
82

Singular vortex dynamics on filtered Euler flows

Takeshi Gotoda

Research Institute for Electronic Science, Hokkaido University

This work is based on joint works with R. Krasny in University of Michigan
and T. Sakajo in Kyoto University.

1 Introduction

1.1 Overview of the theory of turbulence

The turbulent phenomena are caused by the complex interaction of flows in the wide range
of scales. This interaction in turbulent flows transfers the energy sequentially from macro
scales gradually to micro scales where the energy dissipates by the viscosity. This process
is known as the energy cascade. The theory of Kolmogorov [43] gives a mathematical
description to the 3D homogeneous isotropic turbulence (cf. Frisch [28]). In his theory,
it is assumed that the energy dissipation rate should converge to a finite positive value
in the limit of vanishing viscosity. In other words, we can expect that solutions of the
 3D Euler equations, which are formally equivalent to the zero viscous limit of the  3D

Navier‐Stokes equations, with the energy dissipation describe turbulent flows. However,
since smooth solutions of the  3D Euler equations conserve the energy, such an anomalous
energy dissipation occurs only for weak solutions.

Onsager conjectured in [56], without any rigorous proof, that weak solutions of the
 3D Euler equations acquiring a Hölder continuity with the order greater than 1/3 should
conserve the energy, and the energy dissipation could occur when the order is less than 1/3,
which is known as Onsager’s conjecture (cf. Eyink& Székelyhidi [25] or Shvydkoy [62]). As
for the former part of the conjecture, the energy conservation, a slightly weaker statement
was first proved by Eyink [22] and, then, Constantin et al. [13] gave a simple proof
under the assumption that the solution belongs to  L^{3}(0, T;B_{3\infty}^{\alpha}(\mathbb{T}^{3})\cap C([0, T];L^{2}(\mathbb{T}
^{3}))
with  \alpha>1/3 , where  \mathbb{T}^{3} denotes  3D flat torus. Since the index  \alpha in the Besov space
corresponds to the order of a Hölder continuity of functions, their result asserts that the
energy conservation holds in the critical space of Onsager’s conjecture. Subsequently,
the result was proven under a slightly weaker assumption by Duchon and Robert [20]
and Cheskidov et al. [10]. In [20], they defined dissipative weak solutions for the Euler
equations as solutions whose energy dissipation rate is greater than or equal to zero in the
sense of distribution, and then showed that the dissipation rate is zero when the Hölder
continuity of weak solutions is greater than 1/3. Moreover, they showed the 4/3‐law
that is a statistical property in the turbulence theory predicted by Kolmogorov. Another
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important statistical property, the 4/5‐law, has also been shown by Eyink [24]. The latter
half of Onsager’s conjecture, the energy dissipation, has been studied in stages. The
first example of a weak solution that breaks the energy conservation was constructed by
Scheffer [59], which gives a non‐trivial weak solution with a compact support in space
and time  \mathbb{R}^{2}\cross \mathbb{R} . A simpler construction was later shown by Shnirelman [60]. He also
proved the existence of a weak solution whose energy is monotone decreasing [61]. Then,
DeLellis & Székelyhidi [15, 16] extended these results to general dimension  n\geq 2 . Note
that these constructed solutions are just square integrable functions in space and time,
and thus not continuous in general. DeLellis and Székelyhidi have successfully constructed
continuous weak solutions whose energy is not conserved [17]. Subsequently, through
several contributions (cf. Buckmaster [5], Buckmaster et al. [6], De Lellis & Székelyhidi
[16], and Isett [36, 37] ), Buckmaster, DeLellis & Székelyhidi [7] have finally proven the
existence of a weak solution of the  3D Euler equations that does not conserve the energy
and belongs to the space  L^{1}(0,1;C^{1/3-\varepsilon}(\mathbb{T}^{3})) for any  \varepsilon>0.

As we see from the Kolmogorov‐Onsager theory, non‐smooth weak solutions of the  3D

Euler equations with the energy dissipation may play a crucial role in understanding of
 3D turbulence. However, it is uncertain what kind of fluid evolution belongs to the class
of dissipative weak solutions. A motivation of this study is describing such an anomalous
dissipation in terms of the physical dynamics of fluids without losing mathematical rigor.
Especially, we investigate the dynamics of ideal vorticity, called singular vortices, such as
point vortices, vortex sheets, etc., and try to make it clear what kind of vortex dynamics
causes the dissipation. But, since the existence of weak solutions with singular vorticity
has not been established for the  3D Euler equations, it is hard to analyze the evolution
of singular vortices mathematically. To overcome this difficulty, we regularize the Euler
equations in a certain manner so that their solutions with singular vorticity exist, and then
take the limit of the solutions with respect to the regularization parameter. Specifically,
we consider the filtered Euler equations that are derived by applying a spatial filter to the
Euler equations. For instance, the  Euler-\alpha equations proposed by Holm, Marsden & Ratiu
[32] are one of the example of the filtered Euler equations. The   3DEuler-\alpha equations and
the   3DNavier-Stokes-\alpha equations are regarded as physically relevant models of turbulence
(cf. Chen et al. [8, 9], Foias, Holm & Titi [26, 27] and Mohseni et al. [51]). In spite of its
physical significance, it is still hard to tackle the  3D problem mathematically, since, for
example, the existence of global solutions for the   3DEuler-\alpha equations is as yet unknown
(cf. Hou& Li [35]).

For these kinds of difficulties, we focus on the  2D turbulence flow. Many investigations
(cf. Batchelor [4], Kraichnan [39] and Leith [44]) indicate that the  2D turbulence is
characterized by the conservation of the energy and the dissipation of the enstrophy that
is the  L^{2} norm of the vorticity, since there appear two inertial ranges corresponding to
the backward energy cascade and the forward enstrophy cascade in the energy density
spectrum at sufficiently large Reynolds number. Hence, similarly to the  3D problem, we
expect that an enstrophy dissipating solution of the  2D Euler equations describes the
 2D turbulent phenomena. Although the fluid dynamics in  2D flows are different from
the  3D one, the  2D filtered Euler equations provide us with more theoretical advantages
mathematically than the  3D ones in dealing with the present problem.
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1.2 The  2D Euler equations and the enstrophy dissipation

The motion of inviscid incompressible  2D flows is described by the  2D Euler equations,

 \partial_{t}u+(u\cdot\nabla)u+\nabla p=0, divu=0, u(x, 0)=u_{0}(x) , (1)

where  u=u(x, t) is the fluid velocity field and  p=p(x, t) is the scalar pressure. Taking
the curl of (1) and defining the vorticity field by  \omega= curl  u , we obtain the transport
equation for  \omega,

 \partial_{t}\omega+(u\cdot\nabla)\omega=0, \omega(x, 0)=\omega_{0}(x) , (2)

where  \omega_{0}= curl  u_{0} . Then, the velocity  u is recovered from the vorticity  \omega via the Biot‐
Savart law,

 u(x)=(K* \omega)(x)=\int_{\mathbb{R}^{2}}K(x-y)\omega(y)dy , (3)

in which  K denotes a singular integral kernel defined by

 K(x)= \nabla^{\perp}G(x)=-\underline{x^{\perp}} , G(x)=-\frac{1}{2\pi}\log|x| 2\pi|x|^{2}
’

with  \nabla^{\perp}=(\partial_{x_{2}}, -\partial_{x_{1}}) and  x^{\perp}=(x_{2}, -x_{1}) . Here,  G is a fundamental solution to the  2D

Laplacian. The Lagrangian flow map is governed by the following equation,

 \partial_{t}\eta(x, t)=u(\eta(x, t), t) , \eta(x, 0)=x . (4)

Regarding the initial value problem of (2), a unique global weak solution exists for  \omega_{0}\in

 L^{1}(\mathbb{R}^{2})\cap L^{\infty}(\mathbb{R}^{2})[49,63] . The existence theorem can be extended to the case of  \omega_{0}\in

 L^{1}(\mathbb{R}^{2})\cap L^{p}(\mathbb{R}^{2}),   1<p<\infty , though the uniqueness is still open [19]. Furthermore,  a

global solution exists for  \omega_{0} in the space of finite Radon measure on  \mathbb{R}^{2} , denoted by  \mathcal{M}(\mathbb{R}^{2}) ,
with a distinguished sign and its induced velocity  u_{0}\in L_{1oc}^{2}(\mathbb{R}^{2})[18,21,48] . This class
includes vortex sheets but not point vortices. As for the enstrophy dissipation, it has been
shown in [23] that weak solutions of the  2D Euler equations with  \omega_{0}\in L^{p}(\mathbb{R}^{2})\cap L^{1}(\mathbb{R}^{2}) ,
 p>2 can not dissipate the enstrophy in the sense of distributions. Hence, it is necessary
to deal with initial vorticity in a less regular space such as  \mathcal{M}(\mathbb{R}^{2}) to obtain enstrophy
dissipating solutions. But, the global solvability for the  2D Euler equations with  \omega_{0}\in

 \mathcal{M}(\mathbb{R}^{2}) has not been established in general.
In order to construct enstrophy dissipating solutions, we consider the filtered Euler

equations that are a functional generalization of the  Euler-\alpha equations and the vortex
blob method [34]. The  Euler-\alpha equations and the  Navier-Stokes-\alpha equations are effective
models for fluid turbulence even in  2D flows. Indeed, Lunasin et al. [47] numerically
confirmed that the   2DNavier-Stokes-\alpha flow acquired the inertial ranges in the energy
density spectrum that correspond to the backward energy cascade and the forward en‐
strophy cascade for scales larger than  \alpha . On the other hand, the vortex blob method was
introduced by Chorin [11] and Chorin & Bernard [12] to compute the evolution of vortex
sheets [1, 41], and it has been applied to numerical simulations of incompressible flows
[45]. Thus, we expect that the  2D filtered Euler equations are also a relevant model of
 2D turbulent flows and effective to investigate the dynamics of the singular vorticity.
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In this work, we first see the derivation of  2D filtered Euler equations and their global
solvability with initial vorticity in  \mathcal{M}(\mathbb{R}^{2})[29] . Next, we see numerical simulations of the
dynamics of vortex sheets on the filtered Euler flows. This part is the joint work with
Robert Krasny. Here, we use the vortex blob method for the filtering and show some
vortex patterns induced by the roll‐up of vortex sheets. In addition, we compare the
filtered inviscid flow with a viscous flow, that is, the  2D Navier‐Stokes equations from the
viewpoint of the dynamics of vortex sheets. After that we focus on point vortex solutions
of the  2D filtered Euler equations and show the existence of the enstrophy dissipating
solutions. This part is the joint work with Takashi Sakajo. In the numerical study in [58],
it is suggested that solutions of three point vortices in the  Euler-\alpha equations self‐similarly
collapse in the  \alphaarrow 0 limit under certain conditions and dissipate the enstrophy at the
critical time. Considering the existence of self‐similar collapsing solutions in the three
point‐vortex (PV) system [2, 38, 53], we show that there exist point vortex solutions of
three filtered point‐vortex system that converge to self‐similar collapsing solutions of the
thee PV system and dissipate the enstrophy at the time of the triple collapse.

2 The  2D filtered Euler equations

2.1 Derivation and global solvability

We derive the  2D filtered Euler equations on the basis of the framework in [26, 34]. For
an incompressible velocity field  v , we define  u^{\varepsilon} by

 u^{\varepsilon}(x)=(h^{\varepsilon}*v)(x)= \int_{\mathbb{R}^{2}}h^{\varepsilon}
(x-y)v(y)dy, h^{\varepsilon}(x)=\frac{1}{\varepsilon^{2}}h(\frac{x}{\varepsilon}
) (5)

for a radial function  h\in L^{1}(\mathbb{R}^{2}) satisfying   \int_{\mathbb{R}^{2}}h(x)dx=1 . We also define  q and  \omega^{\varepsilon}

by  q= curl  v and  \omega^{\varepsilon}= curl  u^{\varepsilon} . Note that we have  divu^{\varepsilon}=0 and  \omega^{\varepsilon}=h^{\varepsilon}*q when
the convolution commutes with the differential operator. We consider the Hamiltonian
structure with the Hamiltonian,

  \mathscr{E}^{\varepsilon}=\frac{1}{2}\int_{\mathbb{R}^{2}}v(x)\cdot 
u^{\varepsilon}(x)dx,
and the Lagrangian flow map  \eta^{\varepsilon} associated with  u^{\varepsilon} :

 \partial_{t}\eta^{\varepsilon}(x, t)=u^{\varepsilon}(\eta^{\varepsilon}(x, t), 
t) , \eta^{\varepsilon}(x, 0)=x.

Then, the filtered Euler equations arise from an application of Hamilton’s principle as
follows.

 \partial_{t}v+(u^{\varepsilon}\cdot\nabla)v-(\nabla v)^{T}\cdot u^{\varepsilon}
-\nabla\Pi=0, divu^{\varepsilon}=divv=0 , (6)
where  \Pi is a generalized pressure. Taking the curl of (6) with the incompressible condition,
we obtain the transport equation for  q advected by  u^{\varepsilon} :

 \partial_{t}q+(u^{\varepsilon}\cdot\nabla)q=0.

Recalling the Biot‐Savart law,  u^{\varepsilon}=K*\omega^{\varepsilon} , and  \omega^{\varepsilon}=h^{\varepsilon}*q , we obtain the vorticity form
of the  2D filtered Euler equations:

 \partial_{t}q+(u^{\varepsilon}\cdot\nabla)q=0, u^{\varepsilon}=K^{\varepsilon}
*q, K^{\varepsilon}=K*h^{\varepsilon} . (7)
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The difference from the vorticity form of the  2D Euler equations (2) and (3) is that  K^{\varepsilon}

appears in the Biot‐Savart law instead of  K . As shown in [29],  K^{\varepsilon} satisfies the following
properties under the assumptions of Theorem 2.1:

 \bullet  K^{\varepsilon} is bounded in  \mathbb{R}^{2} and  K^{\varepsilon}(0)=0.

 \bullet  K^{\varepsilon} vanishes at infinity with the decay rate  |x|^{-1}.
 \bullet  K^{\varepsilon} is quasi‐Lipschitz continuous.

These facts yield  K^{\varepsilon}\in C_{0}(\mathbb{R}^{2}) , which is the space of continuous functions vanishing
at infinity, and enable us to apply a classical iterative method to construct a unique
Lagrangian flow map. It is also important to remark that  K^{\varepsilon} satisfies  K^{\varepsilon}=\nabla^{\perp}G^{\varepsilon},
where  G^{\varepsilon} is a solution to the  2D Poisson equation,  -AG^{\varepsilon}=h^{\varepsilon} . Since  h is radial,
 G^{\varepsilon}(x)=G_{r}^{\varepsilon}(|x|) is also radial and satisfies

  G^{\varepsilon}(x)=G^{1}( \frac{x}{\varepsilon})-\frac{1}{2\pi}\log\varepsilon . (8)

Then, we have

 K^{\varepsilon}(x)= \frac{x^{\perp}}{\varepsilon|x|}\frac{dG_{r}^{1}}{dr}(\frac
{|x|}{\varepsilon})=K(x)P_{K}(\frac{|x|}{\varepsilon}) , (9)

where  P_{K}(r) is defined by

 P_{K}(r)=-2 \pi r\frac{dG_{r}^{1}}{dr}(r) . (10)

Note that  P_{K}(0)=0 and  P_{k}(r)arrow 1 as   rarrow\infty . We recall that  \mathcal{M}(\mathbb{R}^{2}) denotes the space
of finite Radon measures on  \mathbb{R}^{2} with the norm,

  \Vert\mu\Vert_{\mathcal{M}}=\sup\{\int_{\mathbb{R}^{2}}fd\mu f\in C_{0}
(\mathbb{R}^{2}), \Vert f\Vert_{L^{\infty}}\leq 1\}.
and, for later use, define a weighting function by

 w_{\log}(x)=\{\begin{array}{ll}
(1-\log|x|)^{-1}   |x|\leq 1,
1+ \log|x|   , |x|>1,
\end{array}
and, for consistency, use the notation  w_{\alpha}(x)=|x|^{\alpha} for  x\in \mathbb{R}^{2} . Then, the following
theorem holds .

Theorem 2.1. [29] Suppose that  h\in C_{0}^{1}(\mathbb{R}^{2}\backslash \{0\}) satisfies

 w_{\log}h, w_{1}\nabla h\in L^{\infty}(\mathbb{R}^{2}) , w_{1}h, \nabla h\in L^
{1}(\mathbb{R}^{2}) . (11)

Then, for any initial vorticity  q_{0}\in \mathcal{M}(\mathbb{R}^{2}) , there exists a unique global weak solution of
(7) such that

 \eta^{\varepsilon}\in C^{1}(\mathbb{R};\mathscr{G}) , u^{\varepsilon}\in 
C(\mathbb{R};C(\mathbb{R}^{2};\mathbb{R}^{2})) , q\in C(\mathbb{R};\mathcal{M}
(\mathbb{R}^{2})) ,

where  \mathscr{G} denotes the group of all homeomorphism of  \mathbb{R}^{2} that preserves the Lebesgue mea‐
sure.
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Remark 2.2. The former condition in (11) implies that the smoothing function  h may
have a singularity such that

 h(x)\sim \mathcal{O} (- \log|x|) , \nabla h(x)\sim \mathcal{O}(|x|^{-1}) ,

as  |x|arrow 0 . The latter one in (11) gives the decay rate of  h . All conditions in Theorem 2.1
are described in terms of the smoothing function, which allows us to apply the theorem
to various filtered models including the  Euler-\alpha model and the vortex blob method.

As for the convergence of solutions of (7) to those of the  2D Euler equations, we have
the following theorem.

Theorem 2.3. Let  q_{0}=\omega_{0}\in L^{1}(\mathbb{R}^{2})\cap L^{\infty}(\mathbb{R}^{2}) . Then, for any  T>0 , there exists
 C(T)>0 such that

  \sup_{t\in[0,T]}\sup_{x\in \mathbb{R}^{2}}|\eta^{\varepsilon}(x, t)-\eta(x, t)
|\leq C(T)\varepsilon^{e-T}

2.2  Euler-\alpha model

The  Euler-\alpha model was first introduced in [32, 33] as the higher dimensional Camassa‐
Holm equations on the basis of the Euler‐Poincaré variational framework or Lagrangian
averaging to the Euler equations [50]. A remarkable property of this model is that the
filtered velocity  u^{\alpha} is written by  u^{\alpha}=(1-\alpha^{2}\triangle)^{-1}v . Thus, the smoothing function  h^{\alpha}

in (5) is defined by a fundamental solution for the operator   1-\alpha^{2}\triangle , that is,

 h^{\alpha}(x)= \frac{1}{2\pi\alpha^{2}}K_{0}(\frac{|x|}{\alpha}) ,

in which  K_{0} denotes the modified Bessel function of the second kind. It is important to
remark that  K_{0} has a singularity at the origin like  K_{0}(r)\sim-\log r as  rarrow 0 and decays
exponentially. Since the velocity  v is explicitly expressed by the filtered velocity  u^{\alpha} , we
find the following filtered Euler equations for  u^{\alpha}.

 (1-\alpha^{2}\triangle)\partial_{t}u^{\alpha}+u^{\alpha}\cdot\nabla(1-
\alpha^{2}\triangle)u^{\alpha}+(\nabla u^{\alpha})^{T}\cdot(1-\alpha^{2}
\triangle)u^{\alpha}=\nabla\Pi,

which are known as the  Euler-\alpha equations. Moreover, there exist a unique global weak
solution for initial vorticity  q_{0}\in \mathcal{M}(\mathbb{R}^{2}) , and a weak solution for  q_{0}\in L^{\infty}(\mathbb{R}^{2})\cap L^{1}(\mathbb{R}^{2})
converges to that of the Euler equations (2) in the  \alphaarrow 0 limit [55]. The convergence to
the  2D Euler equations is extended to the case of  q_{0}\in \mathcal{M}(\mathbb{R}^{2}) with a distinguished sign
and  v_{0}\in L_{1oc}^{2}(\mathbb{R}^{2})[3] . Since we have

 K^{\alpha}=\nabla^{\perp}G^{\alpha}, -AG^{\alpha}(x)=h^{\alpha}(x) ,

 G^{\alpha},  K^{\alpha} are explicitly given by

 G^{\alpha}(x)=G_{r}^{\alpha}(|x|)=- \frac{1}{2\pi}[\log|x|+K_{0}(\frac{|x|}
{\alpha})] ,

 K^{\alpha}(x)=- \frac{1}{2\pi}\frac{x^{\perp}}{|x|^{2}}B_{K}(\frac{|x|}{\alpha}
)=K(x)B_{K}(\frac{|x|}{\alpha}) ,
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where  B_{K}(r)=1-rK_{1}(r) and  K_{1} is the first order modified Bessel function of the second

kind. Note that  G^{\alpha} is bounded,  K^{\alpha}(0)=0 and  B_{K}(r)=-2\pi r(dG_{r}^{\alpha=1}/dr)(r) .

2.3 Vortex blob method

In the vortex blob method, the filtered integral kernel  K^{\sigma} is given by

 K^{\sigma}(x)=- \frac{1}{2\pi}\frac{x^{\perp}}{|x|^{2}+\sigma^{2}}.
This regularization is also a example of the filtered Euler equations. Indeed, replacing the
function  h^{\varepsilon} in (5) by

 h^{\sigma}(x)= \frac{1}{2\pi\sigma^{2}}\psi(\frac{|x|}{\sigma}) , \psi(r)=\frac
{2}{(r^{2}+1)^{2}},
we find that  K^{\sigma} satisfies  K^{\sigma}=\nabla^{\perp}G^{\sigma} with  -AG^{\sigma}=h^{\sigma} . Then,  G^{\sigma} is expressed by

 G^{\sigma}(x)=G_{r}^{\sigma}(|x|)=- \frac{1}{2\pi}\log\sqrt{|x|^{2}+\sigma^{2}}
,
and  K^{\sigma} is rewritten by

 K^{\sigma}(x)=K(x) \Psi(\frac{|x|}{\sigma}) , \Psi(r)=-2\pi r\frac{dG_{r}
^{\sigma=1}}{dr}(r)=\frac{r^{2}}{r^{2}+1}.
Note that both  G^{\sigma} and  K^{\sigma} are bounded on  \mathbb{R}^{2} . Compared with  h^{\alpha} in the  Euler-\alpha model,
 h^{\sigma} is a bounded function and decays algebraically, that is, it is less singular and has slower
decay than  h^{\alpha} . As for the convergence to the  2D Euler equations in the  \sigmaarrow 0 limit, it
has been shown in [46] that the vortex blob methods converge to weak solutions of the
 2D Euler equations provided that initial vorticity belongs to  \mathcal{M}(\mathbb{R}^{2}) with a distinguished
sign and its velocity field in  L_{1oc}^{2}(\mathbb{R}^{2}) .

3 The motion of vortex sheets on filtered inviscid flows

3.1 Preceding result for single vortex sheet

A vortex sheet in a  2D inviscid flow can be described by a complex curve,

 z(\Gamma, t)=x(\Gamma, t)+iy(\Gamma, t) ,

where  \Gamma is a Lagrangian parameter describing the circulation. We consider the evolution
of vortex sheets governed by the Birkhoff‐Rott equation that is formally derived from the
 2D Euler equations:

  \frac{\partial}{\partial t}\overline{z}(\Gamma, t)=\frac{1}{2\pi i}\int_{-
\infty}^{\infty}\frac{1}{z(\Gamma,t)-z(\overline{\Gamma},t)}d\overline{\Gamma} , (12)

88



89

in which 7 denotes complex conjugate of  z and the integral in the right side is Cauchy
principal value. Suppose that   p(\Gamma, t)=z(\Gamma, t)-\Gamma is periodic in  \Gamma with period 1. Then,
(12) is rewritten by

  \frac{\partial}{\partial t}\overline{z}(\Gamma, t)=\frac{1}{2i}\int_{0}^{1}
\cot\pi(z(\Gamma, t)-z(\overline{\Gamma}, t))d\overline{T} . (13)

We give initial data of (13) by  z(\Gamma, 0)=\Gamma+p(\Gamma, 0) , where   z(\Gamma, t)=\Gamma is a steady solution
and  p(\Gamma, 0) is a small periodic perturbation. Due to the Kelvin‐Helmholtz instability, the
initial value problem of the Birkhoff‐Rott equation seems to be ill‐posed. Indeed, the
asymptotic analysis by Moore in [52] has shown that, for the smooth initial data given by

 z(\Gamma, 0)=\Gamma+i\varepsilon\sin\Gamma,

a singularity forms in the vortex sheet at the critical time  t_{c} satisfying

 1+ \frac{t_{c}}{2}+\ln t_{c}=\ln\frac{4}{\varepsilon}.
Moreover, Krasny gave the numerical evidence of the singularity formation in [40] with
the numerical computation of vortex sheets by using the point‐vortex approximation. In
that study, we consider the discretization of the Birkhoff‐Rott equation (13):

  \frac{d}{dt}\overline{z}_{j}=\frac{1}{2iN}\sum_{k\neq j}^{N}\cot\pi(z_{j}-
z_{k}) , (14)

where  z_{\dot{j}}(t)=z(\Gamma_{j}, t) and  \Gamma_{j}=(j-1)/N,  j=1,  N . Initial data is given by  z_{j}(0)=
 \Gamma_{j}+p(\Gamma_{j}, 0) . Note that (14) is equivalent to

  \frac{dx_{j}}{dt}=-\frac{1}{2N}\sum_{k\neq j}^{N}\frac{s\dot{{\imath}}
nh2\pi(y_{j}-y_{k})}{\cosh 2\pi(y_{\dot{j}}-y_{k})-\cos 2\pi(x_{j}-x_{k})},
(15)

  \frac{dy_{j}}{dt}=\frac{1}{2N}\sum_{k\neq j}^{N}\frac{s\dot{{\imath}}
n2\pi(x_{j}-x_{k})}{\cosh 2\pi(y_{j}-y_{k})-\cos 2\pi(x_{j}-x_{k})}.
To compute the dynamics of vortex sheets beyond the critical time of the singularity
formation, Krasny introduced the filtered model of (15) with the vortex blob method [41].

  \frac{dx_{j}}{dt}=-\frac{1}{2N}\sum_{k\neq j}^{N}\frac{s\dot{{\imath}}
nh2\pi(y_{j}-y_{k})}{\cosh 2\pi(y_{\dot{j}}-y_{k})-\cos 2\pi(x_{j}-x_{k})+
\sigma^{2}},
(16)

  \frac{dy_{j}}{dt}=\frac{1}{2N}\sum_{k\neq j}^{N}\frac{s\dot{{\imath}}
n2\pi(x_{j}-x_{k})}{\cosh 2\pi(y_{j}-y_{k})-\cos 2\pi(x_{j}-x_{k})+\sigma^{2}}.
We note that (16) has no singularity in the right side for  \sigma>0 and the global solution ex‐
its. Figure 1 shows numerical solutions of (16) with initial data  z_{j}(0)=\Gamma_{j}+0.0l\sin 2\pi\Gamma_{j}.
We see the roll‐up of the vortex sheet and the solution with  \sigma=0.25 has more turns in
the core than that with  \sigma=0.5.
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Figure 1: Numerical simulations of the single vortex sheet with the vortex blob method. The figure in
the left is the plot of approximating point vortices and the right is the interpolating curve. We plot the
solutions with  \sigma=0.5 in the interval  [0,1] and  \sigma=0.25 in [1, 2].

3.2 Numerical simulation of double vortex sheet

We see the motion of double vortex sheets on the filtered inviscid flow with the vortex

blob method. The evolution of the double vortex sheet is described by the following
Birkhoff‐Rott equations.

  \frac{\partial}{\partial t}\overline{z}^{+}(\Gamma, t)=\frac{1}{2\pi i}\int_{-
\infty}^{\infty}\frac{d\overline{r}}{z^{+}(\Gamma,t)-z^{+}(\overline{\Gamma},t)}
-\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{d\overline{\Gamma}}{z^{+}(\Gamma,
t)-z^{-}(\overline{\Gamma},t)},
(17)

  \frac{\partial}{\partial t}\overline{z}^{-}(\Gamma, t)=-\frac{1}{2\pi i}\int_{
-\infty}^{\infty}\frac{d\overline{\Gamma}}{z^{-}(\Gamma,t)-z^{-}
(\overline{\Gamma},t)}+\frac{1}{2\pi i}\int_{-\infty}^{\infty}
\frac{d\overline{\Gamma}}{z^{-}(\Gamma,t)-z^{+}(\overline{\Gamma},t)}
with initial vortex sheets expressed by

 z^{+}( \Gamma, 0)=\Gamma+i\frac{d}{2}+p^{+}(\Gamma, 0) , z^{-}(\Gamma, 0)=
\Gamma-i\frac{d}{2}+p^{-}(\Gamma, 0) ,

where  z^{+} and  z^{-} describe the upper vortex sheet and the lower vortex sheet respectively.
The constant  d denotes the distance between two vortex sheets. Under the periodic
condition on  \Gamma , the discretization of (17) is expressed by

  \frac{dx_{j}^{\pm}}{dt}=-\frac{1}{2N}\sum_{k\neq j}^{N}\frac{\sinh 2\pi(y_{j}^
{\pm}-y_{k}^{\pm})}{\cosh 2\pi(y_{\dot{j}}^{\pm}-y_{k}^{\pm})-\cos 
2\pi(x_{\dot{j}}^{\pm}-x_{k}^{\pm})}
 + \frac{1}{2N}\sum_{k\neq j}^{N}\frac{s\dot{{\imath}}nh2\pi(y_{j}^{\pm}-y_{k}^{
\mp})}{\cosh 2\pi(y_{j}^{\pm}-y_{k}^{\mp})-\cos 2\pi(x_{j}^{\pm}-x_{k}^{\mp})},
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Figure 2: Numerical solutions of the filtered Birkhoff‐Rott equations with  \varepsilon=0.01,  k=2,  d=0.05 and
 \sigma=0.15 . The left figure is a solution for the anti‐symmetric mode and the right is for the symmetric
one.
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Figure 3: Numerical solutions of the filtered Birkhoff‐Rott equations with a combination of the anti‐
symmetric and symmetric initial data  (d=0.05, \sigma=0.15) . The left figure is the anti‐symmetric with
 \varepsilon=0.01,  k=3 and the symmetric with  \varepsilon=0.015,  k=3 . The right is the anti‐symmetric with  \varepsilon=0.06,
 k=3 and the symmetric with  \varepsilon=0.02,  k=6.

  \frac{dy_{j}^{\pm}}{dt}=\frac{1}{2N}\sum_{k\neq j}^{N}\frac{\sin 2\pi(x_{j}
^{\pm}-x_{k}^{\pm})}{\cosh 2\pi(y_{j}^{\pm}-y_{k}^{\pm})-\cos 2\pi(x_{j}^{\pm}-
x_{k}^{\pm})}
 - \frac{1}{2N}\sum_{k\neq j}^{N}\frac{s\dot{{\imath}}n2\pi(x_{j}^{\pm}-x_{k}
^{\mp})}{\cosh 2\pi(y_{j}^{\pm}-y_{k}^{\mp})-\cos 2\pi(x_{j}^{\pm}-x_{k}^{\mp})}
.

For the numerical simulation, we use the following initial data that comes from the sta‐
bility analysis for the linearized system.

 z^{\pm}( \Gamma, 0)=\Gamma_{j}\pm i\frac{d}{2}+\varepsilon(\mp\sqrt{1-E_{k}}+
i\sqrt{1+E_{k}})\sin(2\pi k\Gamma_{j}) , (18)

 z^{\pm}( \Gamma, 0)=\Gamma_{j}\pm i\frac{d}{2}+\varepsilon(\sqrt{1+E_{k}}\mp 
i\sqrt{1-E_{k}})\sin(2\pi k\Gamma_{j}) , (19)

where  E_{k}=e^{-kd} . We call (18) the anti‐symmetric mode and (19) the symmetric mode.
The filtered model is derived in the same manner as (16). Figure 2 shows numerical
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simulations for the anti‐symmetric mode and the symmetric mode. Note that initial
vortex sheets are approximated by  N=200 point vortices and we apply the insertion
of new points due to the stretching of the vortex sheets. As we see in the figures, the
anti‐symmetric mode produces the pattern similar to the Kármán vortex sheet and, on
the other hand, the pattern of the symmetric mode is close to the jet [42]. Changing
the parameters in initial data, we can observe various vortex sheet patterns, see [57].
Moreover, we consider the initial data given by linear combinations of the anti‐symmetric
and symmetric modes. Figure 3 shows some characteristic patterns produced by linearly
combined initial data, which are observed in the real flows [14]. Note that these vortex
patterns can be also produced in the single vortex sheet model [42].

3.3 Motion of vortex sheets in  2D viscous flows

We now see the motion of vortex sheets in the viscous flow governed by the  2D Navier‐
Stokes equations. Let  u be the velocity field. We introduce the vorticity  \omega= curl  u and
the stream function  \psi such that  u=(\partial\psi/\partial y, -\partial\psi/\partial x) . Then, the  2D Navier‐Stokes
equations yield

  \frac{\partial\omega}{\partial t}+\frac{\partial\psi}{\partial y}
\frac{\partial\omega}{\partial x}-\frac{\partial\psi}{\partial x}
\frac{\partial\omega}{\partial y}=\nu\triangle\omega, \frac{\partial^{2}\psi}
{\partial x^{2}}+\frac{\partial^{2}\psi}{\partial y^{2}}=-\omega , (20)

where  \nu corresponds to the viscosity. Although we suppose that initial vorticity is con‐
centrated on the  2D curve  z(\Gamma, 0)=x(\Gamma, 0)+iy(\Gamma, 0) , we regularize it for the numerical
simulation. The velocity field  u_{0}(x, y)=(u_{0}(x, y), v_{0}(x, y)) induced by the vorticity on
 z(\Gamma, 0) is described by

 u_{0}(x, y)-iv_{0}(x, y)=- \frac{1}{2}\int_{0}^{1}\frac{\sinh 2\pi(y-y\gamma+is
\dot{{\imath}}n2\pi(x-\overline{x})}{\cosh 2\pi(y-y\gamma-\cos 2\pi(x-
\overline{x})}d\overline{\Gamma} , (21)

where  \overline{z}=z(\overline{\Gamma}, 0) . Then, the vortex blob method gives the filtered velocity field of (21):

 u_{0}^{\sigma}(x, y)-iv_{0}^{\sigma}(x, y)=- \frac{1}{2}\int_{0}^{1}\frac{\sinh
2\pi(y-\overline{y})+\dot{z}s\dot{{\imath}}n2\pi(x-\overline{x})}{o,h2\pi(y-
y\gamma-\cos 2\pi(x-\overline{x})+\sigma^{2}}d\overline{\Gamma},
and the filtered vorticity,

  \omega_{0}^{\sigma}(x, y)=\pi\sigma^{2}\int_{0}^{1}\frac{\cosh 2\pi(y-y\gamma+
\cos 2\pi(x-\overline{x})}{(\cosh 2\pi(y-y\gamma-\cos 2\pi(x-\overline{x})+
\sigma^{2})^{2}}d\overline{\Gamma} . (22)

We use (22) as initial vorticity of (20). To see the motion of vortex sheets in (20), we
consider tracer points  x_{n}(0)=(x_{n}(0), y_{n}(0)),  n=1,\ldots,N that are initially placed on the
curve  z(\Gamma, 0) and governed by

  \frac{d}{dt}x_{n}(t)=u(x_{n}(t), t) .

Figure 4 shows numerical simulations for tracers of the single vortex sheet with the same
initial data in Figure 1 and the double vortex sheet with the same initial data as the right
figure in Figure 3 on the Navier‐Stokes flows. Their patterns of vortex sheets are similar
to solutions of the filtered Birkhoff‐Rott equations if both the viscosity  \nu and the filtering
level  \delta are sufficiently small.
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Figure 4: The left figure is tracers approximating a single vortex sheet on the Navier‐Stokes flow with
 z(\Gamma, 0)=\Gamma+0.01(1-i)\sin(2\pi\Gamma) . The right is tracers approximating double vortex sheets on the
Navier‐Stokes flow with the same initial data as the right figure in Figure 3.

4 Enstrophy dissipation via triple collapse of point vortices

Suppose that the initial vorticity field is represented by a set of  \delta‐distributions,

 q_{0}(x)= \sum_{n=1}^{N}\Gamma_{n}\delta(x-x_{n}^{0}) , (23)

where  x_{n}^{0}=(x_{n}^{0}, y_{n}^{0})\in \mathbb{R}^{2} for  n=1,  N , called  \varepsilon ‐point vortices. The strength  \Gamma_{n}\in \mathbb{R}
corresponds to the circulation around the  \varepsilon‐point vortex at  x_{n}^{0} . Theorem 2.1 shows that
there exists a unique global weak solution to (7) with the initial data (23). More precisely,
we have the following proposition.

Proposition 4.1. [31] Suppose that  h satisfies the assumption of Theorem 2.1. Then,
the solution to (7) with the initial data (23) is expressed by

 q(x, t)= \sum_{n=1}^{N}\Gamma_{n}\delta(x-\eta^{\varepsilon} (x_{n}^{0}, t)) . (24)

Moreover, the point vortices on the filtered Euler flow never collapse.

The evolution of  \varepsilon‐point vortices is described by  x_{n}^{\varepsilon}(t)=\eta^{\varepsilon}(x_{n}^{0}, t) . Owing to Proposi‐
tion 4.1 and (9), the equations (2.1) with the initial vorticity (23) are equivalent to

  \frac{d}{dt}x_{n}^{\varepsilon}(t)=u^{\varepsilon}(x_{n}^{\varepsilon}(t), t)=
-\frac{1}{2\pi}\sum_{m\neq n}^{N}\Gamma_{m}\frac{(x_{n}^{\varepsilon}-x_{m}
^{\varepsilon})^{\perp}}{(l_{mn}^{\varepsilon})^{2}}P_{K}(\frac{l_{mn}
^{\varepsilon}}{\varepsilon}) , (25)

for  n=1,  N , where  l_{mn}^{\varepsilon}(t)=|x_{n}^{\varepsilon}(t)-x_{m}^{\varepsilon}(t)| and  x_{n}^{\varepsilon}(0)=x_{n}^{0} . We call the system (25)
the filtered point‐vortex (FPV) system. According to Proposition 4.1, a weak solution to
the  2D filtered Euler equations provides a solution of the FPV system and vice versa. Let
us see some properties of the FPV system. Considering the relation

 G_{r}^{\varepsilon}(|x|)=- \frac{1}{2\pi}[\log|x|+H_{G}(\frac{|x|}{\varepsilon}
)] , H_{G}(r)=-\log r-2\pi G_{r}^{1}(r) , (26)
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we find that (25) is a Hamiltonian dynamical system, that is,

  \Gamma_{n}\frac{dx_{n}^{\varepsilon}}{dt}=\frac{\partial \mathscr{H}
^{\varepsilon}}{\partial y_{n}^{\varepsilon}}, \Gamma_{n}\frac{dy_{n}
^{\varepsilon}}{dt}=-\frac{\partial \mathscr{H}^{\varepsilon}}{\partial x_{n}
^{\varepsilon}},
with the Hamiltonian,

  \mathscr{H}^{\varepsilon}=-\frac{1}{2\pi}\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_
{n}\Gamma_{m}[\log l_{mn}^{\varepsilon}+H_{G}(\frac{l_{mn}^{\varepsilon}}
{\varepsilon})] (27)

The FPV system (25) for  N\leq 3 is integrable for any strengths of point vortices. It is also
integrable for  N=4 when the total vortex strength is zero, i.e.   \Gamma\equiv\sum_{n=1}^{N}\Gamma_{n}=0 . In the
case  N=4 with  \Gamma\neq 0 or  N\geq 5 , the system is no longer integrable and the dynamics of
 \varepsilon‐point vortices could be chaotic. Let us introduce an important conserved quantity  M^{\varepsilon}

defined by

 M^{\varepsilon}= \sum_{n\neq m}^{N}\Gamma_{n}\Gamma_{m}(l_{mn}^{\varepsilon})
^{2}=2(\Gamma I^{\varepsilon}-(Q^{\varepsilon})^{2}-(P^{\varepsilon})^{2}) ,

which depends only on the distances  l_{mn}^{\varepsilon}.

4.1 Variations of energy and enstrophy

We are concerned with the enstrophy and the energy varying with the evolution of  \varepsilon‐point
vortices, which are derived on the basis of the Novikov’s method [54, 58]. We define the
Fourier transform of  f(x) and the Hankel transform of  f_{r}(|x|)=f(x) by

  \mathscr{F}[f](k)=\frac{1}{2\pi}\int_{\mathbb{R}^{2}}f(x)e^{-ix\cdot k}dx, 
\hat{f}(s)=\mathscr{F}[f](k)=\int_{0}^{\infty}rf_{r}(r)J_{0}(rs)dr
respectively, in which  r=|x| and  s=|k| . The total enstrophy for the filtered vorticity
is given by

  \frac{1}{2}\int_{\mathbb{R}^{2}}|\omega^{\varepsilon}(x, t)|^{2}dx=\frac{1}{2}
\int_{\mathbb{R}^{2}}|\mathscr{F}[\omega^{\varepsilon}](k, t)|^{2}dk=\int_{0}
^{\infty}\pi s\langle|\mathscr{F}[\omega^{\varepsilon}](s, t)|^{2}\}ds,
where {  f \}=\frac{1}{2\pi,1^{2}}\int_{-\pi}^{\pi}f(\theta)d\theta andwedefine t

 hee

nstrophy density spectrum \mathscr{Z}_{N}^{\varepsilon}(s, t)\pi s\langle|\mathscr{F}
[\omega^{\varepsilon}](s, t)\rangle.TheFour\dot{{\imath}}ertransform o fthevorticity (  24)\dot{{\imath}}srepresented b y=

  \mathscr{F}[q](k, t)=\frac{1}{2\pi}\sum_{n=1}^{N}\Gamma_{n}e^{-ikx_{n}
^{\varepsilon}(t)}.
Hence, we have

 | \mathscr{F}[q](k, t)|^{2}=\frac{1}{4\pi^{2}}[\sum_{n=1}^{N}\Gamma_{n}^{2}+
2\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_{n}\Gamma_{m}\cos(k . (x_{n}^{\varepsilon}
(t)-x_{m}^{\varepsilon}(t)))]
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Since  h^{\varepsilon} is radial and  \omega^{\varepsilon}=h^{\varepsilon}*q yields  \mathscr{F}[\omega^{\varepsilon}]=2\pi \mathscr{F}[h^{\varepsilon}]\mathscr{F}
[q] , we obtain

  \mathscr{Z}_{N}^{\varepsilon}(s, t)=\frac{s}{4\pi}|2\pi\hat{h^{\varepsilon}}
(s)|^{2}[\sum_{n=1}^{N}\Gamma_{n}^{2}+2\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_{n}
\Gamma_{m}\frac{1}{2\pi}\int_{-\pi}^{\pi}\cos(sl_{mn}^{\varepsilon}\cos\theta)
d\theta]
 = \frac{s}{4\pi}|2\pi\hat{h^{\varepsilon}}(s)|^{2}[\sum_{n=1}^{N}\Gamma_{n}^{2}
+2\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_{n}\Gamma_{m}J_{0}(sl_{mn}^{\varepsilon})
],

where  J_{0}(s) is a Bessel function of the first kind. Thus, the total enstrophy for the FPV
system is expressed by

  \frac{1}{2}\int_{\mathbb{R}^{2}}|\omega^{\varepsilon}(x, t)|^{2}dx=\int_{0}
^{\infty}\mathscr{Z}_{N}^{\varepsilon}(s, t)ds
 = \frac{1}{4\pi\varepsilon^{2}}\sum_{n=1}^{N}\Gamma_{n}^{2}\int_{0}^{\infty}s|2
\pi\hat{h}(s)|^{2}ds+\frac{1}{2\pi\varepsilon^{2}}\sum_{n=1}^{N}\sum_{m=n+1}^{N}
\Gamma_{n}\Gamma_{m}\int_{0}^{\infty}s|2\pi\hat{h}(s)|^{2}J_{0}(s\frac{l_{mn}
^{\varepsilon}}{\varepsilon})ds.

Here, we use the relation  \hat{h^{\varepsilon}}(s)=\hat{h}(\varepsilon s) . Since the first term in the right side is constant
in time, the variational part of the enstrophy is given by

  \mathscr{Z}^{\varepsilon}(t)\equiv\frac{1}{2\pi\varepsilon^{2}}\sum_{n=1}^{N}
\sum_{m=n+1}^{N}\Gamma_{n}\Gamma_{m}\int_{0}^{\infty}s|2\pi\hat{h}(s)|^{2}J_{0}
(s\frac{l_{mn}^{\varepsilon}(t)}{\varepsilon})ds . (28)

The total energy for the filtered velocity is defined by

  \frac{1}{2}\int_{\mathbb{R}^{2}}|u^{\varepsilon}(x, t)|^{2}dx=\int_{0}
^{\infty}\pi s\langle|\mathscr{F}[u^{\varepsilon}](s, t)|^{2}\rangle ds.
Since  |\mathscr{F}[\omega^{\varepsilon}](k, t)|^{2}=|k|^{2}|\mathscr{F}
[u^{\varepsilon}](k, t)|^{2} , the energy density spectrum  E_{N}^{\varepsilon} is expressed by

 E_{N}^{\varepsilon}(s, t) \equiv\pi s\{|\mathscr{F}[u^{\varepsilon}](s, t)|^{2}
\rangle=\frac{1}{4\pi s}|2\pi\hat{h^{\varepsilon}}(s)|^{2}[\sum_{n=1}^{N}\Gamma_
{n}^{2}+2\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_{n}\Gamma_{m}J_{0}(sl_{mn}
^{\varepsilon})]
Hence, the total energy cut off at a scale larger than   1\ll L<\infty is expressed by

  \int_{L-1}^{\infty}E_{N}^{\varepsilon}(s, t)dr=\frac{1}{4\pi}\sum_{n=1}^{N}
\Gamma_{n}^{2}\int_{\varepsilon L-1}^{\infty}\frac{1}{s}|2\pi\hat{h}(s)|^{2}ds
 + \frac{1}{2\pi}\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_{n}\Gamma_{m}
\int_{\varepsilon L-1}^{\infty}\frac{1}{s}|2\pi\hat{h}(s)|^{2}J_{0}
(s\frac{l_{mn}^{\varepsilon}}{\varepsilon})ds . (29)

The second term is rewritten by

  \int_{\varepsilon L-1}^{\infty}\frac{1}{s}|2\pi\hat{h}(s)|^{2}J_{0}
(s\frac{l_{mn}^{\varepsilon}}{\varepsilon})ds
 = \int_{\varepsilon L-1}^{\infty}\frac{1}{s}J_{0}(s\frac{l_{mn}^{\varepsilon}}{
\varepsilon})ds+\int_{\varepsilon L-1}^{\infty}\frac{1}{s}(|2\pi\hat{h}(s)|^{2}-
1)J_{0}(s\frac{l_{mn}^{\varepsilon}}{\varepsilon})ds,
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and the following approximation holds for a sufficiently large  L.

  \int_{\varepsilon L-1}^{\infty}\frac{1}{s}J_{0}(s\frac{l_{mn}^{\varepsilon}}
{\varepsilon})ds\sim-\log l_{mn}^{\varepsilon}+\log\frac{Le^{\beta}}{2}+\mathcal
{O}(L^{-2}\log L^{-1}) ,

in which  \beta is the Euler’s constant. Taking the   Larrow\infty limit in the non‐constant part of
the total energy (29), we obtain the variational part of the energy:

 E^{\varepsilon}(t) \equiv-\frac{1}{2\pi}\sum_{n=1}^{N}\sum_{m=n+1}^{N}
\Gamma_{n}\Gamma_{m}[\log l_{mn}^{\varepsilon}(t)+\int_{0}^{\infty}\frac{1}{s}(1
-|2\pi\hat{h}(s)|^{2})J_{0}(s\frac{l_{mn}^{\varepsilon}(t)}{\varepsilon})ds]
(30)

Note that the integrand of the second term has no singularity, owing to  2\pi\hat{h}(0)=1.

4.2 The three  \varepsilon‐vortex problem and the enstrophy dissipation

We consider the three  \varepsilon‐point vortex problem, i.e. the FPV system with  N=3 . In order
to take the  \varepsilonarrow 0 limit, we introduce the following scaled variables:

 X_{n}(t)= \frac{1}{\varepsilon}x_{n}^{\varepsilon}(\varepsilon^{2}t+t^{*}) , L_
{mn}(t)=\frac{1}{\varepsilon}l_{mn}^{\varepsilon}(\varepsilon^{2}t+t^{*}) (31)

for  m,  n=\{1,2,3\} with  m\neq n , where  t^{*}\in \mathbb{R} is an arbitrary constant determined later.
Then, the evolution equation for  X_{n}(t) is described by

  \frac{d}{dt}X_{n}=-\frac{1}{2\pi}\sum_{m\neq n}^{3}\Gamma_{m}\frac{(X_{n}-
X_{m})^{\perp}}{L_{mn}^{2}}P_{K}(L_{mn}) , X_{n}(0)=\frac{x_{n}^{\varepsilon}(t^
{*})}{\varepsilon} . (32)

This is a Hamiltonian system with the Hamiltonian,

  \mathscr{H}=-\frac{1}{2\pi}[\Gamma_{2}\Gamma_{3}H_{P}(L_{23}^{2})+\Gamma_{3}
\Gamma_{1}H_{P}(L_{31}^{2})+\Gamma_{1}\Gamma_{2}H_{P}(L_{12}^{2})] , (33)

where  H_{P}(r)=\log\sqrt{r}+H_{G}(\sqrt{r}) , and the invariant quantity,

 M=\Gamma_{2}\Gamma_{3}L_{23}^{2}+\Gamma_{3}\Gamma_{1}L_{31}^{2}+\Gamma_{1}
\Gamma_{2}L_{12}^{2} . (34)

The relative equilibria of (32) are equilateral triangles or collinear configurations, see
Proposition 1 of [30] for its proof. In terms of the scaled variables, the variation of the
enstrophy  \mathscr{Z}^{\varepsilon}(t) is rewritten by

  \mathscr{Z}^{\varepsilon}(t)=-\frac{1}{\varepsilon^{2}}\mathscr{Z}_{0}(\frac{t
-t^{*}}{\varepsilon^{2}}), \mathscr{Z}_{0}(\tau)=-\frac{1}{2\pi}\sum_{n=1}^{N}
\sum_{m=n+1}^{N}\Gamma_{n}\Gamma_{m}Z_{mn}(\tau) , (35)

 Z_{mn}( \tau)=\int_{0}^{\infty}s|2\pi\hat{h}(s)|^{2}J_{0}(sL_{mn}(\tau))ds . (36)

As for the variation of the energy  E^{\varepsilon}(t) , we rewrite (30) as

 E^{\varepsilon}(t)= \mathscr{H}^{\varepsilon}+E_{0}(\frac{t-t^{*}}{\varepsilon^
{2}}), E_{0}(\tau)=-\frac{1}{2\pi}\sum_{n=1}^{N}\sum_{m=n+1}^{N}\Gamma_{n}
\Gamma_{m}E_{mn}(\tau) ,
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 E_{mn}( \tau)=-H_{G}(L_{mn}(\tau))+\int_{0}^{\infty}\frac{1}{s}(1-|2\pi\hat{h}
(s)|^{2})J_{0}(sL_{mn}(\tau))ds.
The energy dissipation rate  \mathscr{D}_{E}^{\varepsilon} is defined by differentiating  E^{\varepsilon}(t) :

  \mathscr{D}_{E}^{\varepsilon}(t)=\frac{1}{\varepsilon^{2}}\frac{dE_{0}}{d\tau}
(\frac{t-t^{*}}{\varepsilon^{2}}) .

Before stating main theorems, let us mention the connection with the self‐similar col‐
lapse of three point vortices in the PV system. The PV system admits two invariants:

 \dot{{\imath}}sM_{pv}=\Gamma_{2}\Gamma_{3}l_{23}^{2}+\Gamma_{3}\Gamma_{1}l_{31}
^{2}+\Gamma_{12}l_{12}^{2} where ldenotes t hedistance between t wopointonei
 stheHam\dot{{\imath}}1

tonian   \mathscr{H}_{pv}=-\frac{1}{2\pi,\Gamma}(\Gamma_{2}\Gamma_{3}\log l_{23}+
\Gamma_{3}\Gamma_{1}\log l_{31}+\Gamma_{1}\Gamma_{2}\log l_{12}) andtheother
vortices. It is well‐known that the condition

  \frac{1}{\Gamma_{1}}+\frac{1}{\Gamma_{2}}+\frac{1}{\Gamma_{3}}=0 , (37)

and  M_{pv}=0 are the necessary and sufficient conditions for three point vortices to collapse
self‐similarly in a finite time [2, 38]. On the other hand, for arbitrary solutions of the FPV
system (32), it follows from (31) that  M^{\varepsilon}=\varepsilon^{2}Marrow 0 as  \varepsilonarrow 0 . Hence, whatever value
of  M^{\varepsilon} we choose, the condition of the existence of the triple collapse of point vortices is
automatically satisfied in the limit of  \varepsilonarrow 0.

To state the theorem, we assume  \Gamma_{1}\geq\Gamma_{2}>0>\Gamma_{3} without loss of generality and
remark that (37) yields  \mathscr{H}^{\varepsilon}=\mathscr{H} . We also introduce the following function and constants
defined only from the strengths  \Gamma_{1} and  \Gamma_{2},

  \psi(r)=(\frac{1}{1+r})^{1/\Gamma_{1}}(\frac{r}{1+r})^{1/\Gamma_{2}}  k_{\pm}=( \frac{\Gamma_{1}+\Gamma_{2}\pm\sqrt{\Gamma_{1}^{2}+\Gamma_{1}
\Gamma_{2}+\Gamma_{2}^{2}}}{\Gamma_{2}})^{2} (38)

and  k_{0} is either  k_{-} or  k_{+} such that

 k_{0}=k \in\{k_{+},k_{-}\}argm\dot{{\imath}}n\psi(\frac{\Gamma_{1}}{\Gamma_{2}}
k) .

Theorem 4.2. [31] Let  h\in C^{1}(\mathbb{R}^{2}) be a positive radial function satisfying (11),   \int_{\mathbb{R}^{2}}h=1,
 w_{3+\eta}h\in L^{\infty}(\mathbb{R}^{2}) with  \eta>0,  w_{1}\nabla h\in L^{1}(\mathbb{R}^{2}) and  h_{r}'<0 . Suppose (37) and the constant
 \mathscr{H}_{c} satisfies

  \frac{\Gamma_{1}^{2}\Gamma_{2}^{2}}{4\pi(\Gamma_{1}+\Gamma_{2})}
\log(\psi(\frac{\Gamma_{1}}{\Gamma_{2}}k_{0})[\psi(\frac{\Gamma_{1}}{\Gamma_{2}}
)]^{-1})<\mathscr{H}_{c}<0 . (39)

We also assume that, for any initial configuration with  \mathscr{H}^{\varepsilon}=\mathscr{H}_{c} , the corresponding
solution of (32) does not converge to a relative equilibrium as either of   tarrow\pm\infty . Then,
there exists a constant  t^{*} such that  l_{mn}^{\varepsilon}(t^{*})arrow 0 as  \varepsilonarrow 0 and

  \varepsilonarrow 01\dot{{\imath}}m\mathscr{Z}^{\varepsilon}=-z_{0}\delta(\cdot
-t^{*}) , \lim_{\varepsilonarrow 0}\mathscr{P}_{E}=0
in the sense of distributions, where  z_{0}= \int_{-\infty}^{\infty}\mathscr{Z}_{0}(\tau)d\tau.
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Theorem 4.2 asserts that the enstrophy variation converges to the  \delta‐measure with
the mass of  -z_{0} as  \varepsilonarrow 0 . However, it is still unknown whether the enstrophy always
dissipates in that limit, since the sign of  z_{0} has not yet been determined. The following
corollary gives a sufficient condition for the enstrophy dissipation, which is described in
terms of the function  Z(r) defined by

 Z(r)= \int_{0}^{\infty}s|2\pi\hat{h}(s)|^{2}J_{0}(s\sqrt{r})ds . (40)

Corollary 4.3. [31] Suppose that  Z(r) is monotone decreasing and concave. Then, for
any initial configuration satisfying the assumptions of Theorem 4.2 and  M\geq 0 , we have
 z_{0}>0 . For the case of  M<0 , we have  z_{0}>0 provided that  Z(r) and  H_{P}(r) satisfy the
additional condition,

 Z"(r)H_{P}'(r)-Z'(r)H_{P}"(r)>0 . (41)

Regarding the  \varepsilonarrow 0 limit of solutions obtained in Theorem 4.2, they converge to the
self‐similar collapsing and expanding solutions in the three PV system.

Theorem 4.4. [31] Under the same assumptions of Theorem 4.2, in the  \varepsilonarrow 0 limit, the
solution of (25) with  N=3 converges to the self‐similar collapsing solution for  t<t^{*} and
the expanding solution for  t>t^{*} with the same value of the Hamiltonian  \mathscr{H}_{pv}=\mathscr{H}_{c} in
the three PV system.

This indicates that the three  \varepsilon‐point vortices collapse self‐similarly at  t=t^{*} in the
 \varepsilonarrow 0 limit. Hence the enstrophy dissipation occurs at the event of the collapse. Since
 M^{\varepsilonarrow 0}=0 is automatically satisfied, only (37) becomes the essential condition for the
self‐similar collapse. In addition, the condition (39) is required, since, in the three PV
system, the Hamiltonian  \mathscr{H}_{pv} should also be in the same range of (39) for the existence of
the self‐similar collapse, see Lemma 1 in [30]. We remark that the divergence of  L_{mn}(t)
plays an essential role in the proofs of Theorem 4.2, 4.4, and that (37) is the necessary
condition for the existence of the enstrophy dissipation via the triple collapse.

Theorem 4.5. [31] Suppose   L_{mn}(t)arrow+\infty as   tarrow\pm\infty for  m\neq n . Then, (37) holds.
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