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1 Introduction

Let x\in \mathbb{R}^{n} , and  p\geqq 2 . Consider the multiobjective linear programming (MOLP) problem
given below:

MOLP  | subject t om\dot{{\imath}}n\dot{{\imath}}m\dot{{\imath}}ze  Ax\leqq b, x\geqq 0Cx , (1)
where  C\in \mathbb{R}^{p\cross n},  A\in \mathbb{R}^{m\cross n},  b\in \mathbb{R}^{m},  0 is a zero vector. Let   X:=\{x\in \mathbb{R}^{n}|Ax\leqq
 b,  x\geqq 0\} be the set of feasible solutions. We assume that  X is nonempty, and the set
 \{Cx|x\in X\} is bounded from below which ensures that the MOLP is solvable.

To define the optimal solution for the MOLP problem, we have the following definition.

Definition 1.1 (Efficient Solution). An  x'\in X is called an efficient solution of MOLP
if there is no  x\in X such that  Cx\leqq Cx' and  Cx\neq Cx'.

Let  E denote the set of efficient solutions of MOLP. Then, the optimization over the
efficient set (OE) is defined as the following

OE  | sumbıjneicmtıtzoe  x\in E\phi(x) , (2)
where  \phi(x) is a real function.

In 1972, Philip [1] considered the problem of optimizing some real function over the
efficient set (OE) of a multiobjective linear programming. There are many works on
the OE problem and since generally the efficient set is nonconvex, the problem plays
an important role in multiobjective programming and global optimization. Yamamoto’s
survey [2] classified the existing algorithms [1, 3, 4, 5, 6, 7, 8]. Since the efficient set can
be described as the difference of two convex set, algorithms based on DC programming
[9] have been raised. In fact, all these approaches are based in one way or another way
on DC optimization or extensions [10]. Because that the dimension of the outcome space
of problem is usually smaller than that of the decision space, algorithms that search an
optimal solution in the outcome space has been proposed in Benson’s works [11, 12].
Liu and Ehrgott [13] proposed primal and dual approaches for the problem which are
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also based this idea. Recently in Sun [14]  s work, the first mixed integer programming
(MIP) approach has been proposed to solve the OE problem of linear cases under several
conditions. In these previous researches, the running time usually grow rapidly with
both the number of objective functions and the number of constraints of the original
multiobjective programming.

In this paper, the approach of Lu et al. would be generalized to solve the OE problem.
Based on their result, we propose a necessary sufficient condition of the efficient solution of
a multiobjective linear programming which also can be seen as an application of Wendell
and Lee [15]. Then with the condition, we can use a MIP approach to solve the OE
problem. The proposed approach relax the condition and reduce the binary variables to
solve the problem more efficiently.

In Section 2, we will show Sun’ main result and ours, then we will compare our approach
with the previous work’s approach. A sketch proof will be given in Section 3. The necessary
and sufficient condition for the efficient solution of a multiobjective linear problem will be
established by using an auxiliary problem, then the formulation of the OE problem will be
transformed into a MIP problems. In Section 4, we will introduce the minimum maximal
flow problem which is known to be a typically OE problem [16, 17, 18], and with the MIP
approach, the problem can be efficiently solved. In Section 5, we will introduce another
problem called the least distance problem in data envelopment analysis, show that it is a
OE problem, and provide a MIP approach. In Section 6, the conclusion will be given.

2 Mixed Integer Programming Approach

In this section, after introducing Sun’s result [14] on the problem (2), we will show our main
result and make a comparison of the results. Sun’s result obtained under the following
two assumptions on the problems (1) and (2):

Assumption 2.1. For the problem (1), there is an  i\in\{1,2, p\} such that  c_{i}^{T}x is
one‐to‐one on  X , where  c_{i} is the ith row of the matrix  C.

Assumption 2.2. The problem (2) has an optimal solution  x^{*}.

We note that Assumption 2.1 is very strong, because it is not true if the dimension of
the feasible region  X is bigger than 1. Hence, Sun’s result is valid only when the dimension
of the feasible region  X is at most 1. Assumption 2.2 is rather standard and used in the
most analysis of the problem (2). Please note that the problem (1) is feasible and the
efficient set  E is nonempty under Assumption 2.2.

We state Sun’s result [14] as the next proposition.

Proposition 2.1. (Sun [14]) Under Assumptions 2.1 and 2.2, a solution of the following
mixed integer programming (MIP) problem is a solution of (2)

minimize  \phi(x)

subject to  s=(\begin{array}{l}
b
\beta
\end{array})  -  (\begin{array}{l}
A
C_{(i}\not\in
\end{array})  x,

 r=c_{i}+  (\begin{array}{l}
A
C
\end{array})  u

, (3)

 \beta=C_{(i)}y, Ay\leqq b,
 0\leqq u\leqq\theta\alpha_{1}, 0\leqq s\leqq\theta(1-\alpha_{1}) ,

 0\leqq x\leqq\theta\alpha_{2}, 0\leqq r\leqq\theta(1-\alpha_{2}) ,

 y\geqq 0, \alpha_{1}\in\{0,1\}^{m+p-1}, \alpha_{2}\in\{0,1\}^{n},

71



72

where  c_{i}^{T}x is one‐to‐one,  C_{(i)}=(c_{1}^{T}, \ldots, c_{i-1}^{T}, c_{i+1}^{T}, \ldots, c_{p}^{T})^{T},  \theta>0 is a sufficiently large
number, and and  0 is a vector whose each element is  0.

The proof can be found in Sun’s work [14].
We state our main result as the next theorem, whose proof is shown in the next section.

Theorem 2.1. Under Assumption 2.2, a solution of the following MIP is a solution of
(2):

minimize  \phi(x)
subject to  Ax+z=b,

 A^{T}u+C^{T}v-w=-C^{T}1,
 z\leqq\theta\alpha, u\leqq\theta(1-\alpha) , (4)
 x\leqq\theta\beta, w\leqq\theta(1-\beta) ,

 \alpha\in\{0,1\}^{m}, \beta\in\{0,1\}^{n},
 x, z, u, v, w\geqq 0,

where  \theta is a sufficiently large number.

Please note that we do not need the assumption 2.1 in this theorem. Moreover, com‐
pared with the problem (3), the size of the problem (4) is smaller, that is, the numbers
of constraints and binary variables in (4) are less than those in (3). So we will be able to
solve the problem (4) much faster than (3) in practical computation.

3 A Sketch Proof

In this section, we will give a sketch proof of Theorem 2.1.
At first, we refer a linear version of Wendell and Lee’s Theorem 1[15], which gives a

necessary and sufficient condition for an efficient solution  x\in E.

Lemma 3.1.  x'\in X is an efficient solution of the problem (1) if and only if  y is an
optimal solution of the following auxiliary problem, and  y=x' :

minimize  (C^{T}1)^{T}y
subject to  -Ay\geqq-b,

(5) -Cy\geqq-Cx',
 y\geqq 0,

where  y is a vector of variables, and 1 is a vector whose each element is 1.

Since the problem in the lemma is linear programming (LP), we obtain the next result
by using the optimal condition of LP.

Lemma 3.2.  x'\in \mathbb{R}^{n} is an efficient solution of the problem (1) if and only if there exists
 (u, v, w) such that

 - Ax'\geqq-b,
 A^{T}u+C^{T}v-w=-C^{T}1,
 (-Ax'+b)^{T}u=0, x^{\prime T}w=0, (6)

 x', u, v, w\geqq 0.
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From Lemma 3.1, the problem (2) is equivalent to the following problem

minimize  \phi(x)
subject to  Ax+z=b,

 A^{T}u+C^{T}v-w= −CT1, (7)
 z^{T}u=0, x^{T}w=0,
 x, z, u, v, w\geqq 0.

The problem (7) is a mathematical programming with linear complementarity constraints.
And we remark that Lemma 3.2 is also equivalent to Yamamoto’s (4) of THEOREM 2.7.
[2]. We will show that the problem (7) can be solved as a mixed integer programming
problem. Since the problem (2) has an optimal solution from Assumption 2.2, the problem
(7) also has an optimal solution. Then we impose the following assumption on the problem
(7).

Assumption 3.1. Let  (x^{*}, z^{*}, u^{*}, v^{*}, w^{*}) be an optimal solution of the problem (7). As‐
sume that  \theta is sufficiently large number so that

 \Vert(x^{*}, z^{*}, u^{*}, w^{*})\Vert_{\infty}\leqq\theta.

We can obtain the result of Theorem 2.1 from the next lemma.

Lemma 3.3. Under Assumption 3.1, the problem (7) is equivalent to the following MIP
problem:

minimize  \phi(x)
subject to  Ax+z=b,

 A^{T}u+C^{T}v-w=-C^{T}1,
 z\leqq\theta\alpha, u\leqq\theta(1-\alpha) , (8)
 x\leqq\theta\beta, w\leqq\theta(1-\beta) ,

 \alpha\in\{0,1\}^{m}, \beta\in\{0,1\}^{n},
 x, z, u, v, w\geqq 0.

4 Application I: the Minimum Maximal Flow Problem

The minimum maximal flow (MMF) problem is introduced by Shi and Yamamoto [16] in
1997 and it is known to be NP‐hard. Let  N=(V, E, s, t, c) be a network, where  V is a
set of  m+2 nodes  v_{j}(j\in\{1,2, \ldots, m+2\}),  E is a set of  n edges  e_{k}(k\in\{1,2, \ldots, n\}),  s

is a source,  t is a sink, and  c\in \mathbb{R}^{n} is a positive vector whose k‐th element  c_{k} denotes the
capacity of k‐th edge  e_{k} . In this paper,  V includes both  s and  t (  s=v_{m+1} and  t=v_{m+2} ).
Let  A\in \mathbb{R}^{m\cross n} be the node‐edge incidence matrix of the network  N , that is, each entry
 a_{\dot{J}^{k}} ( j\in\{1,2,  \ldots,  m\} and  k\in\{1,2,  \ldots,  n\} ) is defined as

 \{
1 if edge  e_{k} leaves node  v_{j},

 a_{jk}=  -1 if edge  e_{k} enters node  v_{j},

 0 otherwise.

Then the set  X of feasible flows is given by

 X=\{x\in \mathbb{R}^{n}|Ax=0,0\leqq x\leqq c\} , (9)
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where  0 is a vector whose each element is  0 . The value of a flow  x is computed by  d^{T}x,
where the k‐th element of  d\in \mathbb{R}^{n} is

 \{
1 if edge  e_{k} leaves source  s,

 d_{k}=  -1 if edge  e_{k} enters source  s,

 0 otherwise.

A feasible flow  x\in X is maximal if there are no feasible flows  y\in X such that  y\geqq x
and  y\neq x . The minimum maximal flow (MMF) problem is denoted as

minimize  d^{T}x
(10)

subject to  x\in X is a maximal flow.

Easy to find that the maximal flow is the efficient solution of the following MOLP.

maximize  x

subject to  Ax=0 , (11)
 0\leqq x\leqq c.

So the maximal flow set  E:=\{x\in X| There exists no  y\in X such that  x\leqq y and

 x\neq y\} is the efficient set, and the MMF problem is the following OE problem.

minimize  d^{T}x
(12)

subject to  x\in E

Then by applying the proposed MIP approach, the MMF problem can be reformulated
into the following

minimize  d^{T}x

subject to  A^{T}z+w=1,
 c-x\leqq c_{\max}\alpha,
 w\leqq n(1-\alpha) , (13)
 Ax=0,
 0\leqq x\leqq c,
 \alpha\in\{0,1\}^{n},

where

 c_{\max}= \max\{c_{k}|k\in\{1,2, n\}\}.

Also, in this problem we use  n instead of one of the  \theta by the following lemma.

Lemma 4.1. Fix any  I\subset\{1,2, n\} . If the MMF problem  (1\theta) has an optimal solution,
then there exists an optimal solution  (x^{*}, z^{*}, u^{*}, v^{*}) which satisfies

 \Vert(z^{*}, u^{*}, v^{*})\Vert_{\infty}\leqq n.

The proof can be found in Lu et a1.[19]. And in the experiment part, Lu et al. [19]
showed computational advantages when compared with vertex search method and DC al‐
gorithm which are also popular algorithms to solve the OE problem. In fact, by performing
computational experiments, the proposed approach is efficient to the MMF problem even
for relatively large instances, where the number of edges is up to 15,000, and that the
growth rate of running time of our approach is slower than the rates of previous works
when the sizes of the instances grow.
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5 Application II: the Least Distance Problem in Data En‐
velopment Analysis

In this section we will introduce some results and extension of Wang et al. [20] Data
Envelopment Analysis (DEA) has been studied to measure the efficiency since it was
introduced by Charnes et al. in 1978 [21]. In DEA, we assume that there are  n decision
making units (DMU), each  DMU_{j}(j=1,2, \ldots, n) uses  m inputs  x_{j}\in \mathbb{R}_{++}^{m} to produce  s

outputs  y_{j}\in \mathbb{R}_{++}^{s} . A pair of inputs  x and outputs  y of a DMU is called an activity. And
the variable returns to scale (VRS) [22] production possibility set  T in DEA is defined as
follows.

 T=\{(x, y)|X\lambda\leqq x, Y\lambda\geqq y, 1^{T}\lambda=1, x, y>0, 
\lambda\geqq 0 \}
where  X=(x_{1}, x_{2}, \ldots, x_{n}) is the input data matrix,  Y=(y_{1}, y_{2}, \ldots, y_{n}) is the output
data matrix,  \lambda\in \mathbb{R}^{n}.

A DMU whose activity is  (x, y) is called efficient if there is no pair  (x', y')\in T such
that  (x, -y)\geqq(x', -y') and  (x, -y)\neq(x', -y') . Let efficient frontier  E be the set of

efficient DMUs. Obviously, the efficient DMU is the efficient solution of the following
MOLP.

 x
minimize

 -y (14)
subject to  (x, y)\in T

The traditional DEA models try to find an efficient activity which maximizes the im‐
provement from the assessed DMU. In recent years, Briec [23] proposed  \ell_{p} ‐norm distance
model which is the first least distance problem (LDP) of DEA. Compared with the tra‐
ditional model, the LDP try to provide a closer efficient activity which means it would
cause less improvement to become efficient as well. Several researches [24, 25] tried to
solve this problem, but failed to establish the whole efficient frontier. Recently, Wang et
al. [20] try to establish the frontier by using an auxiliary problem, then use a branch and
bound method to solve it. But since the efficient frontier is not convex in general, the
computation is difficult. In this paper, we try to find out a efficient method to search the
closest efficient activity in the whole efficient frontier with the idea of the OE problem.
Let  E be the efficient frontier, the LDP can be written as following in general.

minimize  d(x, y)
(15)

subject to  (x, y)\in E

where  d(x, y) can be any kind of distance function. So (15) is an OE problem.
Since the number of binary variables grows with the number of inequality constraints,

we propose some techniques to reduce it. By exchange the position, let  DMU_{1} to  DMU_{k}
be efficient and all the other DMUs be inefficient, and let  X_{E}=(x_{1}, \ldots, x_{k}) and  Y_{E}=

 (y_{1}, \ldots, y_{k}) . Then we can construct the following set  H.

 H=\{(x, y)|X_{E}\lambda=x, Y_{E}\lambda=y, 1^{T}\lambda=1, x, y, \lambda\geqq 0
\}

where  A\in \mathbb{R}^{k} . When  T'=\{(x, y)|X\lambda=x, Y\lambda=y, 1^{T}\lambda=1, x, y, \lambda\geqq 0 \} , we have
the following lemma.

Lemma 5.1.  E\subset H\subset T'\subset T
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Because elements in  X_{E},  Y_{E},  X , and  Y are all positive, the convex combination of
 X_{E} and  Y_{E} and the convex combination of  X and  Y should be constantly positive which
implies  H\subset T'\subset T . To show that  E\subset H , Then we construct the following two MOLP.

 x
minimize

 -y (16)
subject to  (x, y)\in T'

 x
  \minimize

 -y (17)
subject to  (x, y)\in H

Obviously, all efficient solutions of (14) must also be efficient solutions of (14), and all
efficient solutions of (16) must also be efficient solutions of (17). Otherwise, there must
be some activities dominate it.

The  l_{p} ‐norm LDP problem of  (x_{0}, y_{0}) is the OE of (14), then it is also the OE of
(17). Then with Theorem2.1, the  \ell_{p} ‐norm LDP problem of  (x_{0}, y_{0}) can be formulated
into the following standard form.

minimize  ||(x, y)-(x_{0}, y_{0})||_{p}

subject to  (\begin{array}{lll}
I   0   -X_{E}
-I   0   X_{E}
0   I   -Y_{E}
0   -I   Y_{E}
0   0   1^{T}
0   0   -1^{T}
\end{array})(\begin{array}{l}
x
y
\lambda
\end{array})  +  (\begin{array}{l}
z_{1}
z_{2}
z_{3}
z_{4}
z_{5}
z_{6}
\end{array})=(\begin{array}{l}
0
0
0
0
1
-1
\end{array}) ,

 (\begin{array}{lll}
I   0   -X_{E}
-I   0   X_{E}
0   I   -Y_{E}
0   -I   Y_{E}
0   0   1^{T}
0   0   -1^{T}
\end{array})
 T

 (\begin{array}{l}
u_{1}
u_{2}
u_{3}
u_{4}
u_{5}
u_{6}
\end{array})  +  (\begin{array}{ll}
I   0
0   -I
0   0
\end{array})(\begin{array}{l}
v_{1}
v_{2}
\end{array})  -  (\begin{array}{l}
w_{1}
w_{2}
W_{3}
\end{array})=(\begin{array}{l}
-1
1
0
\end{array}), (18)

 z_{1}\leqq\theta\alpha_{1}, u_{1}\leqq\theta(1-\alpha_{1}) , z_{2}
\leqq\theta\alpha_{2}, u_{2}\leqq\theta(1-\alpha_{2}) ,

 z_{3}\leqq\theta\alpha_{3}, u_{3}\leqq\theta(1-\alpha_{3}) , z_{4}
\leqq\theta\alpha_{4}, u_{4}\leqq\theta(1-\alpha_{4}) ,

 z_{5}\leqq\theta\alpha_{5}, u_{5}\leqq\theta(1-\alpha_{5}) , z_{6}
\leqq\theta\alpha_{6}, u_{6}\leqq\theta(1-\alpha_{6}) ,

 x\leqq\theta\beta_{1}, w_{1}\leqq\theta(1-\beta_{1}) ,

 y\leqq\theta\beta_{2}, w_{2}\leqq\theta(1-\beta_{2}) ,

 \lambda\leqq\theta\beta_{3}, w_{3}\leqq\theta(1-\beta_{3}) ,

 \alpha_{1}\in\{0,1\}^{m}, \alpha_{2}\in\{0,1\}^{s}, \alpha_{3}\in\{0,1\}^{m},
 \alpha_{4}\in\{0,1\}^{s}, \alpha_{5}\in\{0,1\}, \alpha_{6}\in\{0,1\},
 \beta_{1}\in\{0,1\}^{m}, \beta_{2}\in\{0,1\}^{s}, \beta_{3}\in\{0,1\}^{k},
 x, y, \lambda, z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, u_{1}, u_{2}, u_{3}, 
u_{4}, u_{5}, u_{6}, v_{1}, v_{2}, w_{1}, w_{2}, w_{3}\geqq 0.

Because the equality constraints of (17),  z_{1},  z_{2},  z_{3},  z_{4},  z_{5},  z_{6} , are all  0 , the related binary
variables can be deleted, and let  u_{1}=u_{1}-u_{2},  u_{3}=u_{3}-u_{4} , and  u_{5}=u_{5}-u_{6} . And
because  x and  y are nonzero,  w_{1} and  w_{2} are all  0 . Also for  \lambda\geqq 0 and  1^{T}\lambda=1,  \theta can be
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1 in  A‐part. Then the LDP is equivalent to the following MIP.

minimize  ||(x, y)-(x_{0}, y_{0})||_{p}
subject to  X_{E}\lambda=x,

 Y_{E}\lambda=y,
 1^{T}\lambda=1,
 u_{1}\geqq-1 , (19)
 u_{3}\leqq 1,
 -X_{E}^{T}u_{1}-Y_{E}^{T}u_{3}+u_{5}-w_{3}=0
 \lambda\leqq\beta_{3}, w_{3}\leqq\theta(1-\beta_{3}) ,

 \beta_{3}\in\{0,1\}^{k}, \lambda, w_{3}\geqq 0.

Then we have a tool to find an efficient activity with the least improvements in the whole
efficient frontier.

6 Conclusion

Based on optimal conditions of linear programming, a necessary and sufficient condition
for efficiency has been established to describe the efficient set. Then we showed the MIP
approach can be applied to solve the OE problem. We reduce  p-1 binary variables
and relax the assumption of previous research. The exponential growth of running time
caused by the number of objective functions has been reduced because that the related
variables are all continuous in proposed approach. Also, Lu et a1[19] showed computational
advantages when applied the proposed approach to solve the MMF problem. Then, we
showed that the LDP is an OE problem and can use MIP approach to solve it. For the
development of the state‐of‐art MIP solver, the proposed approach may be able to solve
large‐scale optimization problems over the efficient set efficiently.
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