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1 Introduction and Problems

The hydrodynamical model of semiconductor devices or plasmas is described by the nonlinear

system

\begin{array}{l}
\rho_{t}+div(\rho u)=0,
(\rho u)_{t}+div(\rho u\otimes u+p1_{n})=\rho\nabla\Phi,
(\rho \mathcal{E})_{t}+div(\rho \mathcal{E}u+pu)=\rho u\cdot\nabla\Phi,
\triangle\Phi=\rho-b(x) ,
\end{array} (1.1)

called the Euler‐Poisson system (see [36]). In the system above,  u,  \rho,  p , and  \mathcal{E} represent the
macroscopic particle velocity, electron density, pressure, and the total energy density, respec‐

tively. The electric potential  \Phi is generated by the Coulomb force of particles. The fixed positive

function  b(x)>0 represents the density of fixed, positively charged background ions. In fact, the

system (1.11) can also be used to model the biological transport of ions in channel proteins [4].
The system (1.11) is closed with the aid of definition of specific total energy and the equation
of state

  \mathcal{E}=\frac{|u|^{2}}{2}+\mathfrak{e} and  p=p(\rho, e) , (1.2)
respectively, where  \mathfrak{e} is the internal energy. In this paper, we consider the case for which the

pressure  p and the enthalpy ı  =\mathfrak{e}+   \frac{p}{\rho} are given by

 p(\rho, S)=S\rho^{\gamma} and  1( \rho, S)=\frac{\gamma}{7-1}S\rho^{\gamma-1} , (1.3)
respectively, where we follow the notations in gas dynamics to call the constant  \gamma>1 the

adiabatic constant and the quantity  \ln S entropy. One of the interesting phenomenon for the

system (1.11) is the electric field can provide more stablizing effect. Mathematically speaking,
when  b(x)\equiv b_{0} for some constant  b_{0} , the associated linearized system around trivial steady
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state  (\rho, u, S)=(b_{0},0,\overline{S}) where  \overline{S} is a constant state, is a Klein‐Gordon type system (equation)
which has faster dispersive decay than the wave equations which correspond to the linearized

Euler system. With the aid of this faster dispersive decay and the nice structure of the system

(1.11), the global classical solutions of the system (1.11) with small and smooth irrotational

data were established in [14, 23, 20, 15] in the cases with different spatial dimensions.
A natural problem is to see whether there are some other physically nontrivial steady states.

If there are some nontrivial steady solutions, can we prove the stability of these solutions? The

steady state of the system (1.11) is governed by the following steady Euler‐Poisson system

 \{\begin{array}{l}
div_{x}(\rho u)=0,
div_{x}(\rho u\otimes u)+\nabla p=\rho\nabla_{x}\Phi,
div_{x}(\rho u\mathscr{B})=pu\cdot\nabla_{x}\Phi,
\triangle_{x}\Phi=\rho-b(x) ,
\end{array} (1.4)

where Bernoulli’s function  \mathscr{B} is given by

  \mathscr{B}(\rho, |u|, S)=\frac{|u|^{2}}{2}+e+\frac{p}{\rho}=\frac{|u|^{2}}{2}
+\frac{\gamma}{\gamma-1}S\rho^{\gamma-1} . (1.5)

There are several issues to make the system (1.4) complicated. The first is that (1.4) is a
mixed type system, and its type depends on the Mach number  M which is given by  M= \frac{|u|}{c(\rho)}
for  c(\rho)=\sqrt{p'(\rho)} . Here,  c is called the local sound speed. If  M<1 , then (1.4) can be
decomposed into a nonlinear elliptic system and homogeneous transport equations, and the

flow is said subsonic. If  M>1 , on the other hand, (1.4) can be decomposed into a nonlinear
hyperbolic‐elliptic coupled system and homogeneous transport equations at best, and the flow is

said supersonic. The second issue is that the last equation in (1.4), which is a Poisson equation,

has a nonlocal effect to the other equations in (1.4), and it makes the fluid variables  \rho,  u and
electric potential  \Phi interact in a highly nonlinear way. Also, physical boundary conditions such

as fixed exit pressure give nonlinear boundary conditions for the system (1.4).
In the previous works, some pure subsonic or supersonic solutions are obtained for both

one‐dimensional and multidimensional cases (cf. [9, 10, 38]). For a viscous approximation

of transonic solutions in two dimensional case for the equations of semiconductors, see [13].
However, there have been only a few results for the transonic flows. In the following, we list

several results which are closely related to the present paper. First, a boundary value problem

for (1.9) was discussed in [1] for a linear pressure function of the form   p(\rho)=k\rho , furthermore,
the boundary conditions read  \rho(0)=\rho(L)=\overline{\rho} with  \overline{p} being a subsonic state and the density of

the background charge satisfied  0<b<\rho_{s} . The solution in [1] may contain transonic shock.

On the other hand, since the boundary conditions and the pressure function are special in [1],
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it is desired to consider the more general boundary conditions with more general equation of

states. In [44], a phase plane analysis is given for system (1.9). However, no transonic shock

solutions were constructed in [44]. A transonic solution which may contain transonic shocks

was constructed by Gamba (cf. [12]) by using a vanishing viscosity limit method. However, the
solutions as the limit of vanishing viscosity may contain boundary layers. Therefore, the question

of well‐posedness of the boundary value problem for the inviscid problem can not be answered

by the vanishing viscosity method. Moreover, the structure of the solutions constructed by the

vanishing viscosity method in [12] is shown to be of bounded total variation and possibly contain
more than one transonic shock.

In [33], the authors considered one dimensional solutions of (1.4) with a constant background
charge  b(x)=b_{0}>0 . In particular, in some case there are might be several transonic shock

solution when the boundary conditions are prescribed. Hence it is natural to single out the

physical solutions. Our basic idea is to study structural stability and dynamical stability of

these solutions. Furthermore, the Euler‐Poisson system has one dimensional smooth transonic

solutions which does not happen for one dimensional Euler system. Our another aim is to study

the stability for these smooth transonic solutions.

It is inevitable to consider small perturbations of one dimensional transonic shocks in mul‐

tidimensional domain, but there are very few known results about multidimensional solutions

of Euler‐Poisson system(cf.[12, 13]). Comparing with extensive studies and recent significant

progress on transonic shock solutions of the Euler system(see [6, 8, 46] and references therein),
stability problems for multidimensional transonic flows of the Euler‐Poisson system are essen‐

tially open. The main difference of the Euler‐Poisson system from the Euler system is that the

Poisson equation for electric potential is coupled with the other equations in the Euler‐Poisson

system. And, this makes it hard to analyze even one dimensional solution of the Euler‐Poisson

system. In fact, one dimensional flow of the Euler‐Poisson system behaves very differently from

the one of the Euler system(cf.[33]). And it is even harder to study multidimensional transonic
flow of the Euler‐Poisson system due to nonlinear interaction between the electric potential  \Phi

and all the other fluid variables.

As the first step to investigate stability of multidimensional transonic flow of the Euler‐

Poisson system, we study the unique existence and stability of subsonic flows of steady Euler‐

Poisson system under perturbations of the exit pressure and electric potential difference on

non‐insulated boundary.

There have been quite a few results about existence of subsonic solution of hydrodynamic

equations, which are the Euler‐Poisson system with relaxation, under smallness assumptions on

the flow velocity for both unsteady and steady cases(see [9, 10, 16, 35]). Here we focus on the
system without relaxation.
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1.1 Stbility problems in one dimensional setting

First, consider the boundary value problem for

 \{\begin{array}{l}
(\rho u)_{x}=0,
(p(\rho)+\rho u^{2})_{x}=\rho E,
E_{x}=\rho-b(x)
\end{array} (1.6)

in an interval  0\leq x\leq L with the boundary conditions:

 (\rho, u, E)(0)=(\rho_{l}, u_{l}, E_{l}) , \rho(L)=\rho_{r} . (1.7)

If one denotes  \rho_{l}u_{l}=J , then the velocity is given by

  u=J/\rho . (1.8)

Thus the boundary value problem (1.6) and (1.7) reduce to

 \{\begin{array}{l}
(p(\rho)+\frac{J^{2}}{\rho})_{x}=\rho E,
E_{x}=\rho-b(x) ,
\end{array} (1.9)

with the boundary conditions:

 (\rho, E)(0)=(\rho_{l}, E_{l}) , \rho(L)=\rho_{r} . (1.10)

There is a unique solution  \rho=\rho_{s} for the equation  p'(\rho)=J^{2}/\rho^{2} , which is the sonic state (recall

that  J=\rho u). The flow is called supersonic (respectively subsonic) if

 p'(\rho)<J^{2}/\rho^{2} , i.e.  \rho<\rho_{s} (respectively  p'(\rho)>J^{2}/\rho^{2} , i.e.  \rho>\rho_{s} ).

Definition 1. A piecewise smooth solution  (\rho, E) with  \rho>0 of (8) (or equivalently (2) with

 u= \frac{J}{\rho}) is said to be a transonic shock solution, if it is separated by a shock discontinuity, and

of the form

 (\rho, E)=\{\begin{array}{l}
(\rho_{\sup}, E_{\sup})(x) , 0<x<x_{0},
(\rho_{sub}, E_{sub})(x) , x_{0}<x<L,
\end{array}
satisfying the Rankine‐Hugoniot conditions

 p( \rho_{\sup}(x_{0}-))+\frac{J^{2}}{\rho_{\sup}(x_{0}-)}=p(\rho_{sub}(x_{0}+))
+\frac{J^{2}}{\rho_{sub}(x_{0}+)}, E_{\sup}(x_{0}-)=E_{sub}(x_{0}+) ,
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and is supersonic behind the shock and subsonic ahead of the shock, i. e.,

 \rho_{\sup}(x_{0}-)<\rho_{s}<\rho_{sub}(x_{0}+) , and  \rho_{sub}(x)>\rho_{s} , for  x\in[x_{0}, L].

Problem 1. Is the one dimensional steady transonic shock solution structurally stable when we

perturb the boundary conditions or the background charge  b(x) ‘?

Second, we would like to investigate the dynamical stability of the steady transonic shock

solutions. For a given steady transonic shock solution, one can extend  (\overline{\rho}-,\overline{E}_{-})((\overline{\rho}+,\overline{E}_{+})) to be

a smooth supersonic solution of (1.4) on  [0, x_{0}+\delta]([x_{0}-\delta, L]) for some  \delta>0 , which coincides
with  (\overline{\rho}_{-},\overline{E}_{-})((\overline{\rho}+,\overline{E}_{+})) on  [0, x_{0}]([x_{0}, L]) .

We consider the initial boundary value problem of system of one dimensional Euler‐Poisson

equations:

 \rho_{t}+(\rho u)_{x}=0,

 (\rho u)_{t}+(p(\rho)+\rho u^{2})_{x}=\rho E , (1.11)

 E_{x}=\rho-b(x) ,

with the initial data

 (\rho, u, E)(0, x)=(\rho_{0}, u_{0}, E_{0})(x) , (1.12)

and the boundary condition

 ( \rho, u, E)(t, 0)=(\rho_{l}, \frac{\overline{J}}{\rho_{l}}, E_{l}) , \rho(t, 
L)=\rho_{r} , (1.13)

where  \rho_{l},   E\iota and  \rho_{r} are the same as in (1.10).
We assume that the initial data are of the form

 (\rho_{0}, u_{0})(x)=\{\begin{array}{l}
(\rho_{0-}, u_{0-})(x) , if 0<x<\tilde{x}_{0},
(\rho_{0+}, u_{0+})(x) , if \tilde{x}_{0}<x<L,
\end{array} (1.14)

and

 E_{0}(x)=E_{l}+ \int_{0}^{x}(\rho_{0}(s)-b(s))ds (1.15)

which is a small perturbation of  (\overline{\rho},\overline{u},\overline{E}) . Moreover,  (\rho_{0}, u_{0}, E_{0}) is assumed to satisfy the

Rankine‐Hogoniot conditions as  x=\tilde{x}_{0},

 ((p(\rho_{0+})+\rho_{0+}u_{0+}^{2}-(p(p_{0-})+\rho_{0-}u_{0-}^{2})) (\rho_{0+}-
\rho_{0-})(\overline{x}_{0})
(1.16)

 =(\rho_{0+}u_{0+}-\rho_{0-}u_{0-})^{2}(\tilde{x}_{0}) .

Problem 2. Is the solution for the unsteady problem convergent to the associated steady states ‘?
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1.2 Problem on subsonic flows with zero vorticity

Fix an open, bounded and connected set  \Lambda\subset \mathbb{R}^{n-1}(n\geq 2) with a smooth boundary  \partial\Lambda , and

define a nozzle  \mathcal{N} by

 \mathcal{N}:=\{x=(x', x_{n})\in \mathbb{R}^{n} : x'\in\Lambda, x_{n}\in(0, L)\}
\subset \mathbb{R}^{n} . (1.17)

The nozzle boundary  \partial \mathcal{N} consists of the entrance  \Gamma_{0}=\Lambda\cross\{0\} , the exit  \Gamma_{L}=\Lambda\cross\{L\} , and the

insulated boundary  \Gamma_{w}=\partial\Lambda\cross(0, L) . In order to study the system (1.4) in a multidimensional
domains  \mathcal{N} with arbitrary cross‐section  \Lambda , we consider isentropic irrotational flow where  S=

constant and the velocity  u of the flow is represented by

 u=\nabla\varphi (1.18)

for a scalar function  \varphi which is called a velocity potential function. Then we write  p=p(\rho) . By

(1.4) and (1.18), the second equation in (1.4) can be rewritten as

 \rho\nabla(\mathscr{B}-\Phi)=0 (1.19)

for

  \mathscr{B}=\frac{1}{2}|\nabla\varphi|^{2}+\int_{k_{0}}^{\rho}
\frac{p'(\varrho)}{\varrho}d\varrho . (1.20)

For  \rho>0,  (1.19) implies

 \mathscr{B}-\Phi\equiv K_{0} (1.21)

for a constant  K_{0} . Without loss of generality, we choose  K_{0}=0 . Set

  h( \rho) :=\int_{k_{0}}^{\rho}\frac{p'(\varrho)}{\varrho}d\varrho . (1.22)

Then, the equation (1.21) with  K_{0}=0 implies that  h( \rho)=\Phi-\frac{1}{2}|\nabla\varphi|^{2} . Hence one can rewrite

(1.22) as   \rho=h^{-1}(\Phi-\frac{1}{2}|V\varphi|^{2}) . We use this expression to reduce (1.4) to a nonlinear system of
second order equations for  \varphi and  \Phi :

 div(\rho(\Phi, |\nabla\varphi|^{2})\nabla\varphi)=0 , (1.23)

 \triangle\Phi=\rho(\Phi, |\nabla\varphi|^{2})-b (1.24)

with  \rho>0 given by

  \rho(\Phi, |\nabla\varphi|^{2})=h^{-1}(\Phi-\frac{1}{2}|\nabla\varphi|^{2}) (1.25)
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provided that  h^{-1} is well defined. If we regard (1.23) as an equation for  \varphi , then it is mixed type.

More precisely, (1.23) is elliptic if and only if

 |\nabla\varphi|^{2}<p'(\rho) (subsonic) (1.26)

and is hyperbolic if and only if

 |\nabla\varphi|^{2}>p'(\rho) (supersonic). (1.27)

The system of (1.23) and (1.24) becomes a quasilinear elliptic system if (1.26) holds, and a
hyperbolic‐elliptic coupled system if (1.27) holds.

Our interest is on stability of subsonic solution under perturbations of exit pressure and

electric potential difference on non‐insulated boundary from a fixed point. So the boundary

conditions are formulated as follows. First, for a given function  p_{ex} on  \Gamma_{L} , set

 p(\rho(\Phi, |\nabla\varphi|^{2}))=p_{ex}  on  \Gamma_{L} . (1.28)

On the wall boundary, slip/insulated boundary conditions for  \varphi and  \Phi are prescribed as follows:

 \partial_{n_{w}}\varphi=\partial_{n_{w}}\Phi=0  on  \Gamma_{w} (1.29)

where  n_{w} is the unit inward normal vector on  \Gamma_{w} . We fix a point  x_{0} on  \Gamma_{L} , and prescribe the

electric potential difference between two points  x\in\Gamma_{0}\cup\Gamma_{L} and  x_{0} as follows:

 \Phi(x)-\Phi(x_{0})=\{\begin{array}{l}
\overline{\Phi}_{en}(x) for x\in\Gamma_{0}
\overline{\Phi}_{ex}(x) for x\in\Gamma_{L}
\end{array} (1.30)

In (1.30), the value of  \Phi(x_{0}) is uniquely determined by (1.21) and one point boundary condition
for the Bernoulli’s function:

 \mathscr{B}(x_{0})=\mathscr{B}_{0} . (1.31)

Finally, homogeneous Dirichlet boundary condition for  \varphi is imposed at the entrance:

 \varphi=0  on  \Gamma_{0} . (1.32)

Problem 3. Fix a point  \overline{x}=(\overline{x}_{1},0)\in\Gamma_{0} . Find a solution  (\rho, u,p, \Phi) to (1.4) in  \mathcal{N} satisfying
the boundary conditions  (1.28)-(1.31) .

Suppose the vorticity of the flow is not zero, can we also prove that subsonic solutions

are structurally stable under multidimensional perturbations of boundary conditions? More

precisely, our main concern is to solve the following problem.
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Problem 4. Fix a point  \overline{x}=(\overline{x}_{1},0)\in\Gamma_{0} . Find a solution  (\rho, u,p, \Phi) to (1.4) in  \mathcal{N} satisfying
the boundary conditions

 S=S_{en},  \mathscr{B}=\mathscr{B}_{en},  u\cdot\tau=0  on  \Gamma_{0} , (1.33)

 \Phi-\Phi(\overline{x})=\Phi_{bd}  on  \Gamma_{0}\cup\Gamma_{L} , (1.34)

 u\cdot n_{w}=\partial_{n_{w}}\Phi=0  on  \Gamma_{w} , (1.35)

 p=p_{ex}  on  \Gamma_{L} . (1.36)

2 Main Results

In this section, we give our main results for the study on stability of transonic shock solutions

under one dimensional perturbations, subsonic solutions under multidimensional perturbations.

2.1 Stability of transonic shocks in one dimensional setting

Theorem 1. ([32]) Let  J>0 be a constant, and let  b_{0} satisfy

 0< \min b_{0}(x)\leq\max b_{0}(x)<\rho_{s} (2.1)
 x\in[0,L] x\in[0,L]

and  (\rho_{l}, E_{l}) be a supersonic state  (0<\rho_{l}<\rho_{s}),  \rho_{r} be a subsonic state  (\rho_{r}>\rho_{s}) . If the boundary

value problem (1.9) and  (1.1\theta) admits a unique transonic shock solution  (\rho^{(0)}, E^{(0)}) for the case
when  b(x)=b_{0}(x)(x\in[0, L]) with a single transonic shock located at  x=x_{0}\in(0, L) satisfying

 E^{(0)}(x_{0}+)=E^{(0)}(x_{0}-)>0 , (2.2)

then there exists  \epsilon_{0}>0 such that if

 \Vert b-b_{0}\Vert_{C^{0}[0,L]}=\epsilon\leq\epsilon_{0} , (2.3)

then the boundary problem (1.9) and  (1.1\theta) admits a unique transonic shock solution  (\tilde{\rho},\tilde{E}) with
a single transonic shock locating at some  \tilde{x}_{0}\in[x_{0}-C\epsilon, x_{0}+C\epsilon] for some constant  C>0.

Remark 1. When   b_{0}(x)\equiv const, it should be noted that there are a large class of boundary

data which ensure the existence and uniqueness of the transonic shock solutions satisfying the

assumptions in Theorem 1 , see [33].

Our next result is about dynamical stability of transonic shock in one dimensional setting.
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Theorem 2. ([32]) Let  (\overline{\rho},\overline{u},\overline{E}) be a steady transonic shock solution to system (1.11). Moreover,

there exists a  \delta>0 ( \delta depends on  (\overline{\rho},\overline{u},\overline{E}) ) such that

 \overline{E}_{-}(x_{0})=\overline{E}_{+}(x_{0})>-\delta . (2.4)

Then there exists an  \varepsilon_{0}>0 such that for any  \varepsilon\leq\varepsilon_{0} , if the initial data  (\rho_{0}, u_{0}, E_{0}) satisfy (1.15),

 (1.16) , in the sense that

 |x_{0}-\tilde{x}_{0}|+\Vert(\rho_{0+}, u_{0+})-(\overline{\rho}+,\overline{u}_{
+})\Vert_{H^{k+2}([\check{x}_{0},L])}
(2.5)

 +\Vert(\rho_{0-}, u_{0-})-(\overline{\rho}-,\overline{u}_{-})\Vert_{H^{k+2}([0,
\hat{x}_{0}])}<\varepsilon,

for some integer  k\geq 15 and some small  \varepsilon>0 , where   \check{x}_{0}=\min\{x_{0},\tilde{x}_{0}\} and   \hat{x}_{0}=\max\{x_{0},\tilde{x}_{0}\},
and the  k+2 ‐th order compatibility conditions at  x=0,  x=x_{0} and  x=L , then the initial

boundary value problem (1.11), (1.12) and (1.13) admits a unique piecewise smooth entropy

solution  (\rho, u, E)(x, t) for  (t, x)\in[0, \infty )  \cross[0, L] containing a single transonic shock  x=s(t)

 (0<s(t)<L) with  s(0)=\tilde{x}_{0}.
Furthermore, there exist  T_{0}>0 and  \lambda>0 such that

 (\rho_{-}, u_{-}, E_{-})(t, x)=(\overline{\rho}_{-},\overline{u}_{-},
\overline{E}_{-})(x) , for  0\leq x<s(t) ,

for  t>T_{0} and

 \Vert(\rho+, u_{+}, )(\cdot, t)-(\overline{\rho}+,\overline{u}_{+})(\cdot)
\Vert_{W^{k}-7,\infty(s(t),L)}+\Vert E_{+}(\cdot, t)-\overline{E}_{+}(\cdot)
\Vert_{W^{k}-6,\infty(s(t),L)}\leq C\varepsilon e^{-\lambda t},

  \sum_{m=0}^{k-6}|\partial_{t}^{m}(s(t)-x_{0})|\leq C\varepsilon e^{-\lambda t}
,
for  t\geq 0 , where (  \overline{\rho}\pm,\overline{a}\pm,\overline{E}±) are the solutions of the Euler‐Poisson equations in the associated
regions.

The condition (2.4) is used to prove the exponential dynamical stability of the steady tran‐
sonic shock solutions. When this condition is violated, we have the following linear instability

results for some special cases.

Theorem 3. There exist  L>0 and a linearly unstable transonic shock solution  (\overline{\rho},\overline{u},\overline{E}) satis‐

fying

 \overline{E}_{-}(x_{0})=\overline{E}_{+}(x_{0})<-C (2.6)

for some positive constant  C.

Several remarks are in order concerning Theorems 1‐3.
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Remark 2. In both Theorem 1 and Theorem 2, the results are also true if we impose small

perturbations for the boundary conditions  (1.1\theta) .

Remark 3. It follows from the results in [33] and Theorem 1, that the background transonic
shock solution in Theorem 2 does exist. Moreover, we do not assume that  b(x) is a small

perturbation of a constant in both Theorems 1 and 2, which may have large variations.

Remark 4. In [43], the local‐in‐time stability of transonic shock solutions for the Cauchy prob‐
lem of (1.11) is considered by assuming the existence of steady transonic shocks. Here, we prove
the global‐in ‐time exponential stability for the initial boundary value problem.

Remark 5. The compatibility conditions for the initial boundary value problems for hyperbolic

equations were discussed in detail in  [4\theta, 34,37].

Remark 6. In Theorem 2, the regularity assumption is not optimal. By adapting the method

in [37], less regularity assumption than that in (2.5) will be enough . However, our proof only
involves the elementary weighted energy estimates rather than paradifferential calculus.

Remark 7. The results here was used to prove stability for transonic shocks in quasi‐one‐
dimensional nozzles.

2.2 Stability of subsonic potential flows

For a bounded connected open set  \Omega\subset \mathbb{R}^{n} , let  \Gamma be a closed portion of  \partial\Omega . For  x,  y\in\Omega , set

 \delta_{x}  := dist  (x, \Gamma) and  \delta_{x,y}  := \min(\delta_{x}, \delta_{y}) .

For  k\in \mathbb{R},  \alpha\in(0,1) and  m\in \mathbb{Z}^{+} , define the standard Hölder norms by

  \Vert u\Vert_{m,0,\Omega}:= \sum \sup|D^{\beta}u(x)|, [u]_{m,\alpha,\Omega}:=
\sum 0 \leq|\beta|\leq m^{x\in\Omega} |\beta|=m\sup_{x,y\in\Omega,x\neq y}\frac{|D^{
\beta}u(x)-D^{\beta}u(y)|}{|x-y|^{\alpha}},
and the weighted Hölder norms by

  \Vert u\Vert_{m,0,\Omega}^{(k,\Gamma)}:=\sum_{0\leq|\beta|\leq m}
\sup_{x\in\Omega}\delta_{x}^{\max(|\beta|+k,0)}|D^{\beta}u(x)|,
 [u]_{m,\alpha,\Omega}^{(k,\Gamma)}:= \sum \sup \delta_{x,y}^{\max(m+\alpha+k,0)
}|D^{\beta}u(x)-D^{\beta}u(y)|

 |\beta|=m^{x,y\in\Omega,x\neq y}  |x-y|^{\alpha}

 \Vert u\Vert_{m,\alpha,\Omega}:=\Vert u\Vert_{m,0,\Omega}+[u]_{m,\alpha,\Omega}
, \Vert u\Vert_{m,\alpha,\Omega}^{(k,\Gamma)}:=\Vert u\Vert_{m,0,\Omega}^{(k,
\Gamma)}+[u]_{m,\alpha,\Omega}^{(k,\Gamma)},
where  D^{\beta} denotes  \partial_{x_{1}}^{\beta_{1}}\cdots\partial_{x_{n}^{n}}^{\beta} for a multi‐index  \beta=  (\beta_{1} , \beta_{n}) with  \beta_{j}\in \mathbb{Z}+ and  | \beta|=\sum_{\dot{j}=1}^{n}\beta_{\dot{j}}.
 C_{(k,\Gamma)}^{m,\alpha}(\Omega) denotes the completion of the set of all smooth functions whose  \Vert .  \Vert_{m,\alpha,\Omega}^{(k,\Gamma)} norms are
finite.
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The main result for stability of subsonic potential flows for the Euler‐Poisson system is as
follows.

Theorem 4. ([2]) Let  \mathcal{N} be as in (1.17). Fix  b_{0}>0 and  L>0 , and let the parameter set
 \mathfrak{P}_{0} be as in Proposition 8. Given  (\overline{\Phi}_{en,0}, \mathscr{B}_{0,0},p_{ex,0})\in \mathfrak{P}_{0} , let  (\varphi_{0}, \Phi_{0}) be the corresponding

background solution. Assume that  b,  (\overline{\Phi}_{en},\overline{\Phi}_{ex},p_{ex}) and  \mathscr{B}_{0} are given as small perturbations of

 b_{0},  (\overline{\Phi}_{en,0},0,\overline{p}_{ex,0}) and  \mathscr{B}_{0,0} , respectively, in the following sense:

 \Vert b-b_{0}\Vert_{\alpha,\mathcal{N}}\leq\sigma, |\mathscr{B}_{0}-\mathscr{B}
_{0,0}|\leq\sigma
(2.7)

 \Vert￠_{}en^{-}en,0\Vert_{2,\alpha,\Gamma_{0}}+--\Vert_{ex}^{-}\Vert_{2,
\alpha,\Gamma_{L}}+\Vert_{Pex^{-}Pex,0}\Vert_{\alpha,\Gamma_{L}}\leq\sigma

for a small constant  \sigma>0 to be specified below. Also, suppose that  \overline{\Phi}_{en} and  \overline{\Phi}_{ex} satisfy the

compatibility conditions

 \partial_{n_{w}}\overline{\Phi}_{en}=0  on  \overline{\Gamma}_{0}\cap\overline{\Gamma}_{w},  \partial_{n_{w}}\overline{\Phi}_{ex}=0  on  \overline{\Gamma}_{L}\cap\overline{\Gamma}_{w} . (2.8)

Then, for any given  \alpha\in(0,1) , there exists a constant  \overline{\sigma}>0 depending on  b_{0},  L,\overline{\Phi}_{en,0},  \mathscr{B}_{0,0},p_{ex,0}
and  \alpha such that wherever  \sigma\in(0,\overline{\sigma} ], if the boundary data and  b satisfy (2.7) and (2.8), then
the nonlinear system  (1.23)-(1.24) with boundary conditions  (1.28)-(1.31) has a unique solution

 (\varphi, \Phi)\in[C^{1,\alpha}(\overline{\mathcal{N}})\cap C^{2,\alpha}
(\mathcal{N})]^{2} satisfying the following properties:

(a) The equations in  (1.23)-(1.24) form a uniformly elliptic system in  \mathcal{N} . Equivalently, the
solution  (\varphi, \Phi) satisfies the inequality

 p'(\rho(\Phi, |\nabla\varphi|^{2}))-|\nabla\varphi|^{2}\geq\overline{\nu}>0 
\tilde{x}in \overline{\mathcal{N}}

for a positive constant  \overline{v} , i. e., the flow governed by  (\varphi, \Phi) is subsonic;

(b)  (\varphi, \Phi) satisfy the estimate

 \Vert\varphi-\varphi_{0}\Vert_{2,\alpha,\mathcal{N}}^{(-i-\alpha,\Gamma_{0}\cup
\Gamma_{L})}+\Vert\Phi-\Phi_{0}\Vert_{2,\alpha,\mathcal{N}}^{(-1-\alpha,
\Gamma_{0}\cup\Gamma_{L})}\leq C\sigma , (2.9)

for  \sigma in (2.7). The constants  \overline{\nu} and  C depend only on  b_{0},  L,\overline{\Phi}_{en,0},  \mathscr{B}_{0,0},p_{ex,0},  n,  \Lambda and  \alpha.

Remark 8. We point out that the boundary conditions (1.28)‐(1.32) are physically measur‐

able. In one‐dimensional solutions, they correspond to prescribing the pressure(or equivalently

prescribing the density) at both ends of the nozzle.

When the flow has nonzero vorticity, our main results for Problem 4 is as follows.

Theorem 5. ([3]) Suppose that  (\overline{\rho},\overline{u},\overline{p}, \Phi_{0}) is the subsonic background solution in  \mathcal{N} associated
with parameters  b_{0}>0,  S_{0}>0,  J_{0}>0,  \rho_{0}>\rho_{c},  E_{0} , and L. Assume that  \Phi_{bd} satisfies the
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compatibility condition

 \partial_{x_{2}}\Phi_{bd}=0  on  \overline{\Gamma_{w}}\cap(\overline{\Gamma_{0}}\cup\overline{\Gamma_{L}}) . (2.10)

(a) (Existence) There exists a  \sigma_{1}>0 depending on the data and  \alpha so that if

 \omega_{1}(b)+\omega_{2}(S_{en}, \mathscr{B}_{en})+\omega_{3}(\Phi_{bd},p_{ex})
\leq\sigma_{1} , (2.11)

where

 \omega_{1}(b):=\Vert b-b_{0}\Vert_{\alpha,\mathcal{N}}, \omega_{2}(S_{en}, 
\mathscr{B}_{en}):=\Vert(S_{en}, \mathscr{B}_{en})-(S_{0}, \mathscr{B}_{0})
\Vert_{1,\alpha,\Gamma_{0}},
(2.12)

 \omega_{3}(\Phi_{bd},p_{ex}):=\Vert\Phi_{bd}-\Phi_{0}\Vert_{2,\alpha,\Gamma_{0}
\cup\Gamma_{L}}^{(-1-\alpha,\partial(\Gamma_{0}\cup\Gamma_{L}))}+\Vert p_{ex}-
\overline{p}\Vert_{1,\alpha,\Gamma_{L}}^{(-\alpha,\partial\Gamma_{L})},
then the boundary value problem (1.4) with (1.33)‐(1.36) has a solution  (\rho, u,p, \Phi) satis‐
fying

 \Vert(\rho, u,p)-(\overline{\rho},\overline{u},\overline{p})\Vert_{1,\alpha,
\mathcal{N}}^{(-\alpha,\Gamma_{0}\cup\Gamma_{L})}+\Vert\Phi-\Phi_{0}\Vert_{2,
\alpha,\mathcal{N}}^{(-1-\alpha,\Gamma_{0}\cup\Gamma_{L})}
(2.13)

 \leq C(\omega_{1}(b)+\omega_{2}(S_{en}, \mathscr{B}_{en})+\omega_{3}(\Phi_{bd},
p_{ex}))

where the constant  C depends only on the data and  \alpha.

(b) (Uniqueness) There exists a  \sigma_{2}>0 depending on the data,  \alpha , and  \mu such that if

 \omega_{1}(b)+\omega_{2}(S_{en}, \mathscr{B}_{en})+\omega_{3}(\Phi_{bd},p_{ex})
+\omega_{4}(S_{en}, \mathscr{B}_{en}, \Phi_{bd})\leq\sigma_{2} , (2.14)

with  \alpha\in  ( \frac{1}{2},1) and  \mu\in(2, \infty) where

 \omega_{4}(S_{en}, \mathscr{B}_{en}, \Phi_{bd}) :=\Vert(S_{en}, \mathscr{B}
_{en}-\Phi_{bd})-(S_{0}, \mathscr{B}_{0})\Vert_{W^{2,\mu}(\Gamma_{0})} , (2.15)

then the solution  (\rho, u,p, \Phi) obtained in (a) is unique.

Remark 9. We can also prove the stability of subsonic flows under small perturbations of the

nozzle boundary.

3 Key ingredients for the proof

In this section, we give the key ingredients for the proof of main results.

3.1 Stability of transonic shocks in one dimensional setting

In this subsection, we give the key points for the analysis on one dimensional solutions of the

Euler‐Poisson system.
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3.1.1 structural stability of one dimensional transonic shock solutions

The following monotone relation between the shock position and the downstream density plays

a crucial role for the proof of Theorem 1.

Lemma 6. Let  (\rho^{(1)}, E^{(1)}) and  (\rho^{(2)}, E^{(2)}) be two transonic shock solutions of (1.9), and  (\rho^{(i)}, E^{(i)})(i=
 1,2) are defined as follows

 (\rho^{(i)}, E^{(i)})=\{\begin{array}{l}
(\rho_{\sup}^{(\dot{i})}, E_{\sup}^{(\dot{i})}) , for 0<x<x_{i},
(\rho_{sub}^{(i)}, E_{sub}^{(i)}) , for x_{i}<x<L,
\end{array}
where

 \rho_{\sup}^{(i)}<\rho_{s}<\rho_{sub}^{(i)} for  i=1,2.

Moreover, they satisfy the same upstream boundary conditions,

 \rho^{(1)}(0)=\rho^{(2)}(0)=\rho_{l}, E^{(1)}(0)=E^{(2)}(0)=E_{l}.

If  b<\rho_{s},  x_{1}<x_{2} and  E_{\sup}^{(2)}(x_{1})>0 , then

 \rho^{(1)}(L)>\rho^{(2)}(L) .

The lemma is proved by the comparison principle for ODEs.

3.1.2 Dynamical Stability of Transonic Shock Solutions

The dynamical stability of transonic shock depends on the following two facts. First, the pertur‐

bations to the left vanish when time is large because of the supersonic boundary conditions on

the left. Second, the perturbations to the right decay due to the absorption at the shock. The

proof of the latter property is not straightforward. In addition to the usual technical difficulties

from the quasilinear structure there is a fundamental difficulty that the problem involves a free

boundary (shock) on the left of the subsonic region. The key is to prove decay for the linearized
problem.

Let  (\overline{\rho},\overline{u},\overline{E}) be a steady transonic shock solution satisfying (2.4). Suppose that the initial

data  (\rho_{0}, u_{0}, E_{0}) satisfies (2.5) and the  k+2‐th order compatibility conditions. It follows from

the argument in [27] that there exists a piecewise smooth solution containing a single shock

 x=s(t) (with  s(0)=\tilde{x}_{0} ) satisfying the Rankine‐Hogoniot conditions and Lax geometric shock
condition, of the Euler‐Poisson equations on  [0,\overline{T}] for some  \overline{T}>0 , which can be written as

 (\rho, u, E)(x, t)=\{\begin{array}{l}
(\rho-, u_{-}, E_{-}) , if 0<x<s(t) ,
(\rho+, u_{+}, E_{+}) , if s(t)<x<L.
\end{array} (3.1)
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Note that, when  t>T_{0} for some  T_{0}>0,  (\rho-, u_{-}, E_{-}) will depend only on the boundary

conditions at  x=0 . Moreover, when  \varepsilon is small, by the standard lifespan argument, we have

 T_{0}<\overline{T} (cf. [27]). Therefore,

 (\rho_{-}, u_{-}, E_{-})=(\overline{\rho}_{-},\overline{u}_{-},\overline{E}_{-}
) for  t>T_{0} . (3.2)

In the following, for simplicity of the presentation, we may assume  T_{0}=0 without loss of

generality. As long as we have the local stability, we need only to obtain uniform estimates in

the region  x>s(t),  t>0 . For this purpose, we will formulate an initial boundary value problem

in this region. First, the Rankine‐Hugoniot conditions for (3.1) read

 [\rho u]=[\rho]s'(t) , [\rho u^{2}+p]=[\rho u]s'(t) , (3.3)

where  [f]=f(s(t)+, t)-f(s(t)-, t) , so  [p+pu^{2}]\cdot[\rho]=[\rho u]^{2} . Thus, by implicit function theorem,
we have

 (J+-\overline{J})(t, s(t))=\mathscr{A}_{1}((\rho+-\overline{\rho}_{+})(t, s(t))
, s(t)-x_{0}) (3.4)

where  \mathscr{A}_{1} regarded as a function of two variables satisfies

  \mathscr{A}_{1}(0,0)=0, \frac{\partial \mathscr{A}_{1}}{\partial(\rho_{+}-
\overline{\rho}_{+})}=-\frac{p'(\overline{\rho}_{+})^{\overline{J}^{2}}-}
{2\overline{J}/\overline{\rho}+}(x_{0}) , \frac{\partial \mathscr{A}_{1}}
{\partial(s-x_{0})}=-\frac{(\overline{\rho}_{+}-\overline{\rho}_{-})\overline{E}
_{+}}{2\overline{J}/\overline{\rho}+}(x_{0}) .

Substituting (3.4) into the first equation in (3.3) yields

 s'(t)=\mathscr{A}_{2}(\rho+-\overline{\rho}+, s(t)-x_{0}) (3.5)

where  \mathscr{A}_{2} satisfies  \mathscr{A}_{2}(0,0)=0 and

  \frac{\partial \mathscr{A}_{2}}{\partial(\rho_{+}-\overline{\rho}_{+})}=-\frac
{p'(\overline{\rho}_{+})-\overline{J}^{2}/\overline{\rho}_{+}^{2}}{2\overline{u}
_{+}(\overline{\rho}_{+}-\overline{\rho}_{-})}(x_{0}) , \frac{\partial 
\mathscr{A}_{2}}{\partial(s(t)-x_{0})}=-\frac{\overline{E}_{+}}{2\overline{u}_{+
}}(x_{0}) .

Set  Y=E_{+}(x, t)-\overline{E}_{+}(x) . Then

  Y_{t}=\overline{J}-J_{+}, Y_{x}=\rho_{+}-\overline{\rho}+\cdot

Therefore, it follows from the second equation in the Euler‐Poisson equations (1.11) that

  \partial_{tt}Y+\partial_{x}(p(\overline{\rho}_{+})+\frac{\overline{J}^{2}}
{\overline{\rho}+}-p(\overline{\rho}++Y_{x})-\frac{(\overline{J}-Y_{t})^{2}}
{\overline{\rho}_{+}+Y_{x}})+\overline{E}_{+}\partial_{x}Y+\overline{\rho}+Y+YY_
{x}=0 . (3.6)
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One has

  \mathscr{L}_{0}Y=\partial_{tt}Y-\partial_{x}((p'(\overline{\rho}_{+})-
\frac{\overline{J}^{2}}{\overline{\rho}_{+}^{2}})\partial_{x}Y)+\partial_{x}
(\frac{2\overline{J}}{\overline{\rho}+}\partial_{t}Y)+\overline{E}_{+}
\partial_{x}Y+\overline{\rho}+Y. (3.7)

Furthermore, the Rankine‐Hugoniot conditions (3.4) and (3.5) can be written as

 Y_{t}=-\mathscr{A}_{1}(Y_{x}, s(t)-x_{0}) , (3.8)

and

 s'=\mathscr{A}_{2}(Y_{x}, s-x_{0}) , (3.9)

respectively. Moreover, direct computation yields

 s(t)-x_{0}=\mathscr{A}_{3}(Y(t, s(t))) , (3.10)

where  \mathscr{A}_{3}(0)=0 and

  \frac{\partial \mathscr{A}_{3}}{\partial Y}=\frac{1}{\overline{\rho}_{-}(x_{0}
)-\overline{\rho}+(x_{0})}.
Combining (3.8) and (3.10) together yields

 \partial_{t}Y=\mathscr{A}_{4}(Y_{x}, Y) , at  x=s(t) , (3.11)

where

  \mathscr{A}_{4}(0,0)=0, \frac{\partial \mathscr{A}_{4}}{\partial Y_{x}}=
\frac{c^{2}(\overline{\rho}_{+})(x_{0})-\overline{u}_{+}^{2}(x_{0})}
{2\overline{u}_{+}(x_{0})}, \frac{\partial \mathscr{A}_{4}}{\partial Y}=-
\frac{\overline{E}_{+}(x_{0})}{2\overline{u}_{+}(x_{0})}.
Note that on the right boundary,  x=L,  Y satisfies

 \partial_{x}Y=0 , at  x=L . (3.12)

Our goal is to derive uniform estimates for  Y and  s which satisfy (3.6), (3.10) (3.11) and (3.12).
Introduce the transformation

  \tilde{t}=t, \tilde{x}=(L-x_{0})\frac{x-s(t)}{L-s(t)}+x_{0}, \sigma(\tilde{t})
=s(t)-x_{0},
to transform the problem to the fixed domain  [x_{0}, L] . Using this transformation, we have

new system and boundary conditions on the fixed domain. The linearized problem for this
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transformed problem can be summarized as follows

 \{\begin{array}{l}
\mathscr{L}_{0}Y=0, x_{0}<x<L, t>0,
\partial_{x}Y=\frac{2\overline{u}+}{p'(\overline{\rho}_{+})-\overline{u}_{+}^{2}
}(x_{0})\partial_{x}Y+\frac{\overline{E}+}{p'(\overline{\rho}_{+})-\overline{u}_
{+}^{2}}(x_{0})Y, at x=x_{0},
\partial_{x}Y=0, at x=L,
Y(0, x)=h_{1}(x), Y_{t}(0, x)=h_{2}(x), x_{0}<x<L.
\end{array} (3.13)

In this subsection, we study the linearized problem.

Theorem 7. Assume that  \overline{E}_{+} satisfies (2.4). Let  Y be a smooth solution of the linearized

problem (3.13). Then there exist  \alpha_{0}\in(0,1) and  T>0 such that

 \hat{\varphi}_{k}(Y, t+T)<\alpha_{0}\hat{\varphi}_{k}(Y, t) for  t\geq 0 , (3.14)

where  \hat{\varphi}_{k} is defined as   \hat{\varphi}_{k}(Y, t)=\sum_{m=0}^{k}\varphi_{m}(Y, t) , where

  \varphi_{m}(Y, t)=\frac{\overline{E}+}{\overline{\rho}+}(x_{0})(\partial_{t}
^{m}Y)^{2}(t, x_{0})
 + \int_{x_{0}}^{L}\frac{1}{\overline{\rho}+}\{(\partial_{t}^{m+1}Y)^{2}+
(p'(\overline{\rho}_{+})-\frac{\overline{J}_{+}^{2}}{\overline{\rho}_{+}^{2}})
(\partial_{x}\partial_{t}^{m}Y)^{2}+\overline{\rho}+\partial_{t}^{m}Y^{2}\}(t, 
x)dx.

The key ingredients for the proof of this theorem is that we first obtain an energy estimate by

choosing suitable multiplier and then combine Rauch‐Taylor type estimate and spectral analysis

to give the decay of the energy of the problem.

Remark 10. When  \overline{E}_{+} satisfies (2.4), it follows from the Sobolev inequality that there exists a
constant  C>0 such that

  \varphi_{m}(Y, t)>C\int_{x_{0}}^{L}\{(\partial_{t}^{m+1}Y)^{2}+(\partial_{x}
\partial_{t}^{m}Y)^{2}+\partial_{t}^{m}Y^{2}\}(t, x)dx.
This is the key reason that we can handle the case that  \overline{E}_{+}(x_{0}) is a negative number with small

magnitude.

3.2 Stability of multidimensional subsonic flows

If we fix  b as a constant  b_{0}>0 in the equation (1.24) then the equations (1.23) and (1.24)
become invariant under translation. So if the boundary data  \overline{\Phi}_{en},\overline{\Phi}_{ex} and  p_{ex} are all constants,

then one may look for a solution  (\varphi, \Phi) as functions of  x_{n} only for  x_{n}\in(0, L) . We note that

 \overline{\Phi}_{ex}=0 if  \overline{\Phi}_{ex} is a constant.
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Proposition 8 (One dimensional subsonic flow). Fix constants  b_{0}>0 and  L>0 . Then there
exists a nonempty set  \mathfrak{P}0 of parameters in  \mathbb{R}^{2}\cross \mathbb{R}^{+} so that for any  (\overline{\Phi}_{en,0}, \mathscr{B}_{0,0},p_{ex,0})\in \mathfrak{P}0 , if

 (\overline{\Phi}_{en}, \mathscr{B}_{0},p_{ex})=(\overline{\Phi}_{en,0}, 
\mathscr{B}_{0,0},p_{ex,0}) then the system of (1.23) and (1.24) in  \mathcal{N} with the boundary

conditions (1.28)‐(1.32) has a unique  C^{2} one‐dimensional solution  (\varphi, \Phi) in  \overline{\mathcal{N}} satisfying the
inequalities  \rho(\Phi, |\nabla\varphi|^{2})>0 and  |\nabla\varphi|^{2}<p'(\rho(\Phi, |\nabla\varphi|^{2})) in  \overline{\mathcal{N}}.

We fix  (\overline{\Phi}_{en,0}, \mathscr{B}_{0,0},p_{ex,0})\in \mathfrak{P}_{0} , and let  (\varphi_{0}, \Phi_{0}) be the corresponding background solution.

Let  b,  (\overline{\Phi}_{en},\overline{\Phi}_{ex},p_{ex}) satisfy the estimates (2.7) for  \sigma\in(0,\overline{\sigma}) with  \overline{\sigma} to be determined later.

For  (z, q)=(z, q_{1}, \cdots , q_{n})\in \mathbb{R}\cross \mathbb{R}^{n} and for  \rho defined by (1.25), set

 A(z, q)=(A_{1} , A_{n})(z, q)=\rho(z, |q|^{2})q, B(z, q)=\rho(z, |q|^{2}) . (3.15)

Suppose that  (\varphi, \Phi)\in[C^{2}(\mathcal{N})]^{2} satisfy the equations in  (1.23)-(1.24) in  \mathcal{N} , and set

 (\psi, \Psi) :=(\varphi, \Phi)-(\varphi_{0}, \Phi_{0}) . (3.16)

Since  (\varphi_{0}, \Phi_{0}) also satisfies (1.23)‐(1.24), one has

 L_{1}(\psi, \Psi)  := div(\sum_{j=1}^{n}\partial_{q_{j}}A_{i}(\Phi_{0}, D\varphi_{0})\partial_{j}
\psi+\Psi\partial_{z}A(\Phi_{0}, D\varphi_{0}))=div\Gamma(x, \Psi, D\psi) (3.17)

and

 L_{2}(\psi, \Psi):=\triangle\Psi-\partial_{z}B(\Phi_{0}, D\varphi_{0})\Psi-
\partial_{q}B(\Phi_{0}, D\varphi_{0})\cdot D\psi=f(x, \Psi, D\psi)+b_{0}-b(x) (3.18)

where  F and  f are higher order terms.

Furthermore,  (\psi, \Psi) defined by (3.16) satisfy

 \psi=0 on  \Gamma_{0},

 \Psi=\{\begin{array}{ll}
(\mathscr{B}_{0}-\mathscr{B}_{0,0})+(\overline{\Phi}_{en}-\overline{\Phi}_{en,0}
)=:\Psi_{en}   on \Gamma_{0}
(\mathscr{B}_{0}-\mathscr{B}_{0,0})+\overline{\Phi}_{ex}=:\Psi_{ex}   on \Gamma_
{L}
\end{array} (3.19)

 \partial_{n_{w}}\psi=\partial_{n_{w}}\Psi=0 on  \Gamma_{w}

 p(B(\Phi_{0}+\Psi, \nabla\varphi_{0}+\nabla\psi))-p(B(\Phi_{0}, 
\nabla\varphi_{0}))=p_{ex}-p_{ex,0} on  \Gamma_{ex} (3.20)

for  B(z, q) defined by (3.15).

Lemma 9. The linear boundary value problem (3.17)‐(3.20) has a unique weak solution  (v, W)\in

 [H^{1}(\mathcal{N})]^{2} , and  (\tilde{v},\tilde{W}):=(v, W)-(0, W_{bd}) satisfy

 \Vert\tilde{v}\Vert_{H^{1}(\mathcal{N})}+\Vert\tilde{W}\Vert_{H^{1}(\mathcal{N}
)}\leq C_{H} (3.21)
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for a constant  C_{H} depending only on the data.

One of the key ingredients for the proof of this lemma is the following observation for the

system,

 \eta\partial_{z}A(\Psi_{0}, D\varphi_{0})\cdot D\xi+\eta\partial_{q}B(\Psi_{0},
D\varphi_{0})\cdot D\xi=0 for any  (\xi, \eta)\in \mathcal{H} . (3.22)

3.2.1 Euler‐Poisson system with voriticity

We apply the Helmholtz decomposition to rewrite the velocity field  u as a summation of a

gradient and a divergence free field. Given velocity field  u=(u, v) , denote curlu  =\partial_{x_{2}}u-\partial_{x_{1}}v.
Then one can find a function  \psi satisfying

 \{\begin{array}{l}
\triangle\psi= curl u\tilde{x}in \mathcal{N},
\partial_{x_{1}}\psi=0\tilde{x}on\Gamma_{0}\cup\Gamma_{L}, \psi=0 on \Gamma_{w}.
\end{array} (3.23)

Then, it is easy to see that
cur1  (u-\nabla^{\perp}\psi)=0

where  \nabla^{\perp}\psi=(\partial_{x_{2}}\psi, -\partial_{x_{1}}\psi) . Therefore, there exists a function  \varphi satisfying  \nabla\varphi=u-\nabla^{\perp}\psi.
Hence the velocity field  u can be expressed as

 u=\nabla\varphi+\nabla^{\perp}\psi . (3.24)

It follows from (1.5) and (3.24) that the density  \rho can be written as

  \rho=H(S, \mathscr{K}+\Phi-\frac{1}{2}|\nabla\varphi+\nabla^{\perp}\psi|^{2}) (3.25)

where the function  H(S, \zeta) is defined by

 H(S,  \zeta)=[\frac{(\gamma-1)\zeta}{\gamma \mathfrak{p}\exp(\frac{S}{c_{v}})}]
^{\frac{1}{\gamma-1}} (3.26)

The straightforward computations for (1.4) give

 u(v_{x_{1}}-u_{x_{2}})=T(\rho, S)S_{x_{2}}-\mathscr{K}_{x_{2}} (3.27)

where  T is the temperature defined by

 T( \rho, S)=\frac{c_{v}\mathfrak{p}}{\gamma-1}\exp(\frac{S}{c_{v}})\rho^{\gamma
-1}
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The system (1.4) can be written as the following nonlinear system for  (\varphi, \psi, \Phi, S, \mathscr{K}) :

  div(H(S, \mathscr{K}+\Phi-\frac{1}{2}|\nabla\varphi+\nabla^{\perp}\psi|^{2})
(\nabla\varphi+\nabla^{\perp}\psi))=0 , (3.28)

  \triangle\Phi=H(S, \mathscr{K}+\Phi-\frac{1}{2}|\nabla\varphi+\nabla^{\perp}
\psi|^{2})-b , (3.29)

  \triangle\psi=-\frac{T(\rho,S)\partial_{x_{2}}S-\partial_{x_{2}}\mathscr{K}}
{\partial_{x_{1}}\varphi+\partial_{x_{2}}\psi} , (3.30)

 \rho(\nabla\varphi+\nabla^{\perp}\psi)\cdot\nabla S=\rho(\nabla\varphi+\nabla^{
\perp}\psi)\cdot\nabla \mathscr{K}=0 , (3.31)

where   \rho=H(S, \mathscr{K}+\Phi-\frac{1}{2}|\nabla\varphi+\nabla^{\perp}\psi|^{2}) .

The following lemma guarantees that there exists a solutions  \mathcal{W} of the problem

 V\cdot\nabla \mathcal{W}=0  in  \mathcal{N},  \mathcal{W}=\mathcal{W}_{en}  on  \Gamma_{0} , (3.32)

where

divV  =0 in  \mathcal{N},  V\cdot n_{w}=0 on  \Gamma_{w} . (3.33)

Lemma 10. Suppose that a vector field  V=(V_{1}, V_{2}) satisfies (3.33) and the estimate

 \Vert V\Vert_{1,\alpha,\mathcal{N}}^{(-\alpha,\Gamma_{0}\cup\Gamma_{L})}\leq K_
{0} (3.34)

for a constant  K_{0}>0 . In addition, assume that there exists a constant  \nu^{*}>0 satisfying

 V_{1}\geq\nu^{*}  in  \overline{\mathcal{N}} . (3.35)

Then (3.32) has a unique solution  \mathcal{W}\in(C^{1,\alpha}(\overline{\mathcal{N}}))^{2} satisfying

 \Vert \mathcal{W}-\mathcal{W}_{0}\Vert_{1,\alpha,\mathcal{N}}\leq C^{*}\Vert 
\mathcal{W}_{en}-\mathcal{W}_{0}\Vert_{1,\alpha,\Gamma_{0}} , (3.36)

where the constant  C^{*} depends only on  L,  \nu^{*},  K_{0} and  \alpha.

4 Future work

In order to study the structural stability of transonic shock solutions under multidimensional

perturbations, we will first investigate the structural stability of supersonic solutions for the

Euler‐Poisson system. Furthermore, since the Euler‐Poisson system has nontrivial one dimen‐

sional smooth transonic solutions, we would like to study the stability of these smooth transonic

solution. Finally, the stability of transonic shock solutions is a significant problem to be studied.
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