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Abstract

This work considers two‐dimensional steady motion of solitary waves progressing
in permanent form with constant speed on a shear current of which the horizontal
velocity varies linearly with depth. In particular, we focus on peaking of the wave
crest with increase of amplitude. First, local flow analysis near the crest of the
peaked wave using conformal mapping determines singularities of solutions at
the wave crest. It is shown that the inner angle of the corner at the crest of
the peaked wave does not depend on the magnitude of shear current. Next,
solutions of the two long wave models, the Korteweg‐de Vries (KdV) model and
the strongly nonlinear model, for solitary waves on a linear shear current are
numerically compared with those the full Euler system. Numerical examples
demonstrate that these long wave models can qualitatively capture variation of
peaking phenomenon with the magnitude of shear current. In addition, linear
stability analysis of steady solutions of solitary waves is discussed using the two
long wave models.

1 Introduction

Some previous works have shown that motion of surface waves may be affected by shear
currents varying with depth, which are caused by wind stresses at the water surface or
frictional stresses acting on the bottom (for example [13, §4]). For two‐dimensional motion
of incompressible and inviscous fluid, assumption of linear variation of the horizontal
velocity of a shear current with depth allows us to formulate the problem within the
framework of irrotational wave theory. In this work, we consider large‐amplitude motion of
solitary waves propagating on a linear shear current, as shown in fig. 1. On the assumption
of linear shear current, Teles da Silva & Peregrine [16], Pullin & Grimshaw [14] and
Vanden‐Broeck [17] demonstrated some interesting nonlinear phenomena in solitary wave
motion using numerical computation of the full Euler system. Among them, we focus on
peaking phenomenon, namely peaking of the wave crest with increase of amplitude, as
shown fig.2.

Crest singularities of the peaked wave can be investigated using local flow analysis near
the wave crest, similarly to the case without shear current [7] [15, p.225]. In section 2.3,
it will be shown that conformal mapping of the flow domain to a suitable complex plane
helps us examine high‐order singularities.

Some computed results of wave profiles in fig.2 show that solitary waves on a linear
shear current can attain peaked waves with small amplitude. This indicates that existence
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of a shear current may change the breaking limit of surface waves. For systematic under‐
standing of this, we introduce the two long wave models, the Korteweg‐de Vries  (KdV)
model [1, 6] and the strongly nonlinear model [4] in section 3. It may be worthwhile to
investigate linear stability of steady solutions of these long wave models, as a preliminary
work for elucidation of the mechanism of generation of wave breaking. It should be noted
that linear stability of steady solutions of water waves on a linear shear current has bee
numerically investigated for periodic waves [5, 12], but not for solitary waves.

h) h)

(a) Upstream propagation  (\Omega>0) (b) Downstream propagation  (\Omega<0)

Fig.1 A solitary wave on a linear shear current.  \Omega : the shear strength.

  \frac{y}{h}   \frac{y}{h}

(a)  \Omega^{*}=0 (  b)  \Omega^{*}=-0.2

  \frac{y}{h}   \frac{y}{h}

(c)  \Omega^{*}=-0.4 (  d)  \Omega^{*}=-0.6

Fig.2 Wave profiles of a solitary wave on a linear shear current.  \Omega^{*}=\Omega h/\sqrt{gh}.
Solutions of the full Euler system are numerically obtained using the boundary
integral method [17].
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2 Steady solutions of the full Euler system

2.1 Representation of solutions using the complex velocity potential

Consider a left‐going solitary wave on a linear shear current in the frame of reference
moving with wave speed  c , as shown in fig. 1. Assume that a fluid is incompressible and
inviscid, and that fluid motion is two‐dimensional and steady in the vertical cross‐section
along the progressing direction of wave. The horizontal velocity of a linear shear current
is given by  U_{0}=\Omega(y+h) where the shear strength  \Omega and the water depth  h are both
constant. Then the total velocity vector  (U, V) can be split into the velocity of a linear
shear current and that of wave motion as

 (\begin{array}{l}
U
V
\end{array})  =

 +_{w\tilde{a}}(\begin{array}{l}
u
v
\end{array})ve motion (1)
and its vorticity  \omega is given by

 \omega=V_{x}-U_{y}=-\Omega(= constant) (2)

For two‐dimensional motion of incompressible and inviscid fluid, the vorticity is conserved,
and then the velocity vector  (u, v) satisfies

 v_{x}-u_{y}=0 (3)

Thus the perturbed flow due to wave motion is irrotational, and it is convenient to rep‐
resent the velocity components  u(x, y) and  v(x, y) using the complex velocity potential
 f(z)=\phi(x, y)+i\psi(x, y) as

  \frac{df}{dz}=u-iv (4)

where  z=x+iy denotes the complex coordinate.
Hereafter, each variable is non‐dimensionalized as follows:

 x^{*}= \frac{x}{h},  y^{*}= \frac{y}{h},   \alpha=\frac{a}{h},  c^{*}= \frac{c}{\sqrt{gh}},   \Omega^{*}=\frac{\Omega h}{\sqrt{gh}},  t^{*}= \frac{t\sqrt{gh}}{h} , (5)

where  g is the gravitational acceleration and  t is the time. The asterisk
 *

is omitted for
brevity.

2.2 Peaking phenomenon

Figures 2 and 3 show some numerical examples of steady solitary wave solutions for
different values of the shear strength  \Omega , which were obtained by using the boundary
integral method for the full Euler system developed by Vanden‐Broeck [17].
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Figure 2 demonstrates peaking phenomenon of wave profiles. Namely, the wave crest
becomes sharper with increase of the wave amplitude‐to‐depth ratio  \alpha=a/h , and the
limiting wave has a corner at the crest. It should be noted that, for  \Omega<0 , the wave
amplitude of the limiting wave decreases with increase of the absolute value  |\Omega|.

Figure 3 shows variation of the wave speed  c with the wave amplitude‐to‐depth ratio
 \alpha=a/h . It is found that, for each value of  \Omega , the wave speed  c of the limiting wave
attains a critical value which is shown by the dashed line in fig.3. This critical value can
be analytically determined as follows. First, the boundary condition on the water surface
 y=\tilde{y}_{0}(x) is given by Bernoulli’s theorem as

 U^{2}+V^{2}+2y=(c+\Omega)^{2} on  y=\tilde{y}_{0}(x) (6)

Since the crest of the limiting wave is the stagnation point, namely  U=V=0 at
 y=\alpha=a/h , we can get a critical condition among  \alpha,  c and  \Omega for the limiting wave as

 2\alpha=(c+\Omega)^{2} (7)

The dashed line in fig.3 shows this condition.

 (c+\Omega)^{2}

 0  02 04 06 08 1 12

 \alpha

Fig.3 Variation of the wave speed  c with the wave amplitude‐to‐depth ratio  \alpha=a/h.
Numerals in the figure show the value of the shear strength  \Omega . The dashed line
denotes the critical condition (7). Solutions of the full Euler system are
numerically obtained using the boundary integral method [17].

2.3 Crest singularities of peaked waves

In this subsection, we consider singularities at the wave crest of peaked waves. For that,
the origin of the  z‐plane is set to the wave crest, as shown in figs.4(a) and (b). In the
case of no shear current, namely  \Omega=0 , Stokes [15, p.225] found that the inner angle of
the corner at the crest of the peaked wave is 120 degrees from local flow analysis near
the wave crest, and Grant [7] showed existence of high‐order singularities using conformal
mapping of the flow domain into the complex velocity potential  f‐plane. For  \Omega=0 , the
 f‐plane is suitable for local flow analysis near the wave crest, because the water surface
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is mapped onto the real axis  \psi=0 . On the other hand, for  \Omega\neq 0 , the water surface is
not located on  \psi=0 , as shown in fig.4(c), and thus it is necessary to introduce a new
complex plane, the  \zeta‐plane  (\zeta=\xi+i\eta) , as shown in fig.4(d), where the flow domain
mapped onto the lower half plane  (\eta<0) and the water surface is mapped onto the real
axis  \eta=0 . In the  \zeta‐plane, steady wave solutions are given by for  z=z(\zeta) and  f=f(\zeta) ,
and the kinematic and dynamic conditions for them on the water surface  \eta=0 can be
written, respectively, as

 \psi_{\xi}+\Omega(1+\alpha+y)y_{\xi}=0  on  \eta=0 (8)

and

  \frac{1}{x_{\xi^{2}}+y_{\xi^{2}}}\{\phi_{\xi}+\Omega(1+\alpha+y)x_{\xi}\}^{2}+
2(\alpha+y)=(c+\Omega)^{2} on  \eta=0 (9)

 )

(a) Local flow near the wave crest  z=0 (b) The  z plane  (z=x+iy)

 D)^{2}\}

(c) The  f plane  (f=\phi+i\psi) (d) The  \zeta plane  (\zeta=\xi+i\eta)

Fig.4 Conformal mapping of the flow domain for local flow analysis near the wave crest.

We may assume that the local solutions  z(\zeta) and  f(\zeta) near the wave crest  \zeta=0 are
represented by

 z(\zeta) = \^{A}_{0}\zeta^{\hat{\mu}0}+\hat{A}_{1}\zeta^{\hat{\mu}_{1}}+ ,

 (|\zeta|\ll 1) (10)
 f(\zeta) = c\zeta+\hat{B}_{0}\zeta^{\hat{\nu}_{0}}+
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where  \hat{\mu}_{1}>\hat{\mu}_{0}>0 and  \hat{\nu}_{0}>0 . Substituting these into the free surface conditions (8) and
(9) and matching the leading order terms, we can determine the coefficients  \hat{\mu}_{0},  \^{A}_{0} and
 \hat{B}_{0} in (10) as

  \hat{\mu}_{0}=\hat{\nu}_{0}=\frac{2}{3} , \^{A}_{0}=(\frac{3}{2}c)^{2/3}e^{-
i\pi/6} \hat{B}_{0}=-\Omega(1+\alpha)\^{A}_{0} (11)

This result indicates that the inner angle of the corner at the crest of the peaked waves is
always 120 degrees, and does not depend on the shear strength  \Omega . This agrees with the
previous result from another approach [11, §14.50]. It should be noted that the present
method allows us to examine high‐order singularities even for  \Omega\neq 0 , similarly to [7] for
 \Omega=0.

3 Long wave models of solitary waves on a linear shear current

In this section, we introduce the two long wave models, the Korteweg‐de Vries  (KdV)
model and the strongly nonlinear model, which can produce peaking phenomenon, and
investigate linear stability of steady solutions of these models.

3.1 The two long wave models

3.1.1 The Korteweg‐de Vries  (KdV) model [1, 4, 6]

For weakly nonlinear long waves  (h/L=\epsilon\ll 1 and  a/h=\alpha=O(\epsilon^{2}),  L : a typical
horizontal length scale), we can derive the Korteweg‐de Vries  (KdV) model [1, 4, 6] which
can be written in the frame of reference moving to the left with constant speed  c as

 \tilde{y}_{t}+(c-c_{0})\tilde{y}_{x}-c_{1}\tilde{y}\tilde{y}_{x}-c_{2}\tilde{y}
_{xxx}=0 (12)

where  \tilde{y}=\tilde{y}(x, t) is the wave elevation,

 c_{0}=- \frac{1}{2}\Omega+\sqrt{1+\frac{1}{4}\Omega^{2}},  c_{1}= \frac{(c_{0}+\Omega)^{3}+2(c_{0}+\Omega)-\Omega}{1+(c_{0}+\Omega)^{2}} and  c_{2}= \frac{1}{3}\frac{(c_{0}+\Omega)^{3}}{1+(c_{0}+\Omega)^{2}}
(13)

A steady solution  \tilde{y}_{0}(x) of (12) is given by

 \tilde{y}_{0}(x)=\alpha sech2  k_{0}x (14)

with

  c=c_{0}+ \frac{1}{3}c_{1}\alpha and   k_{0}^{2}= \frac{1}{12}\frac{c_{1}}{c_{2}}\alpha (15)

Note that a steady solution  \tilde{y}_{0}(x) in (14) decays exponentially as  \tilde{y}_{0}(x)arrow 4\alpha e^{\mp 2k_{0}x}
 (xarrow\pm\infty) .
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3.1.2 The strongly nonlinear model [4]

Choi [4] derived another class of long wave model for fully nonlinear and weakly dispersive
waves, namely for long waves without assuming weak nonlinearity. This model is called
the strongly nonlinear model and expressed as

 \{\begin{array}{l}
\tilde{y}_{t}+\Omega(1+\tilde{y})\tilde{y}_{x}+\partial_{x}\{(1+\tilde{y})
\overline{u}\}=0
\overline{u}_{t}+\overline{u}\overline{u}_{x}+\tilde{y}_{x}=\frac{1}{3}\frac{1}
{1+\tilde{y}}\partial_{x}[(1+\tilde{y})^{2}D_{t}\{(1+\tilde{y})\overline{u}_{x}
\}]
\end{array} (16)

where the depth mean horizontal velocity  \overline{u}=\overline{u}(x, t) and the differential operator  D_{t} are
defined, respectively, by

  \overline{u}(x, t)=\frac{1}{1+\tilde{y}}\int_{-1}^{\tilde{y}}u(x, y, t)dy and  D_{t}=\partial_{t}+\{\overline{u}+\Omega(1+\tilde{y})\}\partial_{x} (17)

Note that, for  \Omega=0, (16) corresponds to the Green‐Naghdi model [8]. Steady solutions
 \tilde{y}_{0}(x) and  \overline{u}_{0}(x) of the strongly nonlinear model are given, respectively, by [1, 4]

 ( \frac{d\tilde{y}_{0}}{dx})^{2}=\frac{3\tilde{y}_{0}^{2}(\alpha-\tilde{y}_{0})
\{1+\frac{1}{12}\Omega^{2}(\alpha+\tilde{y}_{0}+4)\}}{\{c+\frac{1}{2}\Omega+
\frac{1}{2}\Omega(1+\overline{y}_{0})^{2}\}^{2}} (18)

and

  \overline{u}_{0}(x)=\frac{c+\frac{1}{2}\Omega-\frac{1}{2}\Omega(1+\tilde{y}
_{0})^{2}}{1+\tilde{y}_{0}} (19)

Here it should be remarked that the denominator of (18) vanishes at a critical value  \Omega_{critica{\imath}}
of the shear strength  \Omega given by

  \Omega_{critica1}=\frac{12}{\alpha(3\alpha^{2}+9\alpha+8)} (20)

and that the wave slope at the crest  |d\tilde{y}_{0}/dx|_{crest}arrow\infty as  \Omegaarrow\Omega_{critica{\imath}} . This may be
related to peaking phenomenon. Also note that a steady solution  \tilde{y}_{0}(x) in (14) decays
exponentially as  \tilde{y}_{0}(x)arrow ae^{\mp\kappa_{0}x}(xarrow\pm\infty) with the decay rate  \kappa_{0} given by

  \kappa_{0^{2}}=3\frac{c(c+\Omega)-1}{(c+\Omega)^{2}} (21)

3.1.3 Peaking phenomenon

Figure 5 compares some computed results of wave profiles of steady solutions of the two
long wave models, the  KdV model (12) and the strongly nonlinear model (16), with
those of the full Euler system for different negative values of  \Omega(-3.2\leq\Omega\leq-0.5) with
the wave amplitude‐to‐depth ratio  \alpha fixed to 0.05. Solutions of the full Euler system
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was numerically obtained using the boundary integral method [17]. It is found that
both the long wave models captures peaking phenomenon qualitatively very well, and
quantitatively the strongly nonlinear model is slightly more accurate than the  KdV model.

 y  y  y

(a)  \Omega=-0.5 (  b )  \Omega=-1.0 (  c )  \Omega=-15
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Fig.5 Comparison of wave profiles of steady solutions.
The wave amplitude‐to‐depth ratio  \alpha=a/h is fixed to 0.05.
Solid line: the full Euler system, dashed line: the strongly nonlinear model (SNL)
and dotted line: the  KdV model. Solutions of the full Euler system are
numerically obtained using the boundary integral method [17].

3.2 Linear stability

3.2.1 The  KdV model [2, 9]

Substituting

 \tilde{y}(x, t)=\tilde{y}_{0}(x)+\tilde{y}_{1}(x, t) with  \tilde{y}_{1}(x, t)arrow 0(xarrow\pm\infty) (22)

into the  KdV model (12), linearizing it on the assumption of  |\tilde{y}_{1}|\ll 1 and introducing
separation of variable

 \tilde{y}_{1}(x, t)=e^{\sigma t}Y(x) (23)

we get

 c_{2}Y_{xxx}+c_{1} \{\tilde{y}_{0}(x)-\frac{1}{3}\alpha\}Y_{x}+c_{1}\tilde{y}
_{0x}Y=\sigma Y for  -\infty<x<\infty (24)
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This equation for  -\infty<x<\infty can be transformed using

 z=\tanh k_{0}x with  k_{0} defined by (15) (25)

into the form of a Fuchian equation for  -1<z<1 as

  \tilde{Y}_{zzz}+\frac{A_{2}(z)}{1-z^{2}}\tilde{Y}_{zz}+\frac{A_{1}(z)}{(1-
z^{2})^{2}}\tilde{Y}_{z}+\frac{A_{0}(z;\sigma)}{(1-z^{2})^{3}}\tilde{Y}=0 for  -1<z<1 (26)

where  \tilde{Y}(z)=Y(x(z)) , and  A_{0}(z;\sigma),  A_{1}(z) and  A_{2}(z) are analytic in the neighborhood
of [−1, 1]. Then we can apply Frobenius’ theory and represent  \tilde{Y}(z) by

  \tilde{Y}(z)= (\frac{1+z}{1-z})^{\mu}\sum_{n=0}^{\infty}a_{n}(1+z)^{n} (27)

where  \mu is a solution of the indicial equation

 I(\mu, \sigma)=\mu^{3}-\mu+\sigma=0 (28)

Note that  \mu in (28) corresponds to the ratio  \kappa_{1}/\kappa_{0} where  \kappa_{1} denotes the exponential decay
rate of the eigenfunction  Y(x) in (24) as  Y(x)arrow a\pm e^{\mp\kappa_{1}x}(xarrow\pm\infty) , and  \kappa_{0}=2k_{0} is
that of the steady solution  \tilde{y}_{0}(x) in (14). Substituting (27) into (26), we get

 \tilde{Y}(z)=z(1-z^{2}) or  Y(x)= sech2  k_{0}x\cdot\tanh k_{0}x (29)

and

 \sigma=0 (30)

Thus steady solutions (14) of the  KdV model (12) are neutrally stable.

3.2.2 The strongly nonlinear model

For linear stability analysis of the strongly nonlinear model (16), it is convenient to
transform it to a conserved form as

 \{\begin{array}{l}
\tilde{y}_{t}+w_{x}=0
w_{t}+\partial_{x}G(\tilde{y}, w)=0
\end{array} (31)

where  w and  G=G(\tilde{y}, w) are defined, respectively, by

 w=( \tilde{y}+1)\overline{u}+\frac{1}{2}\Omega(\tilde{y}+1)^{2} (32)

and
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 G( \tilde{y}, w)=\frac{w^{2}}{\tilde{y}+1}+\frac{1}{2}(\tilde{y}+1)+\frac{1}
{12}\Omega^{2}(\tilde{y}+1)^{3}-\frac{1}{3}(\tilde{y}+1)^{2}D_{t}\{(\tilde{y}+1)
\partial_{x}(\frac{w}{\tilde{y}+1}-\frac{1}{2}\Omega(\tilde{y}+1))\}
(33)

with   D_{t}=\partial_{t}+\{\frac{w}{\tilde{y}+1}+\frac{1}{2}\Omega(\tilde{y}+1)\}
\partial_{x} . The steady solution of  w is given by   w_{0}=c+ \frac{1}{2}\Omega
which is constant. Note that, for  \Omega=0 , Li [10] examined linear stability of steady
solutions of the strongly nonlinear model using this conserved form. Substituting

 \tilde{y}(x)=\tilde{y}_{0}(x)+\tilde{y}_{1}(x, t) and  w(x)=w_{0}+w_{1}(x, t) (34)

into (31), linearizing them on the assumption of  |\tilde{y}_{1}|,  |w_{1}|\ll 1 , and introducing separation
of variables

 \tilde{y}_{1}(x, t)=e^{\sigma t}Y(x) and  w_{1}(x, t)=e^{\sigma t}W(x) (35)

we get

 \{\begin{array}{l}
\sigma Y+W_{x}=0
\sigma W+\frac{\partial}{\partial x}\{\sigma(\mathcal{P}_{1}W+\mathcal{P}_{2}Y)-
(\mathcal{P}_{3}W+\mathcal{P}_{4}Y)\}=0
\end{array} (36)

where  \mathcal{P}_{j} ’s are linear operators. In addition, introducing a new variable  Q(x) defined by

 Q(x)= \int_{-\infty}^{x}Wdx (37)

we can rewrite (36) as

 \{\begin{array}{l}
\sigma Y+Q_{xx}=0
\sigma(Q+\mathcal{P}_{1}Q_{x}+\mathcal{P}_{2}Y)-(\mathcal{P}_{3}Q_{x}+
\mathcal{P}_{4}Y)=0
\end{array} (38)

This can be summarized in the form of a generalized eigenvalue problem as

 \mathcal{L}(Y, Q)=\sigma \mathcal{R}(Y, Q) (39)

where  \mathcal{L} and  \mathcal{R} are linear operators. Note that the eigenfunction  Y(x) decays exponen‐
tially as  Y(x)arrow a\pm e^{\mp\kappa_{1}x}(xarrow\pm\infty) with the decay rate  \kappa_{1} satisfying

 (1- \frac{1}{3}\kappa_{1^{2}})(\kappa_{1}\mp\sigma)^{2}-\frac{\Omega}{c+\Omega}
\kappa_{1}(\kappa_{1}\mp\sigma)-\frac{1}{(c+\Omega)^{2}}\kappa_{1^{2}}=0 (40)

Using finite difference approximation, we may numerically solve (39). However the
infinite range  -\infty<x<\infty of the domain of  Y and  Q caused some numerical troubles
to get accurate solutions. One of remedies for these troubles may be change of variable
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such as (25) for the  KdV model. In the case of the strongly nonlinear model, similarly to
(25), we can introduce

 z=\tanh k_{0}x with  k_{0}=\kappa_{0}/2 (41)

where  \kappa_{0} is the exponential decay rate of the steady solution  \tilde{y}_{0}(x) and given by (21). Then
 -\infty<x<\infty is transformed to  -1<z<1 , and the eigenfunctions  \tilde{Y}(z)=Y(x(z))
and  \tilde{Q}(z)=Q(x(z)) have singularities at  z=\pm 1 such as (27) in the case of the  KdV

model. These singularities can be regularized using the exponential decay rate  \kappa_{1} of the
eigenfunction  Y(x) in (40), similarly to (27). It should be noted that Camassa & Wu [3]
applied the similar numerical method to linear stability analysis of steady solutions of the
forced  KdV model.

4 Conclusions

We have considered two‐dimensional steady motion of solitary waves progressing in per‐
manent form with constant speed on a shear current of which the horizontal velocity
varies linearly with depth, as shown in fig. 1. In particular, peaking phenomenon, namely
peaking of wave profiles with increase of amplitude as shown in fig.2, has been studied.

First, crest singularities of the peaked wave were investigated using local flow analysis
near the wave crest with conformal mapping in fig.4. It was shown that the inner angle
of the corner at the crest of the peaked wave does not depend on the magnitude of shear
current. It should be noted that this method of local flow analysis enables us to examine
high‐order singularities.

Next, for systematic understanding peaking phenomenon, the two long wave models,
the Korteweg‐de Vries  (KdV) model (12) and the strongly nonlinear model (16), were
introduced. Numerical comparison of steady solutions of these models with those of the
full Euler system demonstrated that these long wave models can qualitatively capture
variation of peaking phenomenon with the shear strength  \Omega , as shown in fig.5.

In addition, linear stability analysis of steady solutions of these long wave models was
discussed. Similarly to the case of solitary waves without shear current  (\Omega=0) , we can
analytically show that steady solutions of the  KdV model (12) are neutrally stable for all
 \Omega\neq 0 . On the other hand, linear stability analysis of steady solutions of the strongly
nonlinear model (16) requires numerical computation with suitable change of variable
and representation of eigenfunctions such as (41) and (27), respectively. This and its
application to the full Euler system remain as future works.
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