
1

Wave turbulence in a two‐layer fluid system

Mitsuhiro Tanaka (Gifu University, Japan)

1 Introduction

Two‐layer density stratified fluid systems can be observed in many natural and engineering
situations, e.g., at estuaries where fresh water from rivers flowing onto brine, and the thin layers
called pycnoclines observed in the ocean where the density changes rather rapidly.

In various wave phenomena in general, resonant interactions between waves are known to
play crucial roles (Phillips 1960). The dispersion relation for the surface gravity waves in a
single‐layer fluid is of non‐decay type, and the three‐wave resonance is not possible for any
combination of wavenumbers. For a two‐layer fluid system, on the other hand, it has been
known (Ball 1964, Alam 2012) that several types of three‐wave resonances are possible. Among
them there is a type of resonance called “Class 3” which involves two surface waves and one
interfacial wave. The Class 3 resonance is especially interesting in the sense that it is the only
type of resonance in which the constituent three waves all propagate in the same direction.

In our previous work (Tanaka & Wakayama 2015), we investigated numerically the energy
transfer from the surface waves to the interfacial waves which occurs due to this Class 3 res‐

onance. In that work we found an interesting phenomenon that a sharp peak appears in the
surface wave spectrum around some wavenumber during the course of the spectral evolution,
and that the peak grows with a much faster time‐scale than that expected from the conventional
wave turbulence theory. The aim of the present study is to clarify the origin of this peculiar
phenomenon.
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Figure 1: Definition sketch of a two‐layer fluid
system. Figure 2: The linear dispersion relation  (h_{u}=

1.0,  h_{l}=2.0,  R=0.80)

2 Governing equations

We investigate wave motions in a two‐layer fluid system as shown in Fig. 1. It is assumed that
the water is incompressible, inviscid, and the velocity fields are irrotational, and the bottom is
flat. It is also assumed that the motion of water is confined in the vertical xz plane, and that
the waves propagate in one dimension along the  x axis. Then the governing equations of the

1



2

problem are given as follows:

 \nabla^{2}\phi_{u}=0, -h_{u}+\eta_{l}<z<\eta_{u} , (1a)

 \nabla^{2}\phi_{l}=0, -h_{u}-h_{l}<z<-h_{u}+\eta_{l} , (1b)

 \eta_{u,t}+\eta_{u,x}\phi_{u,x}-\phi_{u,z}=0, z=\eta_{u} , (1c)

  \phi_{u,t}+\frac{1}{2}(\phi_{u,x}^{2}+\phi_{u,z}^{2})+g\eta_{u}=0, z=\eta_{u} , (1d)

 \eta_{l,t}+\eta_{l,x}\phi_{u,x}-\phi_{u,z}=0, z=-h_{u}+\eta_{l} , (1e)

 \eta_{l,t}+\eta_{l,x}\phi_{l,x}-\phi_{l,z}=0, z=-h_{u}+\eta_{l} , (1f)

  \rho_{u}[\phi_{u,t}+\frac{1}{2}(\phi_{u,x}^{2}+\phi_{u,z}^{2})+g\eta_{l}]
 - \rho_{l}[\phi_{l,t}+\frac{1}{2}(\phi_{l,x}^{2}+\phi_{l,z}^{2})+g\eta_{l}]=0, 
z=-h_{u}+\eta_{l}, (lg)

 \phi_{l,z}=0, z=-h_{u}-h_{l} . (1h)

The system of equations (1) admits a linear solution corresponding to a monochromatic wave‐
train  \propto e^{i(kx-\omega t)} with an infinitesimal amplitude. The frequency  \omega is related to the wavenumber
 k by the linear dispersion relation

 (1+RT_{u}T_{l})\omega^{4}-gk(T_{u}+T_{l})\omega^{2}+(1-R)g^{2}k^{2}T_{u}T_{l}=0 , (2)

where  T_{u}=\tanh kh_{u},  T_{l}=\tanh kh_{l} , and   R=\rho_{u}/\rho\iota is the density ratio. The dispersion
relation (2) is bi‐quadratic with respect to  \omega , and has four solutions  \pm\omega_{S},  \pm\omega_{i} for each  k with
 \omega_{S}>\omega_{i} . In the mode corresponding to the larger (smaller) value of  \omega , the amplitude of the
surface displacement is larger (smaller) than that of the interface displacement, and we call it
the “surface (interfacial) wave” As an example of the dispersion relation, we show in Fig. 2  \omega_{s}

and  \omega_{i} as functions of  k when  h_{u}=1.0.  h_{l}=2.0 and  R=0.80 . In all the results shown here,
the mass, the time, and the length are normalized so that  \rho_{l}=1,  h_{u}=1 , and  g=1.

3 Numerical results

The direct numerical simulation (DNS) of the governing equation has been performed. We
employ the numerical method based on the High‐Order Spectral Method (HOSM) developed
by Alam et al. (2009). The amplitude expansion which is included in HOSM is truncated at
 O(\epsilon^{2})(M=2) , corresponding to taking into account of up to three wave interactions. For time‐
integration, we use the  4th‐order Runge‐Kutta method with a fixed interval. For the detailed
description of the numerical method and the settings of parameters such as the number of nodes,
size of the timestep, etc., see Alam et al. (2009) and Tanaka & Wakayama (2015).

As an example of the results of DNS, here we show only those which are obtained when
 h_{l}=2 and  R=0.8 . Figure 3 shows the wavenumbers  k_{S1},  k_{S2} of two surface waves which
can constitute the Class 3 resonant triad with an interfacial wave whose wavenumber is given
by  |k_{1}-k_{2}| . It should be noted that there is a minimum value  k_{\min} that the wavenumber of
the surface wave can take in order to be a member of a Class 3 resonant triad. When  h_{l}=2,
 R=0.8,  k_{\min}\approx 1.73
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Figure 3: Resonance curve  (h_{l}=2, R=0.8)
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Figure 4: Evolution of  S_{s}(k) (left) and  S_{i}(k) (right)  (h_{l}=2.0, R=0.80)

Figure 4 shows the evolution of the energy spectra  S_{s}(k) and  S_{i}(k) of surface and interfacial
waves when  h_{l}=2,  R=0.8 . The initial shape of  S_{i}(k) and  S_{i}(k) are specified as follows:

 S_{s}(k)=A( \frac{k}{k_{p}})^{-3}\exp[-\frac{5}{4}(\frac{k}{k_{p}})^{-2}] (k>0) , (3a)

 S_{s}(k)=0 (k<0) , (3b)

 S_{\dot{i}}(k)=0 (-\infty<k<\infty) . (3c)

Equation (3) indicates that the initial wave field consists only of the surface waves propagating
in the positive  x direction, and there is no interfacial waves. The parameter  k_{p} controls the
peak wavenumber of the spectrum and is chosen as  k_{p}=3.5(\lambda_{p}\approx 1.8h_{u}) , while the parameter
 A controlling the energy density of the wave field is chosen as  A=1.5\cross 10^{-4} , corresponding to
 ak\approx 0.08.

As is observed in Fig. (4), the spectrum  S_{s}(k) of the surface waves shows a rather peculiar
behavior. In the initial stage of the evolution it gradually downshifts to lower wavenumber. But
the downshift stops at some time, then a sharp peak appears around  k_{\min} and grows very rapidly.
On the other hand, the evolution of  S_{i}(k) seems to be smooth and monotonic throughout the
spectral evolution.
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4 Weak turbulence theory and the kinetic equation

By applying the standard procedure of weak turbulence theory to the present problem of two
layer fluid system, we obtain the following kinetic equations which govern the spectral evolution:
(Zakharov et a1.1992, Nazarenko2011; Hasselmann1962, Janssen2003)

  \frac{dn_{k}}{dt}=-2\pi\iint[|V_{k12}|^{2}\{(n_{k}-n_{1})N_{2}+n_{k}n_{1}\}
\delta(\omega_{k}-\omega_{1}-\sigma_{2})\delta(k-k_{1}-k_{2})dk_{1,2}
 -|V_{1k2}|^{2}\{(n_{1}-n_{k})N_{2}+n_{k}n_{1}\}\delta(w_{k}-\omega_{1}+
\sigma_{2})\delta(k-k_{1}+k_{2})dk_{1,2}] , (4a)

  \frac{dN_{k}}{dt}=2\pi\iint|V_{12k}|^{2}\{(n_{1}-n_{2})N_{k}+n_{1}n_{2}\}
\delta(\sigma_{k}-\omega_{1}+\omega_{2})\delta(k-k_{1}+k_{2})dk_{1,2} , (4b)

where  n_{k} and  N_{k} are the action density spectra of surface and interfacial waves, respectively,
and are related to the energy spectra by  S_{s}(k)=\omega_{k}n_{k} and  S_{i}(k)=\sigma_{k}N_{k} . The existence of two
delta functions, one for  k and another for  \omega , implies that exchange of energy is possible only
among those three waves which satisfy the resonance condition. In (4) we have neglected all the
contributions from resonant interactions other than Class 3.

Figure 5 shows the rates of change  dS_{S}(k)/dt and  dS_{i}(k)/dt evaluated at  t=0 , i.e., the
time when we know the spectra  S_{S}(k) and  S_{i}(k) exactly. The blue dashed line shows the result
predicted by the kinetic equation (4), while the red solid line shows the results obtained by
the DNS which is estimated from the difference of  S_{S}(k) and  S_{\dot{i}}(k) from their respective initial
shape. The results show that the spectra are actually evolving in time according to the kinetic
equation (4) at least at around  t=0 , and probably be so until the time when the sharp peak
appears in  S_{s}(k) and starts to grow with a much faster timescale of  O(1/\epsilon) instead of  O(1/\epsilon^{2}) ,
i.e., the timescale expected from the kinetic equation (4).

41 ’. 2 I

31  11

21
 \varepsilon[

 \backslash \approx  11  \tilde{\backslash \nabla}

  \infty\frac{\wedge}{\check{}}\Phi  \hat{\dot{\overline{\infty}}e}  l\prime f1
21

 -21

 \triangleleft ’
 0 2 4 6 9 10  0 2 4 9 8 10

 k  k

Figure 5:   \frac{dSs(k)}{dt} (left) and   \frac{dSi(k)}{dt} (right) evaluated at  t=0.

5 Breakdown of the kinetic equation

The resonance condition requires that

 k_{s2}=k_{s1}+k_{i}, \omega(k_{s2})=\omega(k_{s1})+\sigma(k_{\dot{i}}) (k_{s2}
>k_{s1}) . (5)

If we regard  k_{s1} as a function of  k_{s2},  dk_{s1}/dk_{s2}=0 at the point A on the resonance curve where
 k_{s1}=k_{\min} . (See Fig. 3) Then the  k_{s2}‐derivative of the resonance condition gives

  \frac{d\omega(k)}{dk}|_{k_{s2}}=\frac{d\omega(k)}{dk}|_{k_{s1}}\frac{dk_{s1}}
{dk_{s2}}|_{A}+\frac{d\sigma(k)}{dk}|_{k_{i}}(1-\frac{dk_{s1}}{dk_{s2}}|_{A})=
\frac{d\sigma(k)}{dk}|_{k_{i}} (6)
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This implies that when the wavenumber of one of the two surface waves among the resonant
triad of Class3 is equal to  k_{\min} , the group velocity of the other surface wave and that of the
interfacial wave are equal.

By removing the double integral in (4) by exploiting the two delta functions, the kinetic
equation for  n_{k}(=S_{s}(k)/\omega(k)) reads

  \frac{dn_{k}}{dt}=-2\pi\iint[|V_{k12}|^{2}\{(n_{k}-n_{1})N_{2}+n_{k}n_{1}\}
\delta(\omega_{k}-\omega_{1}-\sigma_{2})\delta(k-k_{1}-k_{2})
 -|V_{1k2}|^{2}\{(n_{1}-n_{k})N_{2}+n_{k}n_{1}\}\delta(\omega_{k}-\omega_{1}+
\sigma_{2})\delta(k-k_{1}+k_{2})]dk_{1,2}

 =-2 \pi\frac{|V_{k12}|^{2}\{(n_{k}-n_{1})N_{2}+n_{k}n_{1}\}}
{|\frac{d\omega(k_{1})}{dk}-\frac{d\sigma(k_{2})}{dk}|} (arrow k^{S}=k_{1}^{S}+
k_{2}^{I};k^{S}>k_{1}^{S})
 +2 \pi\frac{|V_{1k2}|^{2}\{(n_{1}-n_{k})N_{2}+n_{k}n_{1}\}}
{|\frac{d\omega(k_{1})}{dk}-\frac{d\sigma(k_{2})}{dk}|}. (arrow k^{S}=k_{1}^{S}-
k_{2}^{I};k^{S}<k_{1}^{S}) (7)

The denominator of the second term vanishes at  k=k_{\min} . The divergence of  dn_{k}/dt at  k=k_{\min}

implies that the kinetic equation cannot express the behavior of  S_{s}(k) near  k=k_{\min} correctly.
The divergence of  dn_{k}/dt to  \infty also suggests that around  k_{\min}S_{s}(k) changes with a much faster
timescale than  O(1/\epsilon^{2}) expected from the kinetic equation. We actually observe in DNS that
 S_{s}(k) changes with a timescale of  O(1/\epsilon) instead of  O(1/\epsilon^{2}) around  k_{\min}.

The kinetic equation for the interfacial wave spectrum  S_{i}(k) can also be rewritten to a form
which does not include double integral as follows:

  \frac{dN_{k}}{dt}=2\pi\iint|V_{12k}|^{2}\{(n_{1}-n_{2})N_{k}+n_{1}n_{2}\}
 \delta(\sigma_{k}-\omega_{1}+\omega_{2})\delta(k-k_{1}+k_{2})dk_{1,2}

 =2 \pi\frac{|V_{12k}|^{2}\{(n_{1}-n_{2})N_{k}+n_{1}n_{2}\}}
{|\frac{d\omega(k_{1})}{dk}-\frac{d\omega(k_{2})}{dk}|} (arrow k^{I}=k_{1}^{S}-
k_{2}^{S}) (8)

The denominator does not vanish so long as  k_{1}^{S}\neq k_{2}^{S} , hence the kinetic equation remains valid.
(It vanishes at  k_{i}=0 , but  V_{12k} also vanishes then.) This is consistent with the result of DNS
that the timescale of  S_{i}(k) remains  O(1/\epsilon^{2}) throughout the spectral evolution even after the
sharp peak appears in  S_{s}(k) around  k_{\min} and the kinetic equation for  S_{s}(k) has broken down.

6 Discussion and conjecture

The possibility that the kinetic equation breaks down at the wavenumber where the group
velocities of the two constituent waves among a resonant triad coincide was pointed out many
years ago and is called the “double resonance” (Benney and Saffman 1966). In the present
study it has become clear that the appearance of a sharp peak in  S_{s}(k) which we had observed
and reported in our previous work is closely connected to this double resonance. Although
the possibility of double resonance has been known for a long time, there are not many works
which have investigated the effect of double resonance to a wave turbulence in some specific
physical system. As far as we know, the work by Soomere (1993) in the context of Rossby wave
turbulence is the only work of such kind. The present study has shown that the two‐layer fluid
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system provides another interesting example of a realistic physical system for which the double
resonance is possible to occur.

An important question to be addressed here is if it ever be possible to describe the rapid
growth of the sharp peak in  S_{s}(k) around  k_{\min} , a phenomenon with the deterministic timescale of
 O(1/\epsilon) instead of the spectral timescale of  O(1/\epsilon^{2}) , within the framework of the weak turbulence
theory. As we have seen above, the kinetic equation of Zakharov‐Hasselmann type (Hassel‐
mann’s equation” for short), which is the most standard type of kinetic equation given by the
weak turbulence theory, breaks down at  k_{\min} , and cannot describe the phenomenon properly.
However we now have more general kinetic equations (  GKE” for short), as those proposed by
Janssen (2003) and Annenkov‐Shrira (2006).

Recently we have studied the weak turbulence in a model Hamiltonian system with a decay
dispersion relation. (Note that this system has nothing to do with the two‐layer fluid system
which is studied here.) In that study we compared the rates of change of the spectrum  dS(k, t)/dt
given by Hasselmann’s equation, Janssen’s GKE and the DNS. The model Hamiltonian is defined
as follows:

  \mathcal{H}=\mathcal{H}_{2}+\mathcal{H}_{3}, \mathcal{H}_{2}=\int\omega(k)
|a(k)|^{2}dk , (9)

  \mathcal{H}_{3}=\frac{1}{2}\int\{V(k, k_{1}, k_{2})a^{*}(k)a(k_{1})a(k_{2})+c.
c.\} , (10)

 \omega(k)=k^{3/2}, V(k, k_{1}, k_{2})=(kk_{1}k_{2})^{1/4} . (11)

The corresponding dynamic equation is given by

  \frac{da_{k}}{dt}=-i\frac{\delta \mathcal{H}}{\delta a_{k}^{*}}=-i\omega_{k}a_
{k}-\frac{i}{2}\int V_{012}a_{1}a_{2}\delta_{0-1-2}^{k}dk_{12}-i\int V_{102}^{*}
a_{1}a_{2}^{*}\delta_{1-0-2}^{k}dk_{12}dk_{12} , (12)

from which we also obtain the equation for the spectrum as follows:

  \frac{\partial n_{k}}{\partial t}={\rm Im}\int[V_{012}J_{012}\delta_{0-1-2}
^{k}+2V_{102}^{*}J_{102}^{*}\delta_{1-0-2}^{k}]dk_{12} , (13)

where

 \langle a_{k}a_{k}^{*},\rangle=n_{k}\delta(k-k') , \{a_{0}^{*}a_{1}a_{2}\rangle
=J_{012}\delta(k-k_{1}-k_{2}) . (14)

Differentiating  \langle a_{0}^{*}a_{1}a_{2}\rangle with respect to  t , using (12), and making use of the “random‐phase
approximation” which implies

 \langle a_{1}^{*}a_{2}^{*}a_{3}a_{4}\rangle=n_{1}n_{2}[\delta_{1-3}^{k}
\delta_{2-4}^{k}+\delta_{1-4}^{k}\delta_{2-3}^{k}] , (15)

we obtain the evolution equation for  J_{012} as follows:

  \{\frac{\partial}{\partial t}-i\triangle\omega_{012}\}J_{012}=iV_{012}^{*}
f_{012}, f_{012}:=n_{1}n_{2}-n_{0}(n_{1}+n_{2}) , (16)

where  \triangle\omega_{012} is the frequency mismatch  \triangle\omega_{012}=\omega(k)-\omega(k_{1})-\omega(k_{2}) . By solving (16) for
 J_{012}(t) and inserting it to (13), we get a kinetic equation which is closed with respect to  n_{k}(t) .
The general solution of (16) is given by

 J_{012}(t)=iV_{012}^{*} \int_{0}^{t}f_{012}(t')e^{i\triangle\omega_{012}(t-t')}
dt'+J_{012}(0)e^{i\triangle\omega_{012}t} , (17)
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where  J_{012}(0)=0 in order to be consistent with the initial condition of DNS. Substituting this
general solution for  J_{012}(t) into (13) gives the Annenkov‐Shrira’s GKE. If we assume that the
change of  n_{k} is much slower that  e^{i\triangle\omega_{012}t} and make the approximation as

 J_{012}(t) \approx iV_{012}^{*}f_{012}(t)\int_{0}^{t}e^{i\triangle\omega_{012}
(t-t')}dt'=V_{012}^{*}f_{012}(t)\frac{e^{i\triangle\omega_{012}t}-1}
{\triangle\omega_{012}} , (18)

before substituting  J_{012}(t) into (13), we obtain Janssen’s GKE. Furthermore if we take the limit
of   tarrow\infty in (18), and employ the resultant simple form for  J_{012}(t) given by

 J_{012}(t)=V_{012}^{*}f_{012}(t)[- \frac{\mathcal{P}}{\triangle\omega_{012}}+
\pi i\delta(\triangle\omega_{012})] , (19)

we obtain Hasselmann’s kinetic equation, the most standard type of kinetic equation given by
the weak turbulence theory.

Figure 6 shows the rate of change of the energy spectrum  dE_{k}/dt at  t=0.3T_{p} and  t=0.6T_{p}
obtained for the model Hamiltonian system, with  T_{p} being the period corresponding to the
peak of the spectrum. The figure clearly shows that  dE_{k}/dt changes very rapidly with a linear
timescale of  O(1) . The figure also shows that Janssen’s GKE can keep up with the rapid change
and gives  dE_{k}/dt which is very close to that given by the DNS, while Hasselmann’s equation
cannot.
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Figure 6: rapid change of  dE_{k}/dt observed in the model Hamiltonian system.

However we cannot expect that Janssen’s equation would equally be successful in the present
case of the two‐layer fluid system from the following reasons. As we explained above, Janssen’s
GKE assumes slow change of  n_{k}(t) and takes  f_{012}(t) out of the integral with respect to  t when
evaluating  J_{012} (cf. (18)). In the case of the model system, the change of  n_{k}(t) was actually
slow even though  dn_{k}/dt changes rapidly. On the other hand, the sharp peak of  S_{s}(k) in the
problem of the two‐layer fluid system grows with the timescale of  (1/\epsilon) , much faster than the
spectral timescale of  (1/\epsilon^{2}) . Furthermore, Janssen’s GKE is known to become equivalent to
Hasselmann’s equation for  t\gg 1 , hence it would be destined to break down around  k_{\min} just
like Hasselmann’s equation does.

On the other hand, Annenkov & Shrira’s GKE keeps  f_{012}(t) within the integral with respect
to  t in (17), and treats  f_{012}(t) (hence  n(k) ) in the same manner as the rapidly oscillating term
 e^{i\triangle\omega t} . Thus we conjecture that Annenkov & Shrira’s GKE might be able to describe the whole
spectral evolution of the two‐layer fluid system, including the rapid growth of the sharp peak
of  S_{s}(k) around  k_{\min} . The project is still under way and further investigation is necessary for a
definite conclusion.
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