
50

Algorithms for the circle packing problem based
on mixed‐integer DC programming

Satoru Masuda* Takayuki Okuno† Yoshiko Ikebe‡

Abstract

Circle packing problems are a class of packing problems which attempt to
pack a given set of circles into a container with no overlap. In this paper, we
focus on the circle packing problem proposed by López et.al. The problem
is to pack circles of unequal size into a fixed size circular container, so as to
maximize the total area of the packed circles. López et al. formulated this
problem as a mixed‐integer nonconvex quadratic programming problem, and
proposed a heuristic method based on its continuous relaxation, by which
they were able to solve instances with up to 40 circles.

In this paper, we propose an algorithm using mixed‐integer DC program‐
ming. A DC program is an optimization problem in which the objective
function can be represented by the difference of two convex functions, and a
mixed‐integer DC program is a DC program where some of the variables are
restricted to integer values. By our method, we were able to obtain good
solutions for problems with up to 60 circles.

1 Introduction

Packing problems, which are optimization problems in which a given set of objects
are to be placed without overlap into a given container, are a class of well studied
problems with many variations and applications[l, 3]. Almost all variations are
known to be NP‐hard, and most studies focus on the construction of efficient
heuristic methods.

In this paper, we consider a problem concerning the packing of a given set
of circles into a circular container. Among the many variations, we focus on the
problem formulated by López et al. [2]. In this problem, we have a set of n circles

 *

Tokyo University of Science
 \dagger RIKEN. Center for Advanced Intelligence Project
 \ddagger Tokyo University of Science

50

51

with radii R_{1}, R_{2} , . . . , R_{n} , and a circular container of radius R_{0} . The objective is
to choose and place the circles so that (i) there is no overlap, and (ii) the total
area of the chosen circles is maximized.

López et al. [2] formulated this problem as a nonconvex quadratic mixed integer
problem, and by using a commercial solver, obtained exact solutions for problems
with few circles. They further proposed a heuristic method which successively
solves a series of continuous relaxations, and reported that feasible solutions were
obtained for instances with up to 40 circles.

In this paper, we propose a heuristic algorithm based on mixed integer DC
programming. A DC program is an optimization problem having an objective
function expressed as the difference of two convex functions, and a mixed integer
DC program is a DC program in which some of the variables are restricted to
integer values. Stationary points of mixed integer DC programs can be efficiently
found by the algorithm proposed by Okuno et al. [5]. By applying our algorithm,
we successfully obtained good solutions for instances with up to 60 circles.

This paper is organized as follows. In the next section, we describe the for‐
mulation and algorithm of López et a1.[2], and in Section 3, we provide some
fundamentals on mixed integer DC programming. In Section 4, we describe our
heuristic algorithm, and in Section 5, we show the results of numerical experiments.

2 Formulation and algorithm of López et al.

Recall that we have n circles of radius R_{1}, R_{2} , . . . , R_{n} , which we wish to pack into
a container of radius R_{0} , so as to maximize the total area.

In the formulation of [2], the coordinates of the center of the container are fixed
to the origin (0,0) . For each circle i(i=1,2, \ldots, n) , we associate the variables
 (x_{i}, y_{i})\in \mathbb{R}^{2} corresponding to its center, and \alpha_{i}\in\{0,1\} expressing whether or
not it is chosen .

By using these variables, the problem can be formulated as follows.

 m\dot{{\imath}}n,im\dot{{\imath}}zexy,\alpha f(x, y, \alpha)=-\pi\sum_{i=1}^{n}\alpha_{i}R_{i}^{2} (F1)

subject to \alpha_{i}\alpha_{j}(R_{i}+R_{j})^{2}\leq(x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2} (1\leq i<j\leq n) (F2)
 x_{i}^{2}+y_{i}^{2}\leq\alpha_{i}(R_{0}-R_{i})^{2} (i=1,2, \ldots, n) (F3)
 -\alpha_{i}(R_{0}-R_{i})\leq x_{i}\leq\alpha_{i}(R_{0}-R_{i}) (i=1,2, \ldots,
n) (F4)
 -\alpha_{i}(R_{0}-R_{i})\leq y_{i}\leq\alpha_{i}(R_{0}-R_{i}) (i=1,2, \ldots,
n) (F5)
 \alpha_{i}\in\{0,1\} (i=1,2, \ldots, n) (F6)

We call this formulation (CPPI). In the above formulation, inequality (F2) forces

51

52

the constraint that the circles have no overlap, and inequality (F3) says that the
chosen circles do not protrude from the container, and rejected circles are centered
at the origin. Inequlities (F4) and (F5) are not strictly necessary, but provide
upper and lower bounds on the coordinates of the centers, which can help when a
solver is used.

López et al. [2] applied a commercial nonlinear optmization solver to the
problem (CPPI), and reported that solutions were obtainable only for instances
with n in the vicinity of 10. Thus, they proposed a heuristic method based on a
continuous relaxation.

Simply relaxing the constraint \alpha_{i}\in\{0,1\} to 0\leq\alpha_{i}\leq 1 will not result in good
solutions, hence, they introduced an auxiliary variable \delta>0 , and proposed the
following relaxation which replaces the 0‐1 constraint (F6) by the following two
constraints. We will call the resulting problem (CPP1_{R}(\delta))

 \alpha_{i}\in\{0,1\}(i=1,2, \ldots, n)

 \Rightarrow\sum_{i=1}^{n}\alpha_{i}(1-\alpha_{i})\leq\delta, 0\leq\alpha_{i}
\leq 1(i=1,2, \ldots, n) .

Note that when \delta=0 , this problem is equivalent to (CPPI). The heuristic
method proposed in [2], initially sets \delta=0.05 , then solves a series of problems
 (CPP1_{R}(\delta)) while reducing the value of \delta by a fixed factor \beta . To assure that
the computation time is not overly costly, they set a time limit (10n sec.) to
the nonlinear optimization solver. With this method they were able to obtain
good solutions for instances with up to n=40 circles. Their method is explicitly
described in Algorithm 1.

2.1 Continuous DC programming

In this section, we briefly describe important properties of DC programming.

Definition 2.1. A real valued function f : \mathbb{R}^{n}arrow \mathbb{R} is a DC function (Difference
of Convex function), if there exist two convex functions g, h : \mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}
satisfying

 f(x)=g(x)-h(x) . (1)

The above expression is called a DC decomposition of f . Since g(x)-h(x)=
 (g(x)+\varphi(x))-(h(x)+\varphi(x)) for any convex function \varphi , there are an infinite
number of of DC decompositions for any DC function f . In general, the prob‐
lem of finding a DC decomposition of a given function f is difficult, however,
for quadratic functions they can be easily found by using the eigenvalues of the
quadratic coefficient matrix.

52

53

Algorithm 1 Heuristic algorithm by López et al. [2]

StepO: Set \delta:=0.05, \beta:=0.5, k:=1.

Stepl: Solve (CPPI) (time limit 10n sec.) and find a feasible solution z^{(0)} :=

 (x^{(0)}, y^{(0)}, \alpha^{(0)}) . Set z_{best} :=z^{(0)}.

Step2: Solve (CPP1_{R}(\delta)) (time limit 10n sec.) and find z^{(k)} :=(x^{(k)}, y^{(k)}, \alpha^{(k)}) .

Step3: Round all values of \alpha_{i}^{(k)} to 0 or 1 (i=1, . . . , n) .

Step4: If the rounded solution z^{(k)} is feasible for (CPPI), and f(z^{(k)})<
 f(z_{best}) , then update z_{best} :=z^{(k)}.

Step5: If \delta\leq 10^{-5} or z_{best} has not been updated for 3 successive iterations,

output z_{best} and stop.

Step6: Set k :=k+1, \delta :=\beta\delta and goto Step2.

The class of DC functions is known to be very wide, for example, all twice
continuously differentiable functions belong to the class of DC. Moreover, the
DC property is preserved by many common function operations. The following
theorem gives examples of DC‐preserving operations, which will be subsequently
used.

Theorem 2.2 ([6]). For DC functions f, f_{i}(i=1 . , m) , the functions defined
by the following operations are also DC.

(i) \sum_{i=1}^{m}\lambda_{i}f_{i}(x) (\lambda_{i}\in \mathbb{R}, i=1 . , m)
(ii) i=1, \ldots,m\max f_{i}(x) , i=1,..,mm\dot{{\imath}}.nf_{i}(x)

(iii) |f(x)|, f^{+}(x) := \max\{0, f(x)\}, f^{-}(x) := \min\{0, f(x)\}

We now consider optimization problems having a DC objective functions. The
following problem is called a DC program.

minimize f(x)=g(x)-h(x)
 x (2)

subject to x\in S, x\in \mathbb{R}^{n}

We assume that g, h:\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\} are closed proper convex functions satisfy‐
ing \emptyset\neq dom g\subseteq dom h , and that S is a closed convex set. For technical reasons,
we set \infty-\infty=\infty.

53

54

DC programs are an important class of nonconvex optimization problems, with
a wide range of applications. They have been studied since the late 20th cetury
(e.g. [6]), and are known to satisfy many nice mathematical properties, of which
the most important is perhaps Toland‐Singer duality. Tao et al. [6] have also
proposed the DCA, which can efficiently find a local optimum.

In the following descriptions, for function g , we denote by \partial g(x) the subdiff‐
ential of g at x , and by g^{*}\#fg the conjugate of g.

Proposition 2.3 ([6]). For any optimal solution x^{*} of (2), the following properties
hold.

1. \partial g(x^{*})\supseteq\partial h(x^{*})

2. \overline{y}\in\partial h(x^{*})\Leftrightarrow x^{*}\in\partial h^{*}
(\overline{y})

3. \overline{y}\in\partial h(x^{*})\Rightarrow\overline{y} is an optimal solution of \inf_{y\in \mathbb{R}^{n}}\{h^{*}(y)-g^{*}(y)\}
Theorem 2.4 (Toland‐Singer duality, [6])). The following properties hold for a
DC function f=g-h.

 \inf_{x\in \mathbb{R}^{n}}\{g(x)-h(x)\}=y\in \mathbb{R}\dot{{\imath}}nf_{n}
\{h^{*}(y)-g^{*}(y)\} (3)

Definition 2.5. For a DC function f=g-h, a stationary DC point is vector x^{*}

satisfying the condition
 \partial g(x^{*})\cap\partial h(x^{*})\neq\emptyset . (4)

The DCA, due to Tao et al. [6], which finds a stationary point of the problem
(2) is described in Algorithm 2.

Algorithm 2 DCA

StepO: Choose x^{(0)} , and set k :=0.

Stepl: Choose y^{(k)}\in\partial h(x^{(k)}) .

Step2: Find x^{(k+1)}\in\partial g^{*}(y^{(k)}) .

Step3: If \Vert x^{(k+1)}-x^{(k)}\Vert<\epsilon , then output x^{(k+1)} and stop.

Otherwise set k :=k+1 and goto Stepl.

Upon termination, this algorithm finds an x^{*} satisfying (4). In the case that both g

and h are smooth, equation (4) is equivalent to the relation \nabla g(x^{*})=\nabla h(x^{*}) , thus
the solution x^{*} output by the DCA will satisfy \nabla f(x^{*})=\nabla g(x^{*})-\nabla h(x^{*})=0.

54

55

We now consider discrete DC programs, that is, DC programs in which all
variables are restricted to integer values. A discrete DC program can be formulated
as follows:

minimize f(x)=g(x)-h(x)
(5)

subject to x\in S, x\in \mathbb{Z}^{n}

Again, we assume that g, h : \mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\} are closed proper convex functions
with \emptyset\neq dom g\subseteq dom h , and that S is a closed convex set. Solving this problem
usually involves the use of some type of continuous relaxation. The obvious relax‐
ation which replaces x\in \mathbb{Z}^{n} with x\in \mathbb{R}^{n} , does not work well in general, since an
integrality gap often occurs. However, this is not the case for the relaxation based
on the closed convex hull extension.

Definition 2.6. Let g be a discrete function g:\mathbb{Z}^{n}arrow \mathbb{R}\cup\{+\infty\} . If there exists

 a (continous) closed convex function \hat{g} : \mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\} satisfying the condition

 \hat{g}(x)=g(x) (x\in \mathbb{Z}^{n}) , (6)

then g is said to be convex extensible, and \hat{g} is called a closed convex extension of
 g.

In general, a convex extensible discrete function has many convex extensions.
Among these, the following closed convex hull extension is of particular impor‐
tance.

Definition 2.7. For a convex extensible discrete function g:\mathbb{Z}^{n}arrow \mathbb{R}\cup\{+\infty\} , the
closed convex hull extension is the continuous closed convex function g^{c1} : \mathbb{R}^{n}arrow

 \mathbb{R}\cup\{+\infty\} satisfying

 g^{c{\imath}}(x)= \sup\{\alpha+\langle p, x\rangle|\alpha+\langle p, y\}\leq
g(y) (y\in \mathbb{Z}^{n})\} . (7)

The next theorem shown by Maehara et al. [4], shows that continuous relax‐
ations using closed convex hull extensions have no integrality gap.

Theorem 2.8 ([4]). Let g, h : \mathbb{Z}^{n}arrow \mathbb{R}\cup\{+\infty\} be convex extensible discrete
functions such that dom g is bounded, and dom g\subseteq dom h . Then,

 \inf_{x\in Z^{n}}\{g(x)-h(x)\}=x\in \mathbb{R}\dot{{\imath}}nf_{n}\{g^{c1}(x)-
\hat{h}(x)\} (8)

for any closed convex extension \hat{h} of h . Thus, we can solve (5) by solving a
continous relaxation in which g is replaced by its closed convex hull extension
(and h by any closed convex extension).

55

56

In [4], Maehara et al. proposed an algorithm for discrete DC programs, based
on the above theorem and DCA of [6].

Finally, we introduce the algorithm of Okuno et. al for mixed integer DC
programs. A mixed integer DC program is a DC program having both discrete
and continous variables:

minixmize f(x)=g(x)-h(x)

subject to x=(x_{M}, x_{N})\in S (9)
 x_{M}\in \mathbb{R}^{M}, x_{N}\in \mathbb{Z}^{N}

Here, n=|M|+|N| , functions g, h : \mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\} are closed convex functions
with \emptyset\neq dom g\subseteq dom h , and S\subseteq \mathbb{R}^{n} is a closed convex set.

In [5] Okuno et al. extended the results of Maehara et a1.[4] by proving
that Theorem 2.8 can be extended to the above problem, proposing the following
MIDCA.

Algorithm 3 MIDCA

StepO: Choose x^{(0)} , and set k :=0.

Stepl: Choose y^{(k)}\in\partial h(x^{(k)}) .

Step2: Find a solution x^{(k+1)} of the following subproblem:

minimize g(x)-(h(x^{(k)})+y^{(k)T}(x-x^{(k)}))

subject to x=(x_{M}, x_{N})\in S, x_{M}\in \mathbb{R}^{M}, x_{N}\in \mathbb{Z}^{N}

Step3: If \Vert x^{(k+1)}-x^{(k)}\Vert<\epsilon , then output x^{(k+1)} and stop.

Otherwise, set k :=k+1 and go to Stepl.

In each iteration, we find a solution x^{(k+1)} , of the mixed integer convex prob‐
lem approximating (9) at x^{(k)} . Thus, each x^{(k)} is always feasible to (9) Upon
termination, the algorithm outputs a MIDC stationary point satisfying (4).

3 New heuristic algorithms for the circle packing
problem

In this section, we propose two heuristic algorithms for the circle packing problem.

56

57

In doing so, we first reformulate (CPPI) as a mixed integer DC program, then
modify some varables and constraints. The first algorithm alternately solves two
problems; one is the modified MIDC reformulation of (CPPI), which we solve by
the MIDCA, and the other is a related problem, in which we pack all circles into
the container so as to minimize the overlapping area. The idea is to find a good
feasible solution of (CPPI), then move the rejected circles into positions which
can be used to improve it. The second algorithm has the same framework, but
in solving the MIDC reformulation, we replace the MIDCA by a method which
alternately solves a series of linear integer programs, and continuous DC programs.

We begin by describing the MIDC reformulation of (CPPI).

3.1 Refomulation as an MIDC program

As mentioned in Section 2, the formulation (CPPI) is a nonconvex quadratic
program, which is very difficult to solve. Much of the difficulty stems from the
nonconvex quadratic constraint (F2). We eliminate this complication by linearizing
it through means of an auxiliary variable \beta ij . More explicitly, we replace the
quadratic term \alpha_{i}\alpha_{j} by \beta_{ij} , and add some constraints that force \beta_{ij}=\alpha_{i}\alpha_{j} , as
below.

 \{\begin{array}{ll}
\beta_{ij}(R_{i}+R_{j})^{2}\leq(x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2} (1\leq
i<j\leq n) (F2a)
\alpha_{i}+\alpha_{j}-1\leq\beta_{ij} (1\leq i<j\leq n) (F2b)
0\leq\beta_{ij}\leq\alpha_{i} (1\leq i<j\leq n) (F2c)
0\leq\beta_{ij}\leq\alpha_{j} (1\leq i<j\leq n) (F2d)
\end{array}
If we replace the constrant (F2) by the inequalities (F2a)-(F2d) , we have got rid
of the quadratic terms, but not the nonconvexity. We deal with this, by penalizing
the amount of violation of constraint (F2a) , and incorporating it into the objective
function:

 f(x, y, \alpha, \beta)=-\pi\sum_{\dot{i}=1}^{n}\alpha_{i}R_{i}^{2}+\sum_{1\leq
i<j\leq n}P_{ij}\max\{0, \beta_{ij}(R_{i}+R_{j})^{2}-(x_{i}-x_{j})^{2}-(y_{i}-y_
{j})^{2}\}
Here, P_{ij} denotes the penalty parameter. Let (CPP2) be the problem obtained
by replacing in (CPPI), the constraint (F2) by (F2b)-(F2d) , and the objective
function (F1) by the above function. We now express the objective function as a
DC function.

 f(x, y, \alpha, \beta)=-\pi\sum_{i=1}^{n}\alpha_{i}R_{i}^{2}+\sum_{1\leq
i<j\leq n}P_{ij}\max\{(x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}, \beta_{ij}(R_{i}+
R_{j})^{2}\}
 \sum_{1\leq\dot{i}<j\leq n}P_{ij}\{(x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}\}

57

58

Figure 1: Solution of (CPP2_{DC}) : lnitial solution \Rightarrow MIDC stationary point

This function contains the \max operator, and hence is not smooth. We add another
auxiliary variable u_{ij} to deal with this. The resulting problem can be described as
below.

 \min\dot{{\imath}}m\dot{{\imath}},zex,y,\alpha,\beta u

 - \pi\sum_{\dot{i}=1}^{n}\alpha_{i}R_{i}^{2}+\sum_{1\leq i<j\leq n}P_{ij}u_{ij}
-\sum_{1\leq i<J\leq n}P_{\dot{i}j}\{(x_{i}-x_{j})^{2}+(y_{\dot{i}}-y_{j})^{2}\} (F7)

subject to (x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}\leq u_{ij} (1\leq i<j\leq n) (F2e)
 \beta_{ij}(R_{i}+R_{j})^{2}\leq u_{ij} (1\leq i<j\leq n) (F2f)
constraints (F3),(F4),(F5), (F2b),(F2c),(F2d) ,(F6)

We will call this problem (CPP2_{DC}) . Unfortunately, directly applying the MIDCA
to this problem did not lead to good results. An example with n=20 circles is
given in Figure 1 to illustrate this. In our implementation, we chose all (x_{i}, y_{i}) as
random values in the segment [-(R_{0}-R_{i}), R_{0}-R_{i}] . The figure on the left side
shows the initial solution, and the right side the MIDC stationary point. In the
MIDC stationary point, all circles not centered at the origin have \alpha_{i}=1 , and are
chosen to be placed. However, there is a great deal of overlap, which no amount
of adjusting the penalty parameters P_{ij} was able to resolve. The reason behind
this phenomenon is that constraints (F3),(F4),(F5) force all rejected circles to be
centered at the origin, which means that all circles not centered at the origin are
necessarily chosen to be placed, regardless of the amount of overlap. Moreover,
the MIDCA seems to be unable to change variable values by large amounts, thus
circles placed far from the origin cannot move there.

Since there is no imperative reason for rejected circles to be situated at the
origin, we alter the constraints (F3),(F4),(F5) as below, and allow unplaced circles

58

59

to be placed anywhere within the container.

 \{\begin{array}{ll}
x_{i}^{2}+y_{i}^{2}\leq(R_{0}-R_{i})^{2} (i=1,2, \ldots, n) (F3a)
-(R_{0}-R_{i})\leq x_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n) (F4a)
-(R_{0}-R_{i})\leq y_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n) (F5a)
\end{array}
The resulting problem which we will call (CPP3_{DC}) , can be explicitly written as
below

 \min\dot{{\imath}}mi,zex,y,\alpha,\beta u

 - \pi\sum_{\dot{i}=1}^{n}\alpha_{i}R_{i}^{2}+\sum_{1\leq i<j\underline{<}n}
P_{ij}u_{ij}-\sum_{1\leq i<j\underline{<}n}P_{ij}\{(x_{i}-x_{j})^{2}+(y_{i}-
y_{j})^{2}\} (F7)

subject to (x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}\leq u_{ij} (1\leq i<j\leq n) (F2e)
 \beta_{ij}(R_{i}+R_{j})^{2}\leq u_{ij} (1\leq i<j\leq n) (F2f)
 x_{i}^{2}+y_{i}^{2}\leq(R_{0}-R_{i})^{2} (i=1,2, \ldots, n) (F3a)
 -(R_{0}-R_{i})\leq x_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n) (F4a)
 -(R_{0}-R_{i})\leq y_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n) (F5a)
 \alpha_{i}+\alpha_{j}-1\leq\beta_{ij} (1\leq i<j\leq n) (F2b)
 0\leq\beta_{\dot{i}j}\leq\alpha_{i} (1\leq i<j\leq n) (F2c)
 0\leq\beta_{ij}\leq\alpha_{j} (1\leq i<j\leq n) (F2d)
 \alpha_{i}\in\{0,1\} (i=1,2, \ldots, n) (F6)

In Figure 2, we show the results of applying the MIDCA to (CPP3_{DC}) , with the
same problem data and initial solution of Figure 1. The resulting solution is now
feasible, but far from good. The reason is that the stationary point found by
the MIDCA depends a great deal on the initial solution. We next introduce the
minimum overlap problem, and show how it can be used to obtain a good initial
solution.

3.2 Obtaining good initial solutions: the minimum overlap
problem

In observing the results of the MIDCA, we notice that for a given initial solution,
it seems mainly to make minor place adjustments, then choose the circles which
do not overlap each other, to be placed. Thus, by using configurations with small
overlap as initial solutions, we may expect to obtain good MIDC stationary points.

The next problem, which we call (OVERLAPI), attempts to find the con‐
figuration in which all circles are placed within the container, with a minimum

59

60

Figure 2: Solution of (CPP3_{DC}) : lnitial solution \Rightarrow MIDC stationary point

amount of overlap. Thus, it is a nonlinear program having only continuous vari‐
ables (x_{i}, y_{i})(i=1, \ldots, n) corresponding to the center coordinates of the circles.

 \min\dot{{\imath}}mx,yize \sum_{1\leq i<j\leq n}\max\{0, (R_{i}+R_{j})^{2}-(x_{i}-x_{j})^{2}-(y_{\dot{i}
}-y_{j})^{2}\}
subject to x_{i}^{2}+y_{i}^{2}\leq(R_{0}-R_{i})^{2} (i=1,2, \ldots, n)

 -(R_{0}-R_{i})\leq x_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n)
 -(R_{0}-R_{i})\leq y_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n)

The objective function of the above problem is both nonsmooth and nonconvex. By
using the same techniques as in Section 3.1, we obtain the following DC program,
which we call (OVERLAP1_{DC}) .

 \min\dot{{\imath}}m\dot{{\imath}}zex,y,u \sum_{1\leq i<j\underline{<}n}u_{ij}-
\sum_{1\leq\dot{i}<j\underline{<}n}\{(x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}\}
subject to (x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}\leq u_{ij} (1\leq i<j\leq n)

 (R_{i}+R_{j})^{2}\leq u_{ij} (1\leq i<j\leq n)
 x_{i}^{2}+y_{i}^{2}\leq(R_{0}-R_{i})^{2} (i=1,2, \ldots, n)
 -(R_{0}-R_{i})\leq x_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n)
 -(R_{0}-R_{i})\leq y_{i}\leq R_{0}-R_{i} (i=1,2, \ldots, n)

As (OVERLAP1_{DC}) has only continuous variables, it can be solved by the DCA
using any nonlinear optimization solver. In Figure 3, we show the result of solving
 (OVERLAP1_{DC}) using the same problem data and initial solution of Figures 1 and
2. By then using the DC stationary point as the initial solution of (CPP3_{DC}) , the
MIDC stationary point shown in Figure 4 was obtained. This is clearly a much
better solution than that of Figure 2. However, there is still room for improvement.

60

61

Figure 3: Solution of (OVERLAPI): Initial solution \Rightarrow DC stationary point

Figure 4: Solution of (CPP3_{DC}) (Initia1 solution: DC stationary point of Fig. 3)

In the next section, we describe our first algorithm, which attempts to obtain
improved solutions by alternately ‘moving’ the rejected circles so as to minimize
overlap with the chosen circles, then re‐solving problem (CPP3_{DC}) .

3.3 Our first method

In the previous subsection, we have shown how to obtain a solution by using the DC
stationary point of the minimum overlap problem (OVERLAP1_{DC}) as an initial
solution of (CPP3_{DC}) . We now consider how to further improve this solution.

In order to improve the present solution, we use the minimum overlap problem
in which the placement of chosen circles is fixed.

Let \overline{z}=(\overline{x},\overline{y},\overline{\alpha},\overline{\beta},
\overline{u}) be the present solution, and denote by S and T respec‐
tively the sets of unplaced and placed circles in \overline{z} , that is, S=\{i|\overline{\alpha}_{i}=0\} and
 T=\{\dot{j}|\overline{\alpha}_{j}=1\} . We fix the circles in T , and solve the problem minimizing
overlap between placed and unplaced circles. More precisely, we fix the values
 (x_{j}, y_{j})=(\overline{x}_{j},\overline{y}_{j})(\dot{j}\in T) , and solve the problem having variables (x_{i}, y_{i})(i\in S) ,

61

62

Figure 5: Solution of (OVERLAP2) : Initial (Fig. 2) \Rightarrow DC stationary point

objective function

 \sum_{i\in S}\sum_{j\in T}\max\{0, (R_{i}+R_{j})^{2}-(x_{i}-\overline{x}_{j})^
{2}-(y_{i}-\overline{y}_{j^{2}}\},
and the same constraints as (OVERLAPI). Let us call this problem (OVERLAP2 (\overline{z})).
The objective of moving the unplaced circles so as to minimize the overlapping
area with the fixed circles, is based on the idea that some of the previously re‐
jected circles will move to positions having little overlap with the placed circles,
allowing us to add them to the set of chosen circles. As with (OVERLAPI), we
solve (OVERLAP2 (\overline{z})) by reformulating it as a DC program and using a nonlinear
optimization solver. In Figure 5, we show the results of solving (OVERLAP2)
arising from the MIDC stationary point shown in Figure 2. We may observe the
unplaced circles, indicated by dotted lines, moving so as to reduce overlap with the
placed circles. Using the resulting configuration as the initial solution to problem
 (CPP3_{DC}) and again applying the MIDC algorithm, we obtain the MIDC station‐
ary point of Figure 6. This solution is an improvement on Figure 2, in that circles
marked 2 and 4 are newly chosen.

Basically, our first algorithm iterates this procedure until no further improve‐
ment occurs. The total framework can be formally described as below. Here,
 f_{DC}(z) denotes the objective function (F7) of problem (CPP3_{DC}) .

62

63

Figure 6: MIDC point of (CPP3_{DC}) : (Initial solution: Fig 5)

Algorithm 4 Proposed Method 1

StepO: Choose an arbitrary initial solution z^{(0)} :=(x^{(0)}, y^{(0)}, \alpha^{(0)}, \beta^{(0)}, u^{(0)}) ,

and set k :=0.

Stepl: Solve (OVERLAP1_{DC}) , using z^{(0)} as an initial solution, and find a DC

stationary point z' :=(x', y', \alpha^{(0)}, \beta^{(0)}, u') with small overlap. Set

 z^{(0)}=z'.

Step2: Apply the MIDC algorithm to (CPP3_{DC}) , and find an MIDC stationary

point z^{(k+1)} :=(x^{(k+1)}, y^{(k+1)}, \alpha^{(k+1)}, \beta^{(k+1)}, u^{(k+1)}) .

Step3: If f_{DC}(z^{(k)})=f_{DC}(z^{(k+1)}) , then output z^{(k+1)} and stop.

Step4: Solve the problem (OVERLAP2(z^{(k+1)}) to find a DC stationary point

 z' :=(x', y', \alpha^{(k+1)}, \beta^{(k+1)}, u') , set z^{(k+1)} :=z', k :=k+1 and goto

Step2.

In the instance shown in the previous figures, the algorithm runs through two
iterations of Steps 2 and 3, to output the solution shown in Figure 7.

3.4 Our second method

In this section, we propose a method with the same framework as our first method,
but insetad of solving problem (CPP3_{DC}) , we introduce a procedure which alter‐
nately solves a series of linear mixed integer problems and continuous DC prob‐
lems.

We begin by noting that in the DC decomposition of the objective function of

63

64

 (CPP3_{DC}) , the two convex functions can be seen as having disjoint sets of variables,
that is,

 f(x, y, \alpha, \beta, u)=g(\alpha, \beta, u)-h(x, y) ,

 g(\alpha, \beta, u)=-\pi\sum_{i=1}^{n}\alpha_{i}R_{i}^{2}+\sum_{1\leq i<j\leq
n}P_{ij}u_{ij},
 h(x, y)= \sum_{1\leq i<\dot{J}\leq n}P_{ij}\{(x_{i}-x_{j})^{2}+(y_{i}-y_{j})
^{2}\}

Moreover, the function g(\alpha, \beta, u) has integer variables, but is linear, and the
quadratic function h(x, y) contains only continous variables. In our algorithm,
we take advantage of this fact to speedup Step 2 (solving (CPP3_{DC})) of our first
algorithm.

Instead of using the MIDCA, we employ the following iterative two‐step pro‐
cedure to solve (CPP3_{DC})). First, we solve the linear mixed integer program
obtained by fixing the values of (x, y) in (CPP3_{DC}) . This problem, which we call
(CPP4), has variables (\alpha, \beta, u) , and can be solved by any MIP solver. Next, we fix
all values of \alpha and \beta in (CPP3_{DC}) and solve the resulting problem, a continuous
DC program which we call (OVERLAP3_{DC}) . This can be accomplished by any
nonlinear optimization solver. We then iterate the above procedure until there is
no more change in the solutions.

Step 2 of our second algorithm can be formally described as follows. The
remaining steps (0,1,3 , and 4) are identical to our first method.

Algorithm 5 Step 2 of our second method

Step 2: (z^{(k)}=(x^{(k)}, y^{(k)}, \alpha^{(k)}, \beta^{(k)}, u^{(k)}) is the present solution.)

Set j :=0,\overline{z}^{(0)}=(\overline{x}^{(0)},\overline{y}^{(0)},\overline{\alpha}
^{(0)},\overline{\beta}^{(0)},\overline{u}^{(0)}) :=z^{(k)} , and find z^{(k+1)} by

the following procedure.

Step2.1: Fix (x, y)=(\overline{x}^{(j)},\overline{y}^{(j)}) in (CPP3_{DC}) , and use a MIP solver to

find (\overline{\alpha}^{(j+1)},\overline{\beta}^{(j+1)},\overline{u}^{(j+1)}) .

Step2.2: Fix (\alpha, \beta)=(\overline{\alpha}^{(j+1)},\overline{\beta}^{(j+1)}) in (CPP3_{DC}) ,

and use a nonlinear solver to find (\overline{x}^{(j+1)},\overline{y}^{(j+1)},\overline{u}^{(j+1)}) .

Set \overline{z}^{(j+1)} :=(\overline{x}^{(j+1)},\overline{y}^{(j+1)},\overline{\alpha}^{(j+1)},
\overline{\beta}^{(j+1)},\overline{u}^{(j+1)}) .

Step2.3: If f_{DC}(\overline{z}^{(j)})=f_{DC}(\overline{z}^{(j+1)}) , then set z^{(k+1)} :=\overline{z}^{(j+1)} and goto

Step3, otherwise set j :=j+1 and goto Step2.1.

64

65

Figure 7: Final solution

4 Computational experiments

In this section, we report the results of numerical experiments. The computer we
used is a WindowslO, 4.00 gigahertz PC with Intel i7‐6700K core and 16 gigabyte
memory. All implmentations were coded with Python 3.6, and the solver we used
is Gurobi7.5.2 (both MIP and nonlinear optimization). For our problem data,
we used the circle packing problems originally used in [2], and available from the
OR‐Library[7].

Our experiments consist of two sets; in the first we compared our new two new
algorithms with with the existing method of López et al. [2]. Results showed that
our second method showed most promise, thus, in the next set, we conducted more
experiments on this algorithm in depth.

4.1 The first set of experiments: comparison of algorithms

In order to investigate the efficiency and solution quality of our two new algo‐
rithms, we compared them with the algorithm of López et. al [2] as well as direct
application of SCIP, and the MIDCA. The test problems we used are the same as
those used in [2]. They involve n=10,20,30 circles, and are available from the
OR‐Library[7]. Each test problem consists of a set of n circles and three values
for the container radius R_{0} , thus there are a total of nine data sets, which are
specified as n-1,2,3 . For each of these data sets, we randomly generated 5 initial
solutions, and evaluated the performance by the average CPU time(seconds), and
the objective function value of the best solution found. A limit of 3600 seconds
was set on all CPU time. Table 1 summarizes the results. For some reason, which
we could not determine, the solutions found by our implementation of the López
et. al algorithm were distinctly inferior to the results given in the paper [2]. Thus,
in the interest of fairness, for this algorithm we have reproduced the best value re‐

65

66

Table 1: Results for n=10,20,30 circles(5 initial solutions)

sults from [2] (CPU times are omitted, as compuating environments are different).
In Table 1, abbreviations are as follows.

SCIP: results of directly solving (CPPl)with SCIP5.0.0,
López: results (best value only) as reported in [2], of solving (CPPI) with the

algorithm of López et. al,
MIDC: results of solving (CPP3_{DC}) by the MIDCA,
Method 1: results of solving (CPP3_{DC}) by our first method,
Method 2: results of solving (CPP3_{DC}) by our second method.

Obviously, simply using the MIDCA on (CPP3_{DC}) does not work, as the solu‐
tion values are much worse than the three heuristic methods, also, finding exact
solutions for n\geq 20 circles by SCIP is also prohibitively time‐consuming. In com‐
paring the heuristic methods by the best value found, we see that the method of
[2] is slightly better than ours, but not by much. As to our two methods, the sec‐
ond heuristic is clearly superior, in both that it is much faster, and the solutions
quality is at least as good as the first, and sometimes better.

Thus, we focused on our second method, and conducted more experiments to
determine the practical limit of the value of n for which it can be used.

66

67

Table 2: Results for n=30,40 circles (50 initial solutions)

Table 3: Results for n=50,60 circles (10 initial solutions)

4.2 The second set of experiments: testing on data with
large n

We give results of experiments on data with large n.

First, in Table 2, we show results for data with n=30,40 circles, comparing our
second algorithm and the López et. al method. For our algorithm, we randomly
generated 50 initial solutions, and give the average CPU time (seconds) and best
solution value found. Best values for the López et. al algorithm are again, those
reported in [2]. We notice that for all data, our method was able to find better
solutions, within reasonable computation time.

Next, to determine the practial limit of the solvable data size, we applied our
algorithm to problems with n=50,60 circles. The data was generated by the same
principle used in [2] to generate the previous twelve sets: radii for the n circles
were randomly generated to two decimal places from [1, 5], and the container radius
 R_{0} was set to values so that the area of the container is approximately equal to
1/3, 1/2 and 2/3 of the total area \sum_{i=1}^{n}\pi R_{\dot{i}}^{2} of the n circles. For each data set,
we generated 10 random initial solutions. Average CPU times (in seconds) and
the objective values of best solutions are given in Table 3. As no results for these
values of n are given in [2], we show results only for our second method. While
there is no accurate way to evaluate the quality of the solutions, drawings of the
actual configurations suggest that they are reasonably good. On the other hand,
the increase in the computational time between n=50 and n=60 is very large,

67

68

which leads us to conclude that n=60 is near the limit for which our algorithm
can be practically applied.

5 Concluding remarks

In this paper, we have considered the problem of packing a set of unequal circles
into a circular container, and shown how it can be formulated as a mixed integer
DC program. Although simple application of the MIDCA did not produce good
results, we further introduced the minimum overlap problem, proposed a heurstic
algorithm which alternately solves the two problems and demonstrated through
computational experiments that it find good solutions. We then further improved
this algorithm by replacing the time‐consuming MIDCA with a procedure which
alternately solves linear mixed integer programs and continuous DC programs.
Experiments confirm that the improved method is applicable to instances with up
to n=60 circles.

Further measures to speed up the algorithm, as well as methods to make the
algorithm more robust are possible subjects for future exploration.

68

69

References

[1] A. Lodi, S. Martello, M. Monaci: Two‐dimensional packing problems: A

survey. European journal of operational research, 141‐2 (2002), 241‐252.

[2] C.O. López, J.E. Beasley: A formulation space search heuristic for packing
unequal circles in a fixed size circular container. European Journal of Opera‐
tional Research, 251‐1 (2016), 64‐73.

[3] H. Dyckhoff: A typology of cutting and packing problems. European Journal
of Operational Research, 44‐2 (1990), 145‐159.

[4] T. Maehara, N. Marumo, K. Murota: Continuous relaxation for discrete DC
programming. Modelling, Computation and optimization in Information Sys‐
tems and Management Sciences, (2015), 181‐190.

[5] T. Okuno, Y.T. Ikebe: A new approach for solving mixed integer DC pro‐
grams using a continuous relaxation with no integrality gap and smoothing
techniques. arXiv preprint arXiv:1702.00553, (2017).

[6] P.D. Tao, L.T.H. An: Convex analysis approach to dc programming. Acta
Mathematica Vietnamica, 22‐1 (1997), 289‐355.

[7] OR‐Library, http: //people.brunel. ac.uk/mastjjb/jeb/orlib/circleinfo.html,
(2018/01/24)

69

