilon_{t}^{2})
and approximate the distribution of  \zeta_{t} by a mixture of normal distributions

 f( \zeta_{t})=\sum_{j=1}^{K}p_{j}\mathcal{N}(\zeta_{t}|m_{J}, v_{j}^{2}) (3.4)

where  \mathcal{N}(\zeta_{t}|m_{j}, v_{j}^{2}) is the density function of normal distribution with mean  m_{j} and variance

 v_{j}^{2} . The constant values of  m_{j} and  v_{J}' are showed in Kim et al. [5] and Omori et al. [6]. The
conditional distribution of  \eta_{t,2} given  d_{t},  \zeta_{t} and  \rho is given by

  \eta_{t,2}|d_{t}, \zeta_{t}, \rho\sim \mathcal{N} (d_{t}
\rho\exp(\frac{\zeta_{t}}{2}) , 1-\rho^{2}) . (3.5)
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We then approximate the joint distribution of  \zeta_{t} and  \eta_{t,2} by a following mixture of normal
distributions

 p( \zeta_{t}, \eta_{t,2}|d_{t}, \rho)=\sum_{j=1}^{K}p_{j}\mathcal{N}(\zeta_{t}
|m_{j}, v_{j}^{2})\mathcal{N}(\eta_{t,2}|d_{t}\rho(a_{j}^{*}+b_{j}^{*}\zeta_{t})
, 1-\rho^{2}) (3.6)

where  (p_{j}, m_{j}, v_{j}, a_{j}^{*}, b_{j}^{*}) are constants shown in Omori et al. [6]. Note that we approximate
 \exp(\zeta_{t}/2) in (3.5) by  a_{j}^{*}+b_{j}^{*}\zeta_{t} in (3.6). We introduce the latent mixture component indicators
 \omega_{t}\in\{1,2, K\} and let  \omega=(\omega_{1}, \ldots, \omega_{T}) .

Under the above setup, the posterior density for the states and parameters shown in Section

2 is given by

 p(x, \lambda, J, Z, \beta, \alpha, \theta|y)\propto p(y|x, \lambda, J, Z, 
\beta, \alpha, \theta)p(x, \lambda, J, Z|\theta)p(\beta|\theta)p(\alpha|\theta)p
(\theta) (3.7)

where  x=  (x_{1} , x_{T}),  x_{t}=(x_{t,1}, x_{t,2}),  \lambda=(\lambda_{1}, \ldots, \lambda_{T}),  J=(J_{1}, \ldots, J_{T}),  Z=(Z_{1}, \ldots, Z_{T}) ,
 Z_{t}=(Z_{t}^{y}, Z_{t}^{v}),  \beta=(\beta_{1}, \ldots, \beta_{K})',  \alpha=(\alpha_{1}, \ldots, \alpha_{n})',  \alpha_{k}=(\alpha_{1}, \ldots, \alpha_{5}) ,

 \theta=(\mu, \mu_{h}, \phi_{1}, \phi_{2}, \sigma_{1}, \sigma_{2}, \rho, \nu, 
\kappa, \mu_{y}, \sigma_{y}, \mu_{v}, \sigma_{v}, \tau_{s}, \tau_{a}) are parameters, and  y=(y_{1}, \ldots, y_{T})' are
data of returns.

We first take appropriate initial values of  x,  \lambda,  J,  Z,  \beta,  \alpha , and  \theta . The MCMC algorithm to
generate random draws is shown as below.

Step 1 Draw  p(\omega|y^{*}, x, J, Z, \lambda, \theta)

Step 2 Draw  p(x, \mu_{h}, \phi_{i}, \sigma_{i}, \rho|y^{*}, \omega, \beta, \alpha),  i=1,2

Step 3 Draw  p(\beta, \tau_{\mathcal{S}}^{2}|y^{*}, \omega, x, \alpha, \theta)

Step 4 Draw  p(\alpha, \tau_{a}^{2}|y^{*}, \omega, x, \beta, \theta)

Step 5 Draw  p(\lambda, \nu|y, x, J, Z, \beta, \alpha, \mu)

Step 6 Draw  p(J, Z|y, x, \lambda, \kappa, \mu_{j}, \sigma_{j}, \mu),  j=y,  v

Step 7 Draw  p(\kappa, \mu_{j}, \sigma_{j}|J, Z),  j=y,  v

Step 8 Draw  p(\mu|y, x, \lambda, J, Z, \beta, \alpha)

3.1 The MCMC Algorithm

We explain the MCMC Algorithm in detail as follows.

3.1.1 Step 1

For sampling of mixture component indicators  \omega_{t}\in\{1,2, K\} , we evaluate

 p(\omega_{t}=j|\zeta_{t}, \eta_{t,2}, \rho)\propto p_{j}\mathcal{N}(\zeta_{t}
|m_{j}, v_{\dot{j}}^{2})\mathcal{N}(\eta_{t,2}|d_{t}\rho(a_{j}^{*}+b_{j}^{*}
\zeta_{t}), 1-\rho^{2}) (3.8)

for each j  = ı, 2,  K . The random draws of  \omega_{t} are generated by inverse distribution methods.
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3.1.2 Step 2

Given the mixture component indicators  \omega_{t} and the other states and parameters, the SV model
can be expressed in linear Gaussian state space form:

 \hat{y}_{t}=\mu_{h}+x_{t,1}+x_{t,2}+v_{\omega_{t}}u_{t,1} , (3.9)

 x_{t+1,1}=\phi_{1}x_{t,1}+\sigma_{1}u_{t,2} , (3.10)

 x_{t+1,2}=\phi_{2}x_{t,2}+\sigma_{2}(d_{t}\rho(a_{\omega_{t}}^{*}+b_{\omega_{t}
}^{*}u_{t,1})+\sqrt{1-\rho^{2}}u_{t,3})+J_{t}Z_{t}^{v} , (3.11)

where  \hat{y}_{t}=y_{t}^{*}-s_{t}-a_{t}+m_{\omega_{t}},  (u_{t,1}, u_{t,2}, u_{t,3})'\sim \mathcal{N}_{3}(0, I) , and  \mathcal{N}_{p}(m, V) denotes a  p‐variate
normaı distribution with mean vector  m and covariance matrix V.

(i) Sampling the parameters  \psi=(\phi_{1}, \phi_{2}, \sigma_{1}, \sigma_{2}, \rho) . We take the sampling density:

 g(\psi|\hat{y}, d, \omega)\propto g(\hat{y}|d, \omega, \psi)\pi(\psi) , (3.12)

where  \hat{y}=(\hat{y}_{1}, \ldots,\hat{y}_{T})',  d=(d_{1}, \ldots, d_{T})' , and  \omega=(\omega_{1}, \ldots, \omega_{T}) . The density  g(\hat{y}|d, \omega, \psi)
is evaluated by the output of the Kalman filter for the state‐space model in  (3.9)-(3.11) .

 \pi(\psi) is a given prior density on  \psi . Following the approach of Omori et al. [6], we generate
the random draws of parameters  \psi using a Metropolis‐Hastings algorithm with a proposal
density based on a truncated multivariate normal distribution.

(ii) Sampling  (x_{t,1}, x_{t,2}, \mu_{h}) . We apply a forwards filtering, backwards sampling algorithm by
means of Software.

3.1.3 Step 3

Let  \beta_{k}^{*}=(\beta_{k},\dot{\beta}_{k})' be a state vector. Conditional on the other states and parameters, the state‐

space model for smoothing splines to estimate seasonal component  \beta=(\beta_{1}, \ldots, \beta_{K})' can be

expressed as

 \hat{y}_{k}=h'\beta_{k}^{*}+\varepsilon_{k}, \varepsilon_{k}\sim \mathcal{N}(0,
\hat{v}_{k}^{2}) , (3.13)

 \beta_{k+1}^{*}=F\beta_{k}^{*}+u_{k}, u_{k}\sim \mathcal{N}(0, c_{k}^{2}
\tau_{s}^{2}U) (3.14)

for  k=1,2 , ,  K where

  \hat{y}_{k}=\hat{v}_{k}^{2}\sum_{\{t:H_{tk}=1\}}(y_{t}^{*}-\mu-x_{t,1}-x_{t,2}
-a_{t}-m_{\omega_{t}})v_{\omega_{t}}^{-2} , (3. 15)

  \hat{v}_{k}^{2}=(\sum_{\{t:H_{tk}=1\}}v_{\omega_{t}}^{-2})^{-1} (3.16)

 h=(\begin{array}{l}
1
0
\end{array}) , F=(\begin{array}{ll}
1   {\imath}
0   l
\end{array}) , U=(\begin{array}{ll}
1/3   {\imath}/2
1/2   1
\end{array}) , (3.17)
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and  c_{k} are a known scale factor for the variance. In this model,  \beta and  \tau^{2} have to be estimated.

We let  \beta^{*}=(\beta_{1}^{*}, \ldots, \beta_{K}^{*}) and  \hat{y}=(\hat{y}_{1}, \ldots,\hat{y}_{K})' and assume a prior density  \tau_{s}^{2}\sim p(\tau_{s}^{2}) . Then,
the posterior distribution of  \beta^{*} and  \tau_{s}^{2} given  \hat{y} is

 p ( \beta^{*}, \tau_{s}^{2}|\hat{y})\propto p(\tau_{s}^{2})\prod_{k=1}^{K}
p(\hat{y}_{k}|\beta_{k}^{*})p(\beta_{k+1}^{*}|\beta_{k}^{*}, \tau_{s}^{2}) . (3.18)

We generate  \beta^{*} and  \tau^{2} from the distribution of (3.18) using a Metropolis‐Hastings algorithm in

random walk chain. Conditional on the current value,  \tau_{s}^{2(i)} , we draw  \tau_{8}^{2(*)} by  \tau_{S}^{2(*)}\sim \mathcal{N}(\tau_{S}^{2(i)}, w)
and accept with probability

  \min\{1, \frac{(\hat{y}|\tau_{s}^{2(*)})p(\tau_{s}^{2(*)})}{(\hat{y}1\tau_{s}^
{2(i)})p(\tau_{s}^{2(i)})}\} (3.19)

where  p(\hat{y}|\tau_{s}^{2}) are computed by the Kalman filter. If the random draw is accepted, we set
 \tau_{s}^{2(i+{\imath})}=\tau_{s}^{2(*)} and generate  \beta^{*(i+1)}\sim p(\beta^{*}|\tau_{s}^{2(i+1)},\hat{y}) using a forwards filtering, backwards

sampling algorithm. Otherwise set  \tau_{s}^{2(i+1)}=\tau_{s}^{2(i)} and leave  \beta^{*} unchanged. The desired random
draws  \beta are obtained from  \beta^{*}.

3.1.4 Step 4

We define a state vector  \alpha_{\dot{i}}^{*},k=(\alpha_{i,k},\dot{\alpha}_{i,k})' . Then, the state‐space model for cubic smoothing
splines to estimate announce components can be obtained as

 \hat{y}_{ik}=h'\alpha_{i,k}^{*}+\varepsilon_{i,k}, \varepsilon_{i,k}\sim 
\mathcal{N}(0,\hat{v}_{i,k}^{2}) (3.20)

 \alpha_{i,k+1}^{*}=F\alpha_{i,k}^{*}+u_{i,k},  u_{i,k}\sim \mathcal{N}(0, \tau_{a}^{2}U) (3.2ı)

for  i=1,  n and  k=1 , 5 where

  \hat{y}_{\dot{x}k}=\hat{v}_{ik}^{2}\sum_{\{t:I_{t\iota k}=1\}}(y_{t}^{*}-\mu-
x_{t,1}-x_{t,2}-s_{t}-m_{\omega_{t}})v_{\omega_{t}}^{-2} , (3.22)

  \hat{v}_{ik}^{2}=(\sum_{\{t:I_{t\iota k}=1\}}v_{\omega_{t}}^{-2})^{-1} (3.23)

The Metropolis‐Hastings algorithm is implemented to generate the random draws of  \alpha and  \tau_{a}

in the same way as Step 3.

3.1.5 Step 5

The joint posterior of A and  \nu is  p(\lambda, v|rest)=p(\nu|rest)p(  \lambda|\nu , rest) where “rest”’ represents the
other states and parameters.

(i) Sampling the degrees of freedom  \nu . We define  w_{t}=(y_{t}-\mu-J_{t}Z_{t}^{y})/V_{t} . It follows that
 (w_{t}|\nu, rest)\sim t_{v} where  t_{\nu} denotes the  Student-t density with  v degrees of freedom. Under

a prior  v\sim \mathcal{D}\mathcal{U}(2,128) where  \mathcal{D}\mathcal{U} is discrete uniform distribution, the posterior density is

obtained as a multinomial distribution  (\nu|w, rest)\sim \mathcal{M}(\pi_{2}^{*} , \pi_{128}^{*}) with probabilities:

  \pi_{\nu}^{*}\propto\prod_{t=1}^{T}p_{\nu}(w_{t}) (3.24)
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for  \nu=2 , 128 where  p_{\nu}(\cdot) represents the  Student-t density with  \nu degrees of freedom.

We use a Metropolis‐Hastings algorithm to sample  \nu . Conditional on the current value,
 \nu^{(i)} , we generate a candidate value  \nu^{(*)} from  \nu^{(*)}\sim \mathcal{D}\mathcal{U}(v^{(i)}-\delta, \nu^{(i)}+\delta) and accept with

probability

  \min\{1, \frac{\prod_{t--1}^{T}p_{\nu(*)}(w_{t})}{\prod_{t=1}^{T}p_{\nu(\iota)
}(w_{t})}\} (3.25)

where the width  \delta is chosen to achieve an acceptance probability between 20% and 50%.

(ii) Sampling the scale factors  \lambda . We define  \varepsilon_{t}^{*}=(y_{t}-\mu-J_{t}Z_{t}^{y})/\sqrt{V_{t}} . Under  (\varepsilon_{t}^{*}|\lambda_{t}, v, rest)\sim
 \mathcal{N}(0, \lambda_{t}) and  (\lambda_{t}|\nu)\sim \mathcal{I}\mathcal{G}(\nu/2, \nu/2) where  \mathcal{I}\mathcal{G} is the inverse gamma distribution, the full
conditional is

 ( \lambda_{t}|v, rest)\sim \mathcal{I}\mathcal{G}(\frac{\nu+1}{2}, \nu+
\varepsilon_{t}^{*2}2) . (3.26)

3.1.6 Step 6

By arranging the  \log‐return (2.1) and the fast‐volatility (3.11), the model given the other states
and parameters is obtained as  (w_{t}|J_{t}, Z_{t}, rest)\sim \mathcal{N}(J_{t}Z_{t}, \Sigma_{t}) , where

 w_{t}=(\begin{array}{l}
y_{t}-\mu
 x_{t+1,2}-\phi_{2}x_{t,2}
\end{array}) , Z_{t}=(\begin{array}{l}
Z_{t}^{y}
Z_{t}^{v}
\end{array}) , \Sigma_{t}=(\begin{array}{ll}
\lambda_{t}V_{t}   \rho\sigma_{2}\sqrt{\lambda_{t}V_{t}}
\rho\sigma_{2}\sqrt{\lambda_{t}V_{t}}   (1-\rho^{2})\sigma_{2}^{2}
\end{array}) . (3.27)

We assume the conjugate priors  J_{t}\sim Bern(\kappa) and  Z_{t}\sim \mathcal{N}(\mu_{z}, \Sigma_{z}) , where Bern is the Bernoulli

distribution,  \mu_{z}=(\mu_{y}, \mu_{v})' and  \Sigma_{z}=diag(a_{y}^{2}, \sigma_{v}^{2}) . Then the full conditionals for the jump times,
 J_{t} , and jump sizes,  Z_{t} are given by

 P(J_{t}=1|rest)= \frac{\kappa\phi(w_{t};\mu_{z},\Sigma_{t}+\Sigma_{z})}{(1-
\kappa)\phi(w_{t};0,\Sigma_{t})+\kappa\phi(w_{t};\mu.,\Sigma_{t}+\Sigma_{z})},
 (Z_{t}|J_{t}=1, rest)\sim \mathcal{N}((\Sigma_{z}^{-{\imath}}+\Sigma_{t}^{-l})^
{-1}(\Sigma_{z}^{-1}\mu_{z}+\Sigma_{t}^{-1}w_{t}), (\Sigma_{z}^{-1}+\Sigma_{t}^{
-1})^{-1}) .

3.1.7 Step 7

We assume the conjugate priors  \kappa\sim \mathcal{B}(a_{k}, b_{k}) and  (\mu_{j}, \sigma_{J}^{2})\sim \mathcal{N}\mathcal{I}\mathcal{G}(m_{j}, c_{j}, 
a_{\dot{j}}, b_{j} ) for  j=y,  v,

where  \mathcal{B} is the beta distribution and  \mathcal{N}\mathcal{I}\mathcal{G} is the normal‐inverse gamma distribution. Then, the
full conditionals are given by

 (\kappa|rest)\sim \mathcal{B}(a_{k}^{*}, b_{k}^{*}) , (3.28)

 (\mu_{y}, \sigma_{y}^{2}|rest)\sim \mathcal{N}\mathcal{I}\mathcal{G}(m_{y}^{*},
c_{y}^{*}, a_{y}^{*}, b_{y}^{*}) , (3.29)

 (\mu_{v}, \sigma_{v}^{2}|rest)\sim \mathcal{N}\mathcal{I}\mathcal{G}(m_{v}^{*},
c_{v}^{*}, a_{v}^{*}, b_{v}^{*}) , (3.30)
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where

 a_{k}^{*}=a_{k}+ \sum_{t=1}^{T}J_{t}, b_{k}^{*}=b_{k}+T-\sum_{t=1}^{T}J_{t} , (3.31)

 c_{j}^{*}=c_{j}+ \sum_{t=1}^{T}J_{t}, c_{j}^{*}m_{j}^{*}=c_{j}m_{j}+\sum_{t=1}^
{T}J_{t}Z_{t}^{j} , (3.32)

 a_{j}^{*}=a_{j}+ \sum_{t=1}^{T}J_{t}, b_{j}^{*}=b_{j}+c_{j}m_{j}^{2}+\sum_{t=1}
^{T}(J_{t}Z_{t}^{j})^{2}-c_{j}^{*}m_{j}^{*2} (3.33)

for  j=y,  v.

3.1.8 Step 8

Under the prior density  \mu\sim \mathcal{N}(m_{\mu}, v_{\mu}) , the full conditional is given by

 ( \mu|rest)\sim \mathcal{N}((\frac{1}{v_{\mu}}+\sum_{t=1}^{T}\frac{1}{V_{t}^{*}
})^{-1}(\frac{m_{\mu}}{v_{\mu}}+\sum_{t=1}^{T}\frac{y_{t}^{*}}{V_{t}^{*}}) , 
(\frac{1}{v_{\mu}}+\sum_{t=1}^{T}\frac{1}{V_{t}^{*}})^{-1}) , (3.34)

where

 V_{t}^{*}=(1-\rho^{2})\lambda_{t}V_{t} (3.35)

 y_{t}^{*}=y_{t}-J_{t}Z_{t}^{y}- \frac{\rho\sqrt{\lambda_{t}V_{t}}}{\sigma_{2}}
(x_{t+1,2}-\phi_{2}x_{t,2}-J_{t}Z_{t}^{v}) . (3.36)

4 Conclusion and the future works

We have discussed a procedure to analyze volatilities of high‐frequency returns based on the
framework of Bayesian modehng. The intraday volatilities have been described as the product of

four components—slow volatility, fast volatility, seasonal effect, and announcement effect. Each

factor of volatility has been sampled through Markov Chain Monte Carlo (MCMC) methods
using a state‐space form.

In the next step, we would apply the estimation procedure to data of   5- \min return for Nikkei

225 Futures. Based on the analyzed result, we would like to propose a new approach to forecast
volatilities in Japan.
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