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Abstract

A variant of the spectral projected gradient (SPG) method proposed by Birgin, Martinez
and Raydan is proposed to solve semidefinite programs with  \log‐determinant and  \ell_{1} ‐norm terms.
The SPG is modified in the orthogonal projection of the iterates onto the convex feasible set
in order to obtain a cheap computation. Numerical results on the problems considered in the
literature confirm that the implementation of the proposed method can be comparably faster
than other well‐known methods for similar problems.

1 Introduction

Let  x be an  n‐dimensional random variable following a Gaussian distribution  \mathcal{N}(x;\mu, \Sigma) . We
frequently are in situations where we want to estimate the mean  \mu and the covariance matrix  \Sigma of
the distribution. If  x^{(1)},  x^{(2)},  x^{(m)} are i.i.  d . samples from this distribution,

 \hat{\mu}  := \frac{1}{m}\sum_{i=1}^{m}x^{(i)} and  \hat{\Sigma}  := \frac{1}{m}\sum_{i=1}^{m}(x^{(i)}-\hat{\mu})(x^{(i)}-\hat{\mu})^{T}
are candidates for this mean and covariance matrix, respectively, if  m\gg n . In the case  m<n,

we need to impose some “structure” or conditions over the covariance matrix to estimate it. The
Gaussian graphical models [5] and sparse covariance selection [3] are one of classical solutions,
where problems such as

 \begin{array}{ll}
\max -tr (\hat{\Sigma}X)+\log\det X   
s.t. X_{ij}=0, (i, j)\in\Omega\subseteq\{1,2,   n\}^{2}
X\succ O,   
\end{array}
where  X\succ O means that  X is a symmetric positive definite matrix, or

 \begin{array}{l}
\max -tr (\hat{\Sigma}X)+\log\det X-\rho\Vert X\Vert_{1}
s.t. X\succ O,
\end{array}
are solved for a regularizing parameter  \rho>0 . See d’Aspremont et al. [2] or Yuan and Lin [15] for
early discussion on the relation between these two problems.

In this short note, we consider the extension of the above problems:

(  \mathcal{P} )  \begin{array}{l}
\min f(X) :=tr(CX)-\mu\log\det X+tr(\rho|X|)
s.t. \mathcal{A}(X)=b, X\succ O,
\end{array}
where  C,  X,  \rho\in \mathbb{S}^{n} , the space of  n\cross n real symmetric matrices,  |X|\in \mathbb{S}^{n} the matrix obtained
by taking the absolute value of every element  X_{\dot{i}j}(1\leq i, j\leq n) of  X , and  \mathcal{A} a linear map
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of  \mathbb{S}^{n}arrow \mathbb{R}^{m} . In  (\mathcal{P}),  C,  \rho\in \mathbb{S}^{n},  \mu>0,  b\in \mathbb{R}^{m} , and the linear map  \mathcal{A} given by  \mathcal{A}(X)=
 (tr(A_{1}X), tr(A_{2}X), \ldots, tr(A_{m}X))^{T} , where  A_{1},  A_{2},  A_{m}\in \mathbb{S}^{n} , are given data.

The dual of (  \mathcal{P} ) is given by:

(  \mathcal{D} )  \{\begin{array}{l}
\max g(y, W) :=b^{T}y+\mu\log\det(C+W-\mathcal{A}^{T}(y))+n\mu-n\mu\log\mu
s.t. (y, W)\in \mathcal{F},
\end{array}
where  \mathcal{F}  :=\overline{\mathcal{W}}\cap\hat{\mathcal{F}},\hat{\mathcal{W}}  :=\mathbb{R}^{m}\cross \mathcal{W},\hat{\mathcal{F}}  :=\{(y, W)\in \mathbb{R}^{m}\cross \mathbb{S}^{n}|C+W-\mathcal{A}^{T}(y)\succ O
\},
 \mathcal{W}  :=\{[W]_{\leq\rho} : W\in \mathbb{S}^{n}\} , and finally, for matrices  W,  \rho\in \mathbb{S}^{n},  [W]_{\leq\rho} is the matrix whose  (i, j)th
element is   \min\{\max\{W_{ij}, -\rho_{ij}\}, \rho_{\dot{i}j}\}.

We propose a variation of the projected gradient method originally presented by Birgin et al.
[1] to the dual problem (  \mathcal{D} ) . In order to apply our method, we assume three conditions on (  \mathcal{P} ) and
(  \mathcal{D} ) : (i)  \mathcal{A} is surjective, i. e., the set of  A_{1},  A_{2},  A_{m} is linearly independent; (ii) The problem
(  \mathcal{P} ) has an interior feasible point, i. e., there exists  X\succ O such that  \mathcal{A}(X)=b ; (iii) A feasible
point for (  \mathcal{D} ) is given or can be easily computed. i. e., there exists  y\in \mathbb{R}^{m} and  W\in \mathbb{S}^{n} such that
 |W|\leq\rho and  C+W+\mathcal{A}^{T}(y)\succ O . These assumptions are not strong as many applications satisfy
these assumptions with slight modifications.

Many approximate solution methods for solving variants of (  \mathcal{P} ) have been proposed over the
years. Lu [8] was one of earliers who considered a systematic approach to solve this problem as an
mathematical optimization problem. The subsequent Adaptive Spectral Gradient (ASPG) method
and the Adaptive Nesterov’s Smooth (ANS) method [9] are one of the earlier methods which can
handle large‐scale problems. Ueno and Tsuchiya [11] proposed a Newton method by localized
approximation of the relevant data. Wang et al. [13] considered a primal proximal point algorithm
which solves semismooth subproblems by the Newton‐CG iterates. Employing the inexact primal‐
dual path‐following interior‐point method, Li and Toh in [6] demonstrated that the computational
efficiency could be increased, despite the known inefficiency of interior‐point methods for solving
large‐sized problems. Yuan [16] also proposed an improved Alternating Direction Method (ADM)
to solve the sparse covariance problem by introducing an ADM‐oriented reformulation. For a more
general structured models/problems, Yang et al. [14] enhanced the method in [13] to handle block
structured sparsity, employing an inexact generalized Newton method to solve the dual semismooth
subproblem. They demonstrated that regularization using  \Vert .  \Vert_{2} or  \Vert .  \Vert_{\infty} norms instead of  \Vert .  \Vert_{1}
in (  \mathcal{P} ) are more suitable for the structured models/problems. Wang [12] first generated an initial
point using the proximal augmented Lagrangian method, then applied the Newton‐CG augmented
Lagrangian method to problems with an additional convex quadratic term in (  \mathcal{P} ) . Li and Xiao [7]
employed the symmetric Gauss‐Seidel‐type ADMM in the same framework of [13]. A more recent
work by Zhang et al. [17] shows that (  \mathcal{P} ) with simple constraints as  X_{ij}=0 for  (i, j)\in\Omega can be
converted into a more computationally tractable problem for large values of  \rho . Among the methods
mentioned here, only the methods discussed in [13, 14, 12] can handle problems as general as (  \mathcal{P} ) .

In here, we consider a modification of the non‐monotone spectral projected gradient method
originally proposed by Birgin et al. [1] over the (  \mathcal{D} ) which guarantee a superior performance than
applying directly to the primal problem (  \mathcal{P} ) . A detailed description of the method and its conver‐
gence can be found in [10]. The main difference with the original Birgin et al.’s method lays in
the projection of the next iterate. In there, the next iterate is orthogonally projected onto a closed
convex set. In our method, we do not perform an exact projection. We define the next iterate,
which should satisfy a non‐monotone Armijo condition, by first projecting the next iterate over a
box‐type constraint  \hat{\mathcal{W}} and then approximately project over an Linear Matrix Inequality (LMI)
constraint  \hat{\mathcal{F}} . These projections are cheaper than performing an orthogonal projection over the
intersection of these two convex sets  \hat{\mathcal{W}}\cap\hat{\mathcal{F}} which corresponds to our feasible convex set  \mathcal{F}.

In the next section, we describe our algorithm, the results concerning the stopping criterion
and its convergence. In Section 3, we show the performance of the implemented algorithm, DSPG
compared to some well‐known codes. Finally, Section 4 has some concluding remarks.
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2 The Non‐Monotone Spectral Projected Gradient Method for
the Dual Problem and its Convergence

The variant of the non‐monotone spectral projected gradient method over the dual problem (  \mathcal{D} )
is described in the following algorithm, where the notation  X^{k}  :=X(y^{k}, W^{k})=\mu(C+W^{k}+
 \mathcal{A}^{T}(y^{k}))^{-1} is used. Therefore, once the approximate solution of the dual  (y^{k}, W^{k}) is computed,
the approximate solution of the primal problem  X^{k} can be recovered.

Also,  P_{S} denotes the projection onto a closed convex set  S :

 P_{S}(x) := \arg\min||y-x||,
 y\in s

and

 \nabla g(y, W) := (\nabla_{y}g(y, W), \nabla_{W}g(y, W))
 = (b-\mu \mathcal{A}((C+W-\mathcal{A}^{T}(y))^{-1}), \mu(C+W-\mathcal{A}^{T}(y)
)^{-1})
 = (b-\mathcal{A}(X(y, W)), X(y, W)) .

Algorithm 2.1 (Dual Spectral Projected Gradient Method)

Step  0 : Set parameters  \epsilon\geq 0,  \gamma\in(0,1),  \tau\in(0,1),   0<\sigma_{1}<\sigma_{2}<1,0<\alpha_{\min}<\alpha_{\max}<\infty and an
integer parameter  M\geq 1 . Take the initial point  (y^{0}, W^{0}) which satisfy condition (iii), and
an initial projection length  \alpha^{0}\in[\alpha_{\min}, \alpha_{\max}] . Set an iteration number  k  :=0.

Step 1: Compute a search direction (a projected gradient direction) for the stopping criterion

 (\triangle y_{(1)}^{k}, \triangle W_{(1)}^{k}) := P_{\overline{\mathcal{W}}}
((y^{k}, W^{k})+\nabla g(y^{k}, W^{k}))-(y^{k}, W^{k})
 = (b-\mathcal{A}(X^{k}), [W^{k}+X^{k}]_{\leq\rho}-W^{k}) . (1)

If  ||(\triangle y_{(1)}^{k}, AW_{(1)}^{k})||_{\infty}\leq\epsilon , stop and output  (y^{k}, W^{k}) as the approximate solution.

Step 2: Compute a search direction (a projected gradient direction)

 (\triangle y^{k}, \triangle W^{k}) := P_{\overline{\mathcal{W}}}((y^{k}, W^{k})
+\alpha^{k}\nabla g(y^{k}, W^{k}))-(y^{k}, W^{k})
 = (\alpha^{k}(b-\mathcal{A}(X^{k})), [W^{k}+\alpha^{k}X^{k}]_{\leq\rho}-W^{k}) . (2)

Step 3: Apply the Cholesky factorization to obtain a lower triangular matrix  L such that  C+W^{k}-
 \mathcal{A}^{T}(y^{k})=LL^{T} . Let  \theta be the minimum eigenvalue of  L^{-1}(\triangle W^{k}-\mathcal{A}^{T}(\triangle y^{k}))L^{-T} . Then,
compute

 \overline{\lambda}^{k}:=\{\begin{array}{ll}
1   (\theta\geq 0)
\min\{1, -\frac{1}{\theta}\cross\tau\}   (\theta<0)
\end{array}
and set  \lambda_{1}^{k}  :=\overline{\lambda}^{k} Set an internal iteration number  j  :=1.

Step  3a : Set  (y_{+}, W_{+})  :=(y^{k}, W^{k})+\lambda_{j}^{k}(\triangle y^{k}, \triangle W^{k}) .

Step  3b : If

 g(y_{+}, W_{+}) \geq 0\leq h\leq m\dot{{\imath}}n\{k,M-1\}m\dot{{\imath}}
ng(y^{k-h}, W^{k-h})+\gamma\lambda_{j}^{k}\nabla_{y}g(y^{k}, W^{k})^{T}\triangle
y^{k}
 + tr  (\nabla_{W}g(y^{k}, W^{k})\triangle W^{k})

is satisfied, then go to Step 4. Otherwise, choose  \lambda_{j+1}^{k}\in[\sigma_{1}\lambda_{j}^{k}, \sigma_{2}\lambda_{j}^{k}] , and set  j  :=j+1,
and return to Step  3a.
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Step 4: Set  \lambda^{k}  :=\lambda_{j}^{k},  (y^{k+1}, W^{k+1})  :=(y^{k}, W^{k})+\lambda^{k} (Ayk,  \triangle W^{k} ),  (s_{1}, S_{1})  :=(y^{k+1}, W^{k+1})-
 (y^{k}, W^{k}) and  (s_{2}, S_{2}):=\nabla g(y^{k+1}, W^{k+1})-\nabla g(y^{k}, W^{k}) . Let  b^{k}:=s_{1}^{T}s_{2}+tr(S_{1}S_{2}) .

If  b^{k}\geq 0 , set  \alpha^{k+1}:=a_{\max} . Otherwise, let  a^{k}:=s_{1}^{T}s_{1}+tr(S_{1}S_{1}) and set  \alpha^{k+1}:=

  \min\{\alpha_{\max}, \max\{\alpha_{\min}, -a^{k}/b^{k}\}\}.

Step 5: Increase the iteration counter  k  :=k+1 and return to Step 1.

The fact that above algorithm converges to the correct optimal solution can be found in [10]. In
there, the most relevant results are that the optimality condition can be tested by the fixed point
condition for an arbitrary step length  \alpha>0[10] :

Lemma 2.2  (y^{*}, W^{*}) is optimal for (  \mathcal{D} ) if and only if  (y^{*}, W^{*})\in \mathcal{F} and

 P_{\overline{\mathcal{W}}}((y^{*}, W^{*})+\alpha\nabla g(y^{*}, W^{*}))=(y^{*},
W^{*}) (3)

for some  \alpha>0.

Also, as we can see from (2) that either the norm of the search direction (Ayk,  \triangle W^{k} )  =

 P_{\overline{\mathcal{W}}}((y^{k}, W^{k})+\alpha^{k}\nabla g(y^{k}, W^{k}))-(y^
{k}, W^{k}) or the norm of the search direction for the step length
 \alpha^{k}=1 (1)  (Ay_{(1)}^{k}, AW_{(1)}^{k})=P_{\overline{\mathcal{W}}}((y^{k}, W^{k})+\nabla g
(y^{k}, W^{k}))-(y^{k}, W^{k}) can be used for the
stopping criterion. This fact is guaranteed by the following lemma [10]:

Lemma 2.3 The search direction (Ayk,  \triangle W^{k} ) is bounded by  (Ay_{11)}^{k}, \triangle W_{(1)}^{k}) . More precisely,

  \min\{1, \alpha_{\min}\}||(\triangle y_{(1)}^{k}, \triangle W_{(1)}^{k})
||\leq||(\triangle y^{k}, \triangle W^{k})||\leq\max\{1, \alpha_{\max}\}
||(\triangle y_{(1)}^{k}, \triangle W_{(1)}^{k})|| . (4)

Unfortunately, it is not possible to determine a complexity bound for the number of iterates
of the above algorithm. However, we can, similarly to the original SPG [1], prove the asymptotic
convergence of Algorithm 2.1 [10]:

Theorem 2.4 Algorithm 2.1 with  \epsilon=0 stops in a finite number of iterations attaining the optimal
value  g^{*} , or generate a sequence  \{(y^{k}, W^{k})\} such that

 karrow\infty 1\dot{{\imath}}m|g(y^{k}, W^{k})-g^{*}|=0.

3 Numerical Experiments

The implementation of Algorithm 2.1 is called DSPG in this section. We conduct numerical exper‐
iments of DSPG over some test problems considered in the literature [6].

For this purpose, the DSPG is compared with the inexact primal‐dual path‐following interior‐
point method (IIPM) [6], the Adaptive Spectral Projected Gradient method (ASPG) [9], the Adap‐
tive Nesterov’s Smooth method (ANS) [9], and the QUadratic approximation for sparse Inverse
Covariance estimation method (QUIC) [4].

We note that different stopping criteria are used in each of the aforementioned codes. They
obviously affect the number of iterations and consequently the overall computational time. For a
fair comparison, we set the threshold values for the IIPM, ASPG, ANS, and QUIC comparable to
that of DSPG. More precisely, the stopping criteria of the DSPG was set to

 ||(\triangle y_{(1)}^{k}, \triangle W_{(1)}^{k})||_{\infty}\leq\epsilon,
where  \epsilon=10^{-5} . For the IIPM, we employed

  \max {   \frac{gap}{1+|f(X^{k})|+|g(y^{k},W^{k})|} , pinf, dinf}  \leq gaptol:  =10^{-6},
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where gap, pinf, dinf were specified in [6], and for the ASPG and ANS, we used two thresholds
 \epsilon_{0}  :=10^{-3} and  \epsilon_{c}  :=10^{-5} such that  f(X)\geq f(X^{*})-\epsilon_{0} and   \max_{(i,j)\in\Omega}|X_{ij}|\leq\epsilon_{c}[6] . The QUIC

stops when  \Vert\partial f(X^{k})\Vert/Tr(\rho|X^{k}|)<10^{-6}.
The DSPG was experimented with the following parameters:  \gamma=10^{-4},  \tau=0.5,0.1=\sigma_{1}<

 \sigma_{2}=0.9,  \alpha_{\min}=10^{-15}=1/\alpha_{\max},  \alpha_{0}=1 , and  M=50 . In the DSPG, the mexeig routine of the
IIPM was used to reduce the computational time. All numerical experiments were performed on a
computer with Intel Xeon X5365 (3.0 GHz) with  4S GB memory using MATLAB.

We set the initial solution as  (y^{0}, W^{0})=(0, O) , which satisfies the assumption (iii) for the
instances tested in Subsections 3.1 and 3.2.

In the tables in Subsections 3.2, the entry corresponding to the DSPG under the column “pri‐
mal obj.” indicates the minimized function value (  \mathcal{P} ) for  X^{k} , while “gap”’ means the maximized
function value (  \mathcal{D} ) for  (y, W) minus the primal one. Therefore, it should have a minus sign. The
entries for the IIPM, ASPG, and ANS under “primal obj.” column show the difference between the
corresponding function values and the primal objective function values of the DSPG. Thus, if this
value is positive, it means that the DSPG obtained a lower value for the minimization problem. The
tables also show the minimum eigenvalues for the primal variable, the number of (outer) iterations,
and the computational time.

In order to measure the effectiveness of recovering the inverse covariance matrix  \Sigma^{-1} , we adopt
the strategy in [6]. The normalized entropy loss  (1oss_{E}) and the quadratic loss  (1oss_{Q}) are computed
as

 1 oss_{E}:=\frac{1}{n}(tr(\Sigma X)\log\det(\Sigma X)-n) , 1oss_{Q}:=\frac{1}
{n}\Vert\Sigma X-I\Vert,
respectively. Notice that the two values should ideally be zero if the regularity term  tr(\rho|X|) is
disregarded in (  \mathcal{P} ) .

Some other numerical results on the DSPG can be found in the extended version of this re‐

port [10].

3.1 Real Data Problems

Five problems from the gene expression data [6] were tested for performance comparison. Since
it was assumed that the conditional independence of their gene expressions is not known, linear
constraints were not imposed and  \rho=\rho I in (  \mathcal{P} ) , where  I denotes the identity matrix.

Figures 1‐3 show the computational time (left axis) for each problem when  \rho is changed. As  \rho

grows larger, the final solution  X^{k} (of the DSPG) becomes sparser, as shown in the right axis for
the number of nonzero elements of  X^{k}.

We can observe from these five cases shown in Figures 1‐3 that DSPG is comparable to the
IIPM in terms of the computational time. They depend on the value of the regularizing parameter
 \rho>0 . As expected, QUIC is faster on sparse problems (with  \rho larger) and slow on dense problems
(with  \rho close to zero). We can clearly see that its computational time is proportional to the number
of nonzero elements of the approximate solution  X^{k}.

3.2 Synthetic data

The numerical results on eight problems where  A\in \mathbb{S}^{n} has a special structure such as diagonal
band, fully dense, or arrow‐shaped [6] are shown in Tables 1. For each  A , a sample covariance
matrix  C\in S^{n} is computed from  2n i.i.d. random vectors selected from the  n‐dimensional Gaussian
distribution  \mathcal{N}(0, A^{-1}) . In these experiments, we did not compared with QUIC.

We can see from Table 1 that DSPG is the fastest code to obtain a similar precision, excepting
the “arl”’ problem, the most difficult case. For this instance, IIPM is the winner.
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Figure 1: Computational time (the left axis) for the DSPG, IIPM, QUIC, ASPG, ANS on the
problems (Lymph”  (n=587) and “ER”  (n=692) when  \rho\in [0.015625, 4];  \# of nonzero elements
of  X^{k} for the final iterate of DSPG (the right axis).

 x_{X} g\cross
 *\circ  *\circ

 \hat{\smile^{\omega}}  \dot{\frac{\Phi E\Phi\subset\omega}{Q)}} \hat{\smile^{m}\in q\}}   \frac{\omega E\omega=\omega}{\omega} \underline{E\omega}

 \subset\circ\subset N\Phi k\circ
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 \subset\circ=N\circ h\circ
 \#

 10 1 10^{0} 10 1 10^{0}

 \rho  \rho

Figure 2: Computational time (the left axis) for the DSPG, IIPM, QUIC, ASPG, ANS on problems
“Arabidopsis”  (n=834) and “Leukemia”  (n=1255) when  \rho\in [0.015625, 4];  \# of nonzero elements
of  X^{k} for the final iteration of DSPG (the right axis).
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Table 1: Comparative numerical results for the DSPG, IIPM, ASPG and ANS on synthetic problems
with  n=2000.
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 10^{1} 10^{0}

 \rho

Figure 3: Computational time (the left axis) for the DSPG, IIPM, QUIC, ASPG, ANS on the
problem “Hereditary bc”  (n=1869) when  \rho\in [0.015625, 4];  \# of nonzero elements of  X^{k} for the
final iteration of DSPG (the right axis).

4 Concluding Remarks

In this note, we have proposed a variant of the spectral gradient method applied to the dual
problem of the semidefinite program with  \log‐determinant and  \ell_{1} ‐norm terms. The method is
efficient in terms of computational time since it avoids to perform an orthogonal projection onto
the convex feasible set. Instead, it executes two projections onto convex sets which maintains
feasibility. Convergence of the method can be proved [10]. The numerical experiments compared
to similar codes show that it can be faster in some instances, specially compared to the state‐of‐art
IIPM [6].

For further work, we can consider extending methods to more general cases such as minimiza‐
tion of quadratic convex functions [12] or some block diagonal structure considered on the matrix
variable [13, 14].
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