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1 Introduction

We study the vanishing viscosity limit of the two‐dimensional steady Navier‐Stokes

equations:

\begin{array}{l}
v^{\nu}\cdot\nabla v^{\nu}-\nu\triangle v^{\nu}+\nabla q^{\nu}=g^{\nu}, (x, y)
\in T_{\kappa}\cross \mathbb{R}_{+},
divv^{\nu}=0, (x, y)\in T_{\kappa}\cross \mathbb{R}_{+},
v^{\nu}|_{y=0}=0.
\end{array} (1.1)

Here  \mathbb{T}_{\kappa}=\mathbb{R}/(2\pi\kappa)\mathbb{Z},  \kappa>0 , is a torus with periodicity  2\pi\kappa,  \mathbb{R}_{+}=\{y\in \mathbb{R}|y>0\},
while  v^{\nu}=(v_{1}^{\nu}, v_{2}^{\nu}) and  q^{\nu} are respectively the unknown velocity field and pressure field
of the fluid. The positive constant  \nu is the viscosity coefficient. The vector field  g^{\nu} is an

external force, decaying fast enough at infinity. The usual no‐slip condition is prescribed

at  y=0.

Understanding the behaviour of  v^{\nu} for small  \nu is a classical and difficult problem:  \nabla v^{\nu}

tends to blow‐up near the boundary as  \nuarrow 0 , and the analysis of this so‐called boundary

layer is still a challenging problem. In 1904, L. Prandtl in 1904 suggested asymptotics of
the form

 v^{\nu}(x, y)\sim(V_{1}(x, y/\sqrt{\nu}), \sqrt{\nu}V_{2}(x, y/\sqrt{\nu})) near the boundary,
(1.2)

 v^{\nu}(x, y)\sim v^{0}(x, y) away from the boundary,

where  V=(V_{1}, V_{2})(x, Y) depends on a rescaled variable  Y=y/\sqrt{\nu} . Hence, in the
Prandtl model, the boundary layer has a characteristic scale  \sqrt{\nu} and it connects to an
Euler solution  v^{0} as   Yarrow+\infty . By plugging the expansion in (1.1), one obtains a kind
of reduced Navier‐Stokes system on  V , the Prandtl equation. As pointed out by Prandtl

himself, this formal asymptotics is expected to have a limited range of validity, due to

an instability phenomenon called boundary layer separation. This instability is typical

of flows around obstacles. Roughly, under an adverse pressure gradient in the boundary
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layer, past a certain distance  x=x_{*} from the leading edge of the obstacle, the stress

 \partial_{y}v_{1}^{\nu}|_{y=0} may vanish. This leads to the appearance of a reverse flow for  x>x_{*} , and

detachment of the boundary layer streamlines; see [28].

Mathematically, the importance of this phenomenon has been well recognized in the

analysis of the steady Prandtl model. On one hand, it is known from the works of Oleinik

[25] that given a horizontal velocity  V_{1} at  x=0 satisfying  V_{1}|_{x=0}>0,  \partial_{Y}V_{1}|_{x=0,Y=0}>0,
one can construct a local in  x smooth solution of the Prandtl equation. This result is based

on the so‐called Von Mises transform, which turns the Prandtl equation into a nonlinear

heat equation, with  x as an evolution variable. Moreover, this smooth solution exists as

long as  V_{1}>0 and  \partial_{Y}V_{1}|Y=0>0 . On the other hand, there exists blowing‐up solutions:

it was established recently in [2], see also [10, 23, 4]. Still, these results leave aside the
behaviour of the full system (1.1), and the justification of the Prandtl asymptotics (1.2)
prior to separation. In this note we report a recent progress filling in this gap.

It should be stressed that even if the Prandtl equation is successfully solved the verification

of the Prandtl expansion is highly nontrivial. One reason is the difference of the structure

of the pressure, for in the Prandtl model the pressure field is a prescribed quantity, while

in the Navier‐Stokes model it is an unknown quantity and also the source of nontrivial

nonlocality. To understand the fundamental stability/instability mechanism it is therefore
a good starting point to study the Prandtl expansion around the shear boundary layer, in

which the solvability of the Prandtl equation itself is almost trivial and thus one can focus

on the typical stability property of the boundary layer in the level of the Navier‐Stokes

equations.

Most recent mathematical results on the validity of the Prandtl asymptotics are actually

related to the unsteady Navier‐Stokes equations, even in the case of the shear boundary

layer. In such case, it is now well‐understood that thejustification of the Prandtl approach

requires stringent assumptions on the data. The underlying reason is the presence of many

hydrodynamic instabilities. Even to hope for short time stability, one must impose either

restrictions on the structure of the perturbations [20, 24], or strong regularity assumptions.
As regards the well‐posedness of the Prandtl model, we refer to [19, 17, 6, 1, 22, 30, 9, 18]
and citations therein. As regards the full Navier‐Stokes model, a complete justification of

the Prandtl theory was obtained for analytic data [26, 27, 29] and for the initial vorticity
supported away from the boundary [21, 5]. On the contrary, counterexamples to the  H^{1}

stability of Prandtl expansions of shear flow type was provided by Grenier in [11], using
boundary layer profiles with inflexion points. Even in the favourable case of monotonic

and concave boundary layer profiles, the boundary layer expansion (1.2) is not stable in a
Sobolev framework. This is due to a viscous instability mechanism, the so‐called Tollmien‐
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Schlichting wave. This instability, identified in the first half of the 20th century [3], was
examined by Grenier, Guo and Nguyen [12]. Properly rescaled, their analysis provides
highly growing eigenmodes of the linearized Navier‐Stokes system around a shear flow of

Prandtl type. These eigenmodes have high  x- frequencyn ∼  \nu^{-3/8} , and associated growth

rate  \sigma\sim n^{2/3}\sim\nu^{-1/4} . For arbitrary small  \nu , these high frequencies must have very small

initial amplitude to be controlled on a time scale independent of  \nu : namely, one can only

hope for a short time stability result in functional spaces of Gevrey class 3/2 in  x . A result
in this direction was obtained recently by the authors and N. Masmoudi in [8]. In fact,
the paper [8] is the first contribution that justifies the Prandtl expansion for given data
strictly below the real analytic regularity under the presence of nontrivial high frequency

instability. See [13] for related statements.

Less is known in the steady case. However, the analysis of the Tollmien‐Schlichting

wave in the literature indicates that that the high frequency instability is in fact strongly

connected with the time frequency. Thus, there is a good hope in the steady case to achieve

the stability in the Sobolev framework. This note reports that indeed the linearization

around the shear boundary layer  U^{\nu}(x, y)=(U_{s}(y/\sqrt{\nu}), 0) can be well analyzed when

 U_{s}(Y)>0 for  Y>0,  U_{s}(0)=0 , and  U_{s}'(0)>0 , resulting in the nonlinear stability under

suitable assumptions for perturbations. The above conditions on the shear boundary

layer  U are somehow minimal in view of the previous discussion: they forbid reverse flow

and boundary layer separation. Related to the result of this note, the reader is referred

to [15, 16] in the steady case but under the inhomogeneous Dirichlet conditions. For
instance, Guo and Nguyen consider in [15] the steady Navier‐Stokes equations in a half‐
plane, with a positive Dirichlet datum for the horizontal velocity. They construct general

boundary layer expansions for this problem and prove their Sobolev stability through the

use of original energy functionals. Although the result stated in this note is only around

the shear boundary layer, the Prandtl expansion around general boundary layer in the

steady case is recently established in [14]; see Remark 3.

2 Main result

Let  U_{s}=U_{s}(Y)\in C^{2}(\overline{\mathbb{R}_{+}}) such that

 U_{s}(0)=0, U_{s}>0inY>0, Yarrow\infty 1\dot{{\imath}}mU_{s}(Y)=U_{E}>0 , (2.1)

 \partial_{Y}U_{s}(0)>0 , (2.2)

  \sum_{k=1,2}\sup_{Y\geq 0}(1+Y)^{3}|\partial_{Y}^{k}U_{s}(Y)|<\infty . (2.3)
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From the continuity and (2.2) we have  \partial_{Y}U_{s}>0 on  0\leq Y\leq 4Y_{0} for some  Y_{0}\in(0,1 ].
This nondegeneracy near the boundary will be crucial. We then consider the shear flow

 U^{\nu}=(U_{s}^{\nu}(y), 0) , U_{s}^{\nu}(y)=U_{s}(y/\sqrt{\nu}) . (2.4)

Obviously, (2.4) can be seen as a solution of (1.1), setting  g^{\nu}=-\nu\partial_{y}^{2}U^{\nu} and  q^{\nu}=0 . The
goal of the paper is to establish stability estimates for this solution of boundary layer

type. Denoting  u^{\nu}=v^{\nu}-U^{\nu} the perturbation induced by  f^{\nu}=g^{\nu}+\nu\partial_{y}^{2}U^{\nu} , we get

 \{\begin{array}{ll}
U_{s}^{\nu}\partial_{x}u^{\nu}+u_{2}^{\nu}\partial_{y}U_{\mathcal{S}}^{\nu}e_{1}
-\nu\triangle u^{\nu}+\nabla p^{\nu}=-u^{\nu}\cdot\nabla u^{\nu}+f^{\nu}   (x, 
y)\in \mathbb{T}_{\kappa}\cross \mathbb{R}_{+},
divu^{\nu}=0 , (x, y)\in \mathbb{T}_{\kappa}\cross \mathbb{R}_{+},   
u^{\nu}|_{y=0}=0.   
\end{array} (2.5)

Here  e_{1}=(1,0) . We then have to specify a functional setting, with   2\pi\kappa periodicity in  x.

Let  \mathcal{P}_{n},  n\in \mathbb{Z} , be the orthogonal projection on the n‐th Fourier mode in variable  x :

 (\mathcal{P}_{n}u)(x, y)=u_{n}(y)e^{i\overline{n}x} , ñ  =   \frac{n}{\kappa},  u_{n}(y)= \frac{1}{2\pi\kappa}\int_{0}^{2\pi\kappa}u(x, y)e^{-i\overline{n}x}dx , (2.6)

The divergence‐free and homogeneous Dirichlet conditions imply  u_{0}=(u_{0,1},0) . Setting

 \mathcal{Q}_{0}u=(I-\mathcal{P}_{0})u , (2.7)

where  I is the identity operator, we can identify  u with the couple  (u_{0,1}, \mathcal{Q}_{0}u) . With this
identification we introduce

 X=\{(u_{0,1}, \mathcal{Q}_{0}u)\in BC(\overline{\mathbb{R}_{+}})\cross W_{0}
^{1,2}(\mathbb{T}_{\kappa}\cross \mathbb{R}_{+})^{2}|  \partial_{y}u_{0,1}\in L^{2}(\mathbb{R}_{+}) ,  u_{0,1}|_{y=0}=0,

  \Vert u\Vert_{X}=\Vert u_{0,1}\Vert_{L^{\infty}(\mathbb{R}_{+})}+
\Vert\partial_{y}u_{0,1}\Vert_{L^{2}(\mathbb{R}_{+})}+\sum_{n\neq 0}\Vert u_{n}
\Vert_{L^{\infty}(\mathbb{R}_{+})}+\Vert \mathcal{Q}_{0}u\Vert_{W^{1,2}(\Gamma_{
\kappa}\cross \mathbb{R}_{+})}<\infty\},
(2.8)

where the Sobolev space  W_{0}^{1,2}(\mathbb{T}_{\kappa}\cross \mathbb{R}_{+}) is defined as the subspace of  W^{1,2}(\mathbb{T}_{\kappa}\cross \mathbb{R}_{+})
with functions having the zero boundary trace on  y=0 . For simplicity we assume that

 f^{\nu}=\mathcal{Q}_{0}f^{\nu} below, though it is not difficult to extend our result to a general case by

imposing a suitable condition on  f_{0}^{\nu}(y) .

Theorem 1 ([7]). There exist positive numbers  \kappa_{0},  \nu_{0},  \epsilon such that the following statement
holds for  0<\kappa\leq\kappa_{0} and  0<\nu\leq\nu_{0} . If  f^{\nu}=\mathcal{Q}_{0}f^{\nu} and  \Vert f^{\nu}\Vert_{L^{2}}\leq\epsilon\nu^{\frac{3}{4}}|\log\nu|^{-1} then there

exists a unique solution  (u^{\nu}, \nabla p^{\nu})\in(X\cap W_{loc}^{2,2}(\mathbb{T}_{\kappa}\cross 
\mathbb{R}_{+})^{2})\cross L^{2}(\mathbb{T}_{\kappa}\cross \mathbb{R}_{+})^{2} to (2.5) such
that

 \Vert u_{0,1}^{\nu}\Vert_{L^{\infty}}+\nu^{\frac{1}{4}}\Vert\partial_{y}u_{0,1}
^{\nu}\Vert_{L^{2}}

 + \sum_{n\neq 0}\Vert u_{n}^{\nu}\Vert_{L^{\infty}}+\nu^{-\frac{1}{4}}\Vert 
\mathcal{Q}_{0}u^{\nu}\Vert_{L^{2}}+\nu^{\frac{1}{4}}\Vert\nabla \mathcal{Q}_{0}
u^{\nu}\Vert_{L^{2}}\leq\frac{C|\log\nu|^{\frac{1}{2}}}{\nu^{\frac{1}{4}}}\Vert 
f^{\nu}\Vert_{L^{2}} , (2.9)

Here  C is independent of  \nu and  \kappa.
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Remark 1. The main structural assumptions of our stability theorems are (2.1) and
(2.2), which are natural in view of the previous comments on boundary layer separation.
Another important requirement is the smallness condition on  \kappa : it means that our stability

result is only local in space.

Remark 2. The perturbation  u^{\nu} converges to a constant shear flow at infinity:

 yarrow+\infty 1\dot{{\imath}}mv^{\nu}=(c^{\nu}, 0) . (2.10)

First, the requirement  \mathcal{Q}_{0}u^{\nu}\in W^{1,2} implies that  \mathcal{Q}_{0}u^{\nu} goes to zero at infinity. Then, as

regards the  x‐average  u_{0}^{\nu}=(u_{0,1}^{\nu},0) , we deduce from the first line of (2.5) and the fact
that  f_{0}^{\nu}=0 :

 -\nu\partial_{y}^{2}u_{0,1}^{\nu}=-\partial_{y}(Q_{0}u_{2}^{\nu}Q_{0}u_{1}
^{\nu})_{0}.
As  \partial_{y}u_{0,1}\in L^{2} , we can integrate this identity from   y=+\infty to deduce

 -\nu\partial_{y}u_{0,1}^{\nu}=-(Q_{0}u_{2}^{\nu}Q_{0}u_{1}^{\nu})_{0}

Eventually, as the right‐hand side belongs to  L^{1} , we find (2.10) with

 c^{\nu}= \frac{1}{\nu}\int_{\mathbb{R}_{+}}(Q_{0}u_{2}^{\nu}Q_{0}u_{1}^{\nu})
_{0}.
Note that this constant at infinity can not be prescribed. Moreover, it obeys the bound

 |c^{\nu}| \leq\frac{C|\log\nu|^{\frac{1}{2}}}{\nu^{\frac{1}{4}}}\Vert f^{\nu}
\Vert_{L^{2}}
as a consequence of estimate (2.9).

Remark 3. Just after our manuscript submission on the arXiv, Y. Guo and S. Iyer have

submitted the very interesting preprint [14]. They establish there the Sobolev stability
of a subclass of Prandtl expansions, the main example of which being the famous Blasius
flow.

3 Key estimate for linearization

The core of the proof of Theorem 1 is the analysis of the linearized system around  U^{\nu}.

Through a Fourier transform in  x , it can be written

 \{\begin{array}{ll}
i\tilde{n}U_{s}^{\nu}u_{n}+u_{n,2}(\partial_{y}U_{s}^{\nu})e_{1}-
\nu(\partial_{y}^{2}-\tilde{n}^{2})u_{n}+ [Matrix]=f_{n} ,   y>0,
i\tilde{n}u_{n,1}+\partial_{y}u_{n,2}=0 , y>0,   
u_{n}|_{y=0}=0.   
\end{array} (3.1)
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We remind that  u_{n}=u_{n}(y) is the n‐th Fourier coefficient of the velocity, and ñ  = n/  \kappa .
Note that  |\pm\tilde{1}| is large if  \kappa is small. The zero mode does not raise any difficulty. The

difficult part is the derivation of good bounds for  \~{n}\neq 0 . For  \kappa small enough, we can

always ensure that  |\~{n}|\gg 1 for all  n . Nevertheless, as  \nu\ll 1 , the tangential diffusion term

 -\nu\tilde{n}^{2}u_{n} in the first line of (3.1) is in general far too small to control the stretching term

 u_{n,2} \partial_{y}U_{s}^{\nu}=O(\frac{1}{\sqrt{\nu}}|u_{n}|) . The key result to (3.1) is stated as follows.

Theorem 2 ([7]). There exist positive numbers  \kappa_{0},  \nu_{0} , and  \delta_{*} such that the following
statement holds for any  0<\kappa\leq\kappa_{0},0<\nu\leq\nu_{0} , and ñ  \neq 0. For any  f_{n}\in L^{2}(\mathbb{R}_{+})^{2} there

exists a unique solution  u_{n}\in H^{2}(\mathbb{R}_{+})^{2}\cap H_{0}^{1}(\mathbb{R}_{+})^{2} to (3.1) satisfying the estimates stated
below:

(i) if   0<\Vert  \~{n}|\leq\nu^{-\frac{3}{7}} then

 \Vert u_{n}\Vert_{L^{2}}\leq\{\begin{array}{l}
\frac{C}{|\tilde{n}|^{\frac{1}{2}}}\Vert f_{n}\Vert_{L^{2}}, 0<|\~{n}| \leq\nu^{
-\frac{3}{8}}
\frac{C}{|\tilde{n}|^{\frac{11}{6}}\nu^{\frac{1}{2}}}\Vert f_{n}\Vert_{L^{2}}, 
\nu^{-\frac{3}{8}}\leq|\~{n}| \leq\nu^{-\frac{3}{7}},
\end{array} (3.2)

  \Vert u_{n}\Vert_{L^{\infty}}\leq\frac{C}{|\tilde{n}|^{\frac{1}{2}}
\nu^{\frac{1}{4}}}\Vert f_{n}\Vert_{L^{2}} , (3.3)

 \Vert\partial_{y}u_{n}\Vert_{L^{2}}+| ñ  | \Vert u_{n}\Vert_{L^{2}}\leq\frac{C}{|\tilde{n}|^{\frac{1}{3}}\nu^{\frac{1}
{2}}}\Vert f_{n}\Vert_{L^{2}} . (3.4)

(ii) if  \nu^{-\frac{3}{7}}\leq|\~{n}|  \leq\delta_{*}\nu^{-\frac{3}{4}} then

  \Vert u_{n}\Vert_{L^{2}}\leq\frac{C}{|\tilde{n}|^{\frac{2}{3}}}\Vert f_{n}
\Vert_{L^{2}} , (3.5)

  \Vert\partial_{y}u_{n}\Vert_{L^{2}}+|\tilde{n}|\Vert u_{n}\Vert_{L^{2}}
\leq\frac{C}{|\tilde{n}|^{\frac{1}{3}}\nu^{\frac{1}{2}}}\Vert f_{n}\Vert_{L^{2}} . (3.6)

(iii) if  |\~{n}|\geq\delta_{*}\nu^{-\frac{3}{4}} then

  \Vert u_{n}\Vert_{L^{2}}\leq\frac{C}{|\tilde{n}|^{2}\nu}\Vert f_{n}
\Vert_{L^{2}} , (3.7)

  \Vert\partial_{y}u_{n}\Vert_{L^{2}}+|\tilde{n}|\Vert u_{n}\Vert_{L^{2}}
\leq\frac{C}{|\tilde{n}|\nu}\Vert f_{n}\Vert_{L^{2}} . (3.8)

As stated in Theorem 2, we distinguish between two regimes:  |\~{n}|\ll\nu^{-3/4} and  |\~{n}|\sim>\nu^{-3/4}.
The regime  |\~{n}|\sim>\nu^{-3/4} is not so difficult in virtue of the strong dissipation due to the

viscosity, and the direct analysis of system (3.1) is possible.

Stability in the regime  |\~{n}|\ll\nu^{-3/4} is the most delicate to obtain. It is deduced from a

careful analysis of the steady Orr‐Sommerfeld system, which is a reformulation of (3.1)
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in terms of the stream function and of the rescaled variable  Y=y/\sqrt{\nu} . It reads

 \{\begin{array}{ll}
OS[\phi]:=U_{s}(\partial_{Y}^{2}-\alpha^{2})\phi-U_{s}"\phi+
i\varepsilon(\partial_{Y}^{2}-\alpha^{2})^{2}\phi=-f_{2}-\frac{i}{\alpha}
\partial_{Y}f_{1},   Y>0,
\phi|_{Y=0}=\partial_{Y}\phi|_{Y=0}=0.   
\end{array}
where parameters  \alpha and  \varepsilon are related to the tangential frequency ñ and the viscosity

 \nu:\alpha=\~{n}\sqrt{}\nu and  \varepsilon= l/ñ. In short, the regime  |\~{n}|\ll\nu^{-3/4} corresponds to the case
 \varepsilon^{1/3}\alpha\ll 1.

The point is that we are not able to get direct estimates on this system. Instead, we

construct the solution through an iterative process, reminiscent of splitting methods in

numerical analysis. More precisely, one main idea is to construct a solution to the Orr‐

Sommerfeld equation in the form of a series, where successive corrections solve alterna‐

tively:
 e inviscid approximations of the equation, based on the so‐called Rayleigh equation.
 \bullet viscous approximations of the equation, based on the so‐called Airy equation.

This idea of a splitting method was already present in our Gevrey stability study of the

unsteady case [8], and found its origin in article [12]: the construction of an unstable
eigenmode for the linearized Navier‐Stokes equations was performed with a similar itera‐

tion, although more explicit and specific to a narrower regime of parameters. Here and in

[8], the convergence of the iteration is rather shown by energy arguments, and adapted to
the whole range  |\~{n}|\ll\nu^{-3/4} . But in the steady setting considered here, we must rely on

estimates that are totally different from the ones in [8], in order to reach Sobolev stability.
Moreover, the implementation of the splitting method is different.

In the inviscid approximation we employ the equation  Ray[\varphi]=f , where the Rayleigh

operator

Ray  :=U_{s}(\partial_{Y}^{2}-\alpha^{2})-U_{s}" (3.9)

corresponds to neglecting the diffusion in the Orr‐Sommerfeld operator. Due to the de‐

generacy of  U_{s} at  Y=0 , the derivation of good bounds is found to be delicate. The most

difficult case is when  \alpha\ll 1 : indeed taking  \alphaarrow 0 in the Rayleigh equation yields a singu‐

lar perturbation problem. A crucial point here is that the singularity shows up only when

the source term  f has nonzero average in  Y . Below we use the notation  \Vert f\Vert=\Vert f\Vert_{L_{Y}^{2}(\mathbb{R}_{+})}.
Proposition 1 (Solvability of Rayleigh equation). Let  f/U_{s}\in L^{2}(\mathbb{R}_{+}) . Then there exists
a unique solution  \varphi\in H^{2}(\mathbb{R}_{+})\cap H_{0}^{1}(\mathbb{R}_{+}) to

 \{\begin{array}{ll}
Ray[\varphi]=f,   Y>0,
\varphi|_{Y=0}=0,   
\end{array} (3.10)
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such that

(i) when  \alpha\geq 1,

  \Vert\partial_{Y}\varphi\Vert+\alpha\Vert\varphi\Vert\leq C\min\{\Vert\frac{Y}
{U_{s}}f\Vert, \frac{1}{\alpha}\Vert\frac{f}{U_{s}}\Vert\} , (3.11)

  \Vert(\partial_{Y}^{2}-\alpha^{2})\varphi\Vert\leq C\min\{\Vert\frac{Y}{U_{s}}
f\Vert, \frac{1}{\alpha}\Vert\frac{f}{U_{s}}\Vert\}+\Vert\frac{f}{U_{s}}\Vert . (3.12)

(ii) when  0<\alpha\leq 1 , if  (1+Y)\sigma[f]\in L^{2}(\mathbb{R}_{+}) with   \sigma[f](Y)=\int_{Y}^{\infty}fdY_{1} in addition,

  \alpha\Vert\varphi\Vert\leq C\alpha\Vert(1+Y)\sigma[f]\Vert+\frac{C}
{\alpha^{\frac{1}{2}}}|\int_{0}^{\infty}fdY| , (3.13)

  \Vert\partial_{Y}\varphi\Vert\leq C(\Vert(1+Y)\sigma[f]\Vert+\Vert f\Vert)+
\frac{C}{\alpha}|\int_{0}^{\infty}fdY| , (3.14)

  \Vert(\partial_{Y}^{2}-\alpha^{2})\varphi\Vert\leq C(\Vert(1+Y)\sigma[f]\Vert+
\Vert\frac{f}{U_{s}}\Vert)+\frac{C}{\alpha}|\int_{0}^{\infty}fdY| . (3.15)

After the inviscid analysis one needs to collect various estimates on viscous equations of

Airy type: they all involve the operator

Airy  :=U_{s}+i\varepsilon(\partial_{Y}^{2}-\alpha^{2}) . (3.16)

The Airy operator is essentially the sum of the Laplacian and the convection. Due to the

absence of the stretching term the analysis of the Airy equation  Airy[\psi]=f is not so
difficult.

Proposition 2 (Solvability of Airy equation). Let  f\in L^{2}(\mathbb{R}_{+}) . Then there exists a
unique solution  \psi\in H^{2}(\mathbb{R}_{+})\cap H_{0}^{1}(\mathbb{R}_{+}) to

 \{\begin{array}{ll}
Airy[\psi]=\varepsilon f,   Y>0,
\psi|_{Y=0}=0,   
\end{array} (3.17)

such that

 \Vert U_{s}\psi\Vert+\varepsilon^{\frac{1}{6}}\Vert\sqrt{U_{s}}\psi\Vert+
\varepsilon^{\frac{1}{3}}\Vert\psi\Vert+\varepsilon^{\frac{2}{3}}(\Vert\partial_
{Y}\psi\Vert+\alpha\Vert\psi\Vert)+\varepsilon\Vert(\partial_{Y}^{2}-\alpha^{2})
\psi\Vert\leq C\varepsilon\Vert f\Vert , (3.18)

and also

 \Vert U_{s}Y\psi\Vert\leq C\varepsilon\Vert Yf\Vert+C\varepsilon^{\frac{4}{3}}
\Vert f\Vert (3.19)

if  (1+Y)f\in L^{2}(\mathbb{R}_{+}) in addition. Moreover, if  f is replaced by  \partial_{y}f or   \frac{f}{Y} , then

 \varepsilon^{\frac{1}{2}}\Vert\sqrt{U_{s}}\psi\Vert+\varepsilon^{\frac{2}{3}}
\Vert\psi\Vert+\varepsilon(\Vert\partial_{Y}\psi\Vert+\alpha\Vert\psi\Vert)\leq 
C\varepsilon\Vert f\Vert . (3.20)

In the case when  f is replaced by   \frac{f}{Y} we also have

 \Vert U_{s}\psi\Vert\leq C\varepsilon^{\frac{2}{3}}\Vert f\Vert . (3.21)

8



9

In Proposition 2 the power  \varepsilon^{\frac{1}{3}} naturally appears due to the balance between  i\varepsilon\partial_{Y}^{2} and

 U_{s}\sim Y\partial_{Y}U_{s}(0) near the boundary. Note that the Rayleigh and Airy operators are

naturally involved within the full Orr‐Sommerfeld operator through the identities, which

are the key in performing the effective iteration:

 OS[ \phi]=Ray[\phi]+i\varepsilon(\partial_{Y}^{2}-\alpha^{2})^{2}\phi=Ray[\phi]
+i\varepsilon(\partial_{Y}^{2}-\alpha^{2})[\frac{1}{U_{s}}Ray[\phi]+
\frac{U_{\mathcal{S}}"}{U_{s}}\phi],
 OS[\phi]=(\partial_{Y}^{2}-\alpha^{2})Airy[\phi]-2\partial_{Y}(U_{s}'\phi) ,

  OS[ \phi]=Airy [\frac{1}{U_{s}}Ray[\phi]]+i\varepsilon(\partial_{Y}^{2}-
\alpha^{2})\frac{U_{s}"}{U_{s}}\phi
These identities are at the basis of the splitting method alluded to above, which provides

a solution to the Orr‐Sommerfeld equation under the form of a converging series. This

construction is called the Rayleigh‐Airy iteration. In this process, a special attention is

paid to the possible singularity generated by the Rayleigh equation when  \alpha\ll 1 , which

could forbid the convergence of the series. In short, one has to ensure that each”Rayleigh

step” is performed with a zero average source term. This major difficulty is new compared

to the unsteady analysis in [8], and leads to a different iteration.

Moreover, the Rayleigh‐Airy iteration is not enough to conclude: it provides a solution

to the Orr‐Sommerfeld equation with a given source term, but this solution does not

satisfy both Dirichlet and Neumann conditions. Only the Dirichlet condition is maintained

through the iteration. One must then combine it with two solutions of the homogeneous

Orr‐Sommerfeld equation (with an inhomogeneous Dirichlet condition  \phi|_{Y=0}=1 ). These
special solutions  \phi_{slow} and  \phi_{fast} are called slow and fast modes, following a terminology

of [12].

Proposition 3 (Construction of slow mode). Let  0<\varepsilon\ll 1 and  0<\alpha\leq 1 . Then there
exists a solution  \phi_{slow}\in H^{4}(\mathbb{R}_{+}) to  OS[\phi_{sl\cdot w}]=0 satisfying the following properties:

  \phi_{slow}=\frac{c_{E}}{\alpha}U_{s}e^{-\alpha Y}+\phi_{slow,re} , where

 \phi_{s}\iota_{ow}(0)=1 , (3.22)

and

  \Vert\partial_{Y}\phi_{slow,re}\Vert+\alpha\Vert\phi_{slow,re}\Vert\leq 
C(\frac{\varepsilon^{\frac{1}{3}}}{\alpha}+1) , (3.23)

  \Vert\partial_{Y}\phi_{slow,re}\Vert_{L^{\infty}}\leq 
C(\frac{\varepsilon^{\frac{1}{12}}}{\alpha}+\frac{1}{\varepsilon^{\frac{1}{4}}}) , (3.24)

  \Vert(\partial_{Y}^{2}-\alpha^{2})\phi_{slow,re}\Vert\leq C(\frac{1}
{\varepsilon^{\frac{1}{6}}\alpha}+\frac{1}{\varepsilon^{\frac{1}{3}}}) . (3.25)
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In particular, we have

  \partial_{Y}\phi_{slow}(0)=\frac{c_{E}U_{s}'(0)}{\alpha}+O(\frac{\varepsilon^{
\frac{1}{12}}}{\alpha}+\frac{1}{\varepsilon^{\frac{1}{4}}}) . (3.26)

Here  c_{E} is a number satisfying the asymptotics  c_{E}= \frac{\partial_{Y}U_{s}(0)}{U_{E}^{2}}+O(\alpha) for  0<\alpha\ll 1.

Proposition 4 (Construction of fast mode). There exists a positive number  \delta_{1} such that
if  0<\varepsilon\ll 1 and  \varepsilon^{\frac{1}{3}}\alpha\leq\delta_{1} then there exists a function  \phi_{fast}\in H^{4}(\mathbb{R}_{+}) satisfying

 OS[\phi_{fast}]=0 and

  \Vert\partial_{Y}\phi_{fast}\Vert+\alpha\Vert\phi_{fast}\Vert\leq\frac{C}
{\varepsilon^{\frac{1}{6}}} , (3.27)

  \Vert(\partial_{Y}^{2}-\alpha^{2})\phi_{fast}\Vert\leq\frac{C}
{\varepsilon^{\frac{1}{2}}} , (3.28)

and also

 \phi_{fast}(0)=1 , (3.29)

  \partial_{Y}\phi_{fast}(0)=(e^{\frac{\pi}{6}i}U_{s}'(0)^{\frac{1}{3}}3^{-\frac
{2}{3}}\Gamma(\frac{1}{3})+O(\varepsilon^{\frac{1}{3}}\alpha)+
O(\varepsilon^{\frac{1}{3}}))\varepsilon^{-\frac{1}{3}} . (3.30)

Here  \Gamma(s) is the Gamma function.

Let us stress that the construction of the slow and fast modes can not be performed

in an abstract way, like for the solution coming from the Rayleigh‐Airy iteration. They

are rather obtained starting from an explicit approximation (of inviscid type for the slow
mode, of viscous “boundary layer type” for the fast mode), which fulfills the inhomoge‐
neous condition, but solves approximately the equation. One can then add a corrector

to get an exact solution, notably making use of the Rayleigh‐Airy iteration developed

earlier. The important point is to show the nondegenerate property

 \det (\begin{array}{ll}
\phi_{slow}(0)   \phi_{fast}(0)
\partial_{Y}\phi_{slow}(0)   \partial_{Y}\phi_{fast}(0)
\end{array})\neq 0,
which enables us to recover the noslip boundary condition for the Orr‐Sommerfel equation.

The proof of the linear stability result in the regime  |\~{n}|\ll\nu^{-3/4} is then achieved.

Once the linear estimates of Theorem 2 are shown, the proof of our main Theorem 1 can

be completed classically by a fixed point argument.
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