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Evolution equations such as the nonlinear Schrödinger equation (NLSE) can be

extended to include an infinite number of free parameters. The extensions are not

unique. We give two examples that contain the NLSE as the lowest‐order PDE of

each set. Such representations provide the advantage of modelling a larger variety

of physical problems due to the presence of an infinite number of higher‐order terms

in this equation with an infinite number of arbitrary parameters. An example of a

rogue wave solution for one of these cases is presented, demonstrating the power of

the technique.

I. INTRODUCTION

The mathematical description of physical processes is a crucial step towards our ability to

understand nature. A time derivative in this description provides the possibility of relating

the past and the future of the evolution. In other words, equations with time derivatives allow

us to predict future dynamics based on the present conditions. These are known as evolution

equations. A few of them are integrable in the sense that their solutions can be written

analytically. Finding new integrable equations leads to further progress in describing nature.

Well‐known examples of evolution equations are the KdV[1] , the nonlinear Schrödinger

equation (NLSE) [2] and some of its extensions [3]. The NLSE is one of the basic models of

nonlinear wave propagation in optical fibers [4], water waves [5, 6] and generally in nonlinear

dispersive media [7, 8]. This equation and its variations have been instrumental in describing

phenomena of temporal and spatial soliton propagation [8], their interactions [9], modulation

instability [10], periodic and localized breathers [11−15], supercontinuum generation [16],
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Fermi‐Pasta‐Ulam Recurrence [17], Bose‐Einstein condensates [18] and rogue waves [19−21].

However, in order to increase the accuracy of modelling, the NLSE has to be extended

to include additional terms [22] that are responsible for higher‐order dispersion [23] and

nonlinear effects such as self‐steepening and self‐frequency shift [24, 25]. These terms are

important in the description of higher‐amplitude waves [26, 27] and shorter duration pulses

[28].

Very often, on extending the equations, while we gain in accuracy, we lose in integrability

of the NLSE. Fortunately, integrability can be restored for special choices of the coefficients

in the higher‐order terms. For extensions including third order terms, the choice of the

coefficients that admit integrability are well‐known. These cases include the Hirota [29] and

Sasa‐Satsuma (SSE) [30] equations. However, the next step of such extensions is still not

completely classified. For the branch of extensions that includes the Hirota equation, certain

higher‐order evolution equations are known. These include the fourth‐order Lakshmanan‐

Porsezian‐Daniel (LPD) equation [31] and a fifth‐order equation [32]. Moreover, the whole

infinite extension and its soliton and rogue wave solutions can be presented explicitly [33, 34].

An important step is that the whole set can be written in the form of one ‘general

equation’ [33, 34]. Moreover, this general equation can have an infinite number of operators

controlling time evolution of a system [33, 34]. It includes known equations as particular

cases with arbitrary real coefficients which govern the contribution of each operator to the

whole set. The power of such representation lies in the variability of these coefficients.

When all of them are zero except one, we obtain a particular case. Having two or more

coefficients being nonzero provides more complicated equations that can be of interest due

to the special case in physics that such an equation may describe. One example is the

Heisenberg spin chain dynamics [43]. Such ‘general equations’ could be of great importance

for physics because higher‐order terms in this equation may describe finer effects such as

higher‐order dispersion or higher‐order nonlinearities in the wave propagation phenomena.

They improve the accuracy of the basic approximation that is usually described by the

lowest‐order equation.

Unfortunately, not all higher‐order terms in these generalizations result in integrable

equations. A specific set of coefficients is required for these integrable cases. It is indeed

fortunate when such an ‘upgrade’ belongs to an integrable case. The chances are low if

there is only one case that starts with the given base equation. Finding new equations
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is thus an important task which may significantly improve the accuracy of modelling of

physical phenomena. We have found that there are at least two ‘general equations’ that

have the NLSE as a base. One of them is a ‘generalized Hirota equation’ [33, 34], while the

other one, found more recently [35], is a ‘generalized Sasa‐Satsuma equation’. Both start

with the NLSE as a base evolution equation. Thus, both of them could be called NLSE

sets. In order to avoid confusion and distinguish them explicitly, we label them here as

the generalized Hirota and generalized Sasa‐Satsuma equations. The first few equations of

the Hirota extension are the NLSE [8], the third‐order Hirota equation [29], fourth‐order

LPD equation [31] and the quintic equation of this sequence [32, 36]. Higher‐order infinite

extensions of this set have been presented in explicit forms in [33, 34]. On the other hand,

the generalised Sasa‐Satsuma equation has, as the starting equations, the NLSE and the

third‐order Sasa‐Satsuma equation [30, 37, 38]. Higher‐order infinite extensions have been

discovered in our recent work [35].

In the present work, we review the progress made towards the infinite extention of the

NLSE with the addition of an infinite number of higher‐order terms. These terms keep

each of the considered general equations integrable, while at the same time allowing us to

include an infinite number of free parameters that control these higher‐order terms. The

latter provides infinitely many degrees of freedom in describing physical models but keeps

the whole equation integrable. This has both advantages and disadvantages. The advantage

is that solutions can be presented in analytical form. The disadvantage is that integrability

still restricts the modelling and keeps it in a rigid frame. However, we believe that, on

finding more such general equations, the frame can be significantly widened.

II. GENERALIZED HIROTA EQUATION

The technique of extending the NLSE has been developed in [33, 34]. Below, we present

only the final results. Namely, the generalised Hirota equation can be written in the form:

 i\psi_{t}+\alpha_{2}K_{2}[\psi(x, t)]-i\alpha_{3}K_{3}[\psi(x, t)] (1)

 +\alpha_{4}K_{4}[\psi(x, t)]-i\alpha_{5}K_{5}[\psi(x, t)]

 +\alpha_{6}K_{6}[\psi(x, t)]-i\alpha_{7}K_{7}[\psi(x, t)]

 +\alpha_{8}K_{8}[\psi(x, t)]- =0,
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where  t is the evolution variable,  x is the transverse variable, while each functional  K_{j}[\psi(x, t)]

represents a particular operator of order  j . Coefficients  \alpha_{j} are arbitrary real parameters.

Importantly, they do not have to be small. This freedom allows us to go well beyond the

simple extension of the NLSE with corrective perturbative terms.

In the lowest, second order, we obtain the fundamental nonlinear Schrödinger equation:

 i\psi_{t}+\alpha_{2}K_{2}[\psi(x, t)]=i\psi_{t}+\alpha_{2}(\psi_{xx}+
2|\psi|^{2}\psi)=0 . (2)

Taking   \alpha_{2}=\frac{1}{2} or rescaling the  t‐variable, we get the NLSE in standard form. By adding

the third order operator,  K_{3} , we obtain the Hirota equation [29, 39]:

 i\psi_{t}+\alpha_{2}(\psi_{xx}+2|\psi|^{2}\psi)-i\alpha_{3}(\psi_{xxx}+6|\psi|^
{2}\psi_{x})=0 . (3)

Now, as a particular case of Eq.(3), we can take  \alpha_{2}=0 . The resulting equation

 \psi_{t}-\alpha_{3}(\psi_{xxx}+6|\psi|^{2}\psi_{x})=0 , (4)

is known as the ‘basic’ Hirota equation or as the ‘complexified’ modified Korteweg de Vries

 (mKdV) equation [40]. Taking  \alpha_{3}= −lleads to its standard form. The common factor  i is

canceled when transforming (3) into Eq.(4). This cancellation can be done for all equations

(1) when the coefficients with even indices are zero, i.e.  \alpha_{2n}=0 . However, solutions of these

equations can be sought in either complex or real forms. For example, when the function  \psi

is real (and  \alpha_{3}=1 ),  Eq.(4) becomes the real  mKdV :

 \psi_{t}-\psi_{xxx}+6\psi^{2}\psi_{x}=0 . (5)

Solutions of the real mKdV equation are related to the solutions of the Korteweg de Vries

 (KdV) equation through the Miura transformation [41]. Eq.(5) has rational solutions [42]

that also have a single high peak that can be viewed as a rogue wave at the center. How‐

ever, these elevated peaks are not completely localized, but are positioned on soliton‐like

structures [42].

With the fourth order operator,  K_{4},

 K_{4}[\psi(x, t)]=\psi_{xxxx}+8|\psi|^{2}\psi_{xx}+6|\psi|^{4}\psi+4|\psi_{x}|^
{2}\psi+6\psi_{x}^{2}\psi^{*}+2\psi^{2}\psi_{xx}^{*} . (6)

the equation is known as the LPD [43−45] equation. Further, the fifth order operator,  K_{5} is

given by:

 K_{5}[\psi(x, t)]=\psi_{xxxxx}+10|\psi|^{2}\psi_{xxx}+10(|\psi_{x}|^{2}\psi)
_{x}+20\psi^{*}\psi_{x}\psi_{xx}+30|\psi|^{4}\psi_{x} . (7)
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Even from this brief analysis, we can see the wide range of possibilities that the general

equation (1) provides. It includes many particular cases and it allows us to combine them

into a unified model. Moreover, the original NLSE does not have to be part of it (we can

have  \alpha_{2}=0), but it helps to suggest the form of some solutions.

Further, the sixth order operator,  K_{6} , first found in [34], has the following explicit form:

 K_{6}[\psi(x, t)]=\psi_{xxxxxx}+\psi^{2}[60|\psi_{x}|^{2}\psi^{*}+50(\psi^{*})^
{2}\psi_{xx}+2\psi_{xxxx}^{*}] (8)

 +\psi[12\psi^{*}\psi_{xxxx}+8\psi_{x}\psi_{xxx}^{*}+22|\psi_{xx}|^{2}+
18\psi_{xxx}\psi_{x}^{*}+70(\psi^{*})^{2}\psi_{x}^{2}]+20(\psi_{x})^{2}\psi_{xx}
^{*}

 +10\psi_{x}[5\psi_{xx}\psi_{x}^{*}+3\psi^{*}\psi_{xxx}]+20\psi^{*}\psi_{xx}^{2}
+10\psi^{3}[(\psi_{x}^{*})^{2}+2\psi^{*}\psi_{xx}^{*}]+20|\psi|^{6}\psi.

while the seventh order operator,  K_{7} , is:

 K_{7}[\psi(x, t)]=\psi_{xxxxxxx}+70\psi_{xx}^{2}\psi_{x}^{*}+112|\psi_{xx}|^{2}
\psi_{x}+98|\psi_{x}|^{2}\psi_{xxx} (9)

 +70\psi^{2}[\psi_{x}[(\psi_{x}^{*})^{2}+2\psi^{*}\psi_{xx}^{*}]+\psi^{*}(2\psi_
{xx}\psi_{x}^{*}+\psi_{xxx}\psi^{*})]+28\psi_{x}^{2}\psi_{xxx}^{*}
 +14\psi[\psi^{*}(20|\psi_{x}|^{2}\psi_{x}+\psi_{xxxxx})+3\psi_{xxx}\psi_{xx}
^{*}+2\psi_{xx}\psi_{xxx}^{*}+2\psi_{xxxx}\psi_{x}^{*}
 +\psi_{x}\psi_{xxxx}^{*}+20\psi_{x}\psi_{xx}(\psi^{*})^{2}]+140|\psi|^{6}
\psi_{x}+70\psi_{x}^{3}(\psi^{*})^{2}
 +14\psi^{*}(5\psi_{xx}\psi_{xxx}+3\psi_{x}\psi_{xxxx}) .

The highest operator that we give here is  K_{8} :

 K_{8}[\psi(x, t)]=\psi_{xxxxxxxx} (10)

 +14\psi^{3}[40|\psi_{x}|^{2}(\psi^{*})^{2}+20\psi_{xx}(\psi^{*})^{3}+
2\psi_{xxxx}^{*}\psi^{*}+3(\psi_{xx}^{*})^{2}+4\psi_{x}^{*}\psi_{xxx}^{*}]
 +\psi^{2}[28\psi^{*}(14|\psi_{xx}|^{2}+11\psi_{xxx}\psi_{x}^{*}+6\psi_{x}
\psi_{xxx}^{*})+238\psi_{xx}(\psi_{x}^{*})^{2}+336|\psi_{x}|^{2}\psi_{xx}^{*}
 +560\psi_{x}^{2}(\psi^{*})^{3}+98\psi_{xxxx}(\psi^{*})^{2}+2\psi_{xxxxxx}^{*}]+
2\psi\{21\psi_{x}^{2}[9(\psi_{x}^{*})^{2}+14\psi^{*}\psi_{xx}^{*}]
 +\psi_{x}[728\psi_{xx}\psi_{x}^{*}\psi^{*}+238\psi_{xxx}(\psi^{*})^{2}+
6\psi_{xxxxx}^{*}]+34|\psi_{xxx}|^{2}+36\psi_{xxxx}\psi_{xx}^{*}

 +22\psi_{xx}\psi_{xxxx}^{*}+20\psi_{xxxxx}\psi_{x}^{*}+161\psi_{xx}^{2}
(\psi^{*})^{2}+8\psi_{xxxxxx}\psi^{*}\}+182\psi_{xx}|\psi_{xx}|^{2}
 +308\psi_{xx}\psi_{xxx}\psi_{x}^{*}+252\psi_{x}\psi_{xxx}\psi_{xx}^{*}+196\psi_
{x}\psi_{xx}\psi_{xxx}^{*}+168|\psi_{x}|^{2}\psi_{xxxx}

 +42\psi_{x}^{2}\psi_{xxxx}^{*}+14\psi^{*}(30\psi_{x}^{3}\psi_{x}^{*}+
4\psi_{xxxxx}\psi_{x}+5\psi_{xxx}^{2}+8\psi_{xx}\psi_{xxxx})

 +490\psi_{x}^{2}\psi_{xx}(\psi^{*})^{2}+140\psi^{4}\psi^{*}[(\psi_{x}^{*})^{2}+
\psi^{*}\psi_{xx}^{*}]+70|\psi|^{8}\psi.

The general equation can be continued up to infinity. The complexity of the operators  K_{j}

grows with the order  j . The general iterative rules for obtaining these operators are given in
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[33, 34]. The equation when the two coefficients  \alpha_{3} and  \alpha_{4} are arbitrary has been considered

earlier in [46, 47]. In particular, soliton solutions of this equation were given in [46], while

rogue wave solutions were presented in [47]. The generalised Hirota equation (1) has been

derived for the case of  2\cross 2 matrix Lax pairs. Therefore, the Sasa‐Satsuma equation which

requires the Lax pairs to be based on  3\cross 3 matrices is not part of this set.

III. GENERALIZED SASA‐SATSUMA EQUATION

We write the generalized Sasa‐Satsuma equation in the same form as Eq.(l):

 i\psi_{t}+\alpha_{2}S_{2}[\psi(x, t)]-i\alpha_{3}S_{3}[\psi(x, t)] (11)

 +\alpha_{4}S_{4}[\psi(x, t)]-i\alpha_{5}S_{5}[\psi(x, t)]

 +\alpha_{6}S_{6}[\psi(x, t)]-i\alpha_{7}S_{7}[\psi(x, t)]

 +\alpha_{8}S_{8}[\psi(x, t)]- =0.

However, we have chosen different notations for the functionals  S_{j}[\psi(x, t)] as they are indeed

different from  K_{j}[\psi(x, t)] . As above,  t here is the evolution variable (time) while  x is the

transverse variable. Coefficients  \alpha_{j} are again arbitrary real numbers making Eq.(l) an

infinitely variable integrable evolution equation for a variety of applications that describe

soliton and rogue wave phenomena.

The lowest order functional  S_{2}[\psi(x, t)] in Eq.(1) is given by

  S_{2}[\psi(x, t)]=\psi_{xx}+4|\psi|^{2}\psi . (12)

Thus, when all  \alpha_{j} are zero except for the  \alpha_{2} , Eq. (1) is simply the NLSE but differently

normalised from (1) for compatibility with other functionals in the equation. The third

order functional  S_{3}[\psi(x, t)] is

 S_{3}[\psi(x, t)]=\psi_{xxx}+3(|\psi|^{2})_{x}\psi+6|\psi|^{2}\psi_{x} . (13)

Therefore, when,  \alpha_{3} is nonzero and  \alpha_{2}=1/2 , we have the SSE:

 i \psi_{t}+\frac{\psi_{xx}}{2}+2|\psi|^{2}\psi=i\alpha_{3}[\psi_{xxx}+3(|\psi|^
{2})_{x}\psi+6|\psi|^{2}\psi_{x}] . (14)

The fourth‐order operator,

 S_{4}[\psi(x, t)]=\psi_{xxxx}+6\psi_{xx}^{*}\psi^{2}+24|\psi|^{4}\psi+
12|\psi_{x}|^{2}\psi+14|\psi|^{2}\psi_{xx}+8\psi^{*}\psi_{x}^{2} , (15)
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while the next one is

 S_{5}[\psi(x, t)]=\psi_{xxxxx}+80|\psi|^{4}\psi_{x}+5\psi^{2}\psi_{xxx}^{*}+
25\psi(|\psi_{x}|^{2})_{x} (16)

 +40|\psi|^{2}\psi^{2}\psi_{x}^{*}+20|\psi_{x}|^{2}\psi_{x}+15|\psi|^{2}
\psi_{xxx}+30\psi^{*}\psi_{x}\psi_{xx}.

At the next level,

 S_{6}[\psi(x, t)]=\psi_{xxxxxx}+55\psi^{3}(\psi_{x}^{*})^{2}+45\psi_{x}^{2}
\psi_{xx}^{*}+32\psi\psi_{x}\psi_{xxx}^{*}+43\psi^{*}\psi_{x}\psi_{xxx} (17)

 +37\psi\psi_{x}^{*}\psi_{xxx}+175|\psi|^{2}\psi^{*}\psi_{x}^{2}+53|\psi_{xx}
|^{2}\psi+31\psi^{*}\psi_{xx}^{2}+20|\psi|^{2}\psi_{xxxx}

 +160|\psi|^{6}\psi+110\psi^{*}\psi^{3}\psi_{xx}^{*}+330|\psi\psi_{x}|^{2}\psi+
170|\psi|^{4}\psi_{xx}+8\psi^{2}\psi_{xxxx}^{*}+95|\psi_{x}|^{2}\psi_{xx}.

The expressions for  S_{7}[\psi(x, t)] and higher are too cumbersome to be given here, but our

technique, presented in [35] is straightforward, allowing one to write them explicitly for any

order  j . We stress that the expressions for  S_{j}[\psi(x, t)] are different from  K_{j}[\psi(x, t)] given

in the previous section. The reason is that the Lax pairs for these equations involve  3\cross 3

matrices rather than  2\cross 2 for the Hirota branch. As a result, the solutions of  Eq.(11)

are significantly more involved than the solutions of Eq.(l). Such complexity starts right

from the lowest order  Eq.(11) which is the SSE [30, 37, 38, 48−51]. Both soliton solutions

[37, 48, 49] and rogue wave solutions [52] have much more complicated structures than the

corresponding solutions for the NLSE or Hirota equations. They involve more parameters

in the solutions and thus allow us to describe more complicated profiles. In particular, the

basic SSE has single‐soliton solutions that have no analogs in the NLSE case. In addition

to the common bell‐shaped solitons, it has soliton solutions with two maxima [30] and even

with multiple maxima [49]. Moreover, the SSE has soliton solutions with complex oscillating

patterns in the  (x, t) ‐plane [48]. Solutions become even more complicated when they contain

a background in the form of a plane wave [50]. The complexities tend to accumulate when

dealing with the higher‐order equations of the generalized SSE. Due to this complexity, even

for the basic SSE, only first‐order solutions have been derived so far [35].

IV. SIMPLE EXAMPLE OF EXACT SOLUTION OF THE GENERALIZED

HIROTA EQUATION (1)

The power of the generalized equation approach can be demonstrated by the fact that

we can seek solutions of Eq.(l) or  Eq.(11) in a general form, taking into account the whole
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infinite set of operators involved in the equation. For illustrative purposes, we will demon‐

strate this only for Eq.(l). Namely, the first‐order rogue wave solutions for Eq.(l) can be

written in explicit form [47]:

  \psi(x, t)=c[4\frac{1+2iB_{r}t}{D(x,t)}-1]e^{i\phi_{r}t} , (18)

where  c is an arbitrary background while

 B_{r}= \sum_{n=1}^{\infty}\frac{n(2n)!}{(n!)^{2}}\alpha_{2n^{C^{2n}}}=2c^{2}
(\alpha_{2}+6c^{2}\alpha_{4}+30c^{4}\alpha_{6}+140c^{6}\alpha_{8}+630c^{8}
\alpha_{10}+\cdots) , (19)

and

 D(x, t)=1+4B_{r}^{2}t^{2}+4(cx+v_{r}t)^{2} , (20)

where

 v_{r}= \sum_{n=1}^{\infty}\frac{(2n+1)!}{(n!)^{2}}\alpha_{2n+1^{C^{2n+1}}} (21)

 =2c^{3}(3\alpha_{3}+15c^{2}\alpha_{5}+70c^{4}\alpha_{7}+315c^{6}\alpha_{9}+
1386c^{8}\alpha_{11}+\cdots) .

The coefficient  \phi_{r} in the exponential factor of (18) is given by:

  \phi_{r}=c^{2}\sum_{n=1}^{\infty}\frac{(2n)!}{(n!)^{2}}\alpha_{2n^{C^{2n-2}}} (22)

 =2c^{2}(\alpha_{2}+3c^{2}\alpha_{4}+10c^{4}\alpha_{6}+35c^{6}\alpha_{8}+
126c^{8}\alpha_{10}+\cdots) .

The tilt factor  v_{r} (or “velocity”) in (21) depends only on the coefficients of the operators

of odd‐order,  \alpha_{2n+1} , while the exponential factor,  \phi_{r} , and the stretching factor,  B_{r} , depend

only on the coefficients of the even‐order operators  \alpha_{2n} . These observations allow us to make

some general conclusions about the rogue wave profiles. Two illustrative examples are shown

in Fig.1. We can see from this figure that the tilt appears only when  \alpha_{5} is non‐zero. Here,

due to limited space, we restrict ourselves with these two illustrations only. More solutions

presented in [36, 53] show some unexpected features.

V. CONCLUSIONS

A generalized integrable equation with infinite number of free parameters is a novel

approach in the theory of integrable equations. The two equations considered here include,
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as particular cases, known equations such as NLSE, Hirota equation, Sasa‐Satsuma equation,

mKdV, etc. However, in combination with higher‐order terms in the general equation, they

become a powerful tool for modelling a wider range of physical problems.

 |\psi   1\psi

(a) (b)

FIG. 1: Rogue waves of Eq.(18), when  c=1,  ( a)\alpha_{4}=\frac{1}{4} and (b)  \alpha_{4}=1/4,   \alpha_{5}=\frac{1}{16} . All other

 \alpha_{j} ’s in both cases are zero.

Each individual integrable evolution equation from either set is not just a special isolated

case or a mathematical curiosity. NLSE extensions are usually considered to be improved

models for a more accurate description of nonlinear wave propagation in the ocean [27, 54, 55]

and in optical fibers [23, 28]. Normally, these extensions are approximate, as they use small

coefficients when dealing with higher‐order terms. The exactly integrable cases described

above are beyond these approximations. As such, they may expand the range of applicability

of these models. Moreover, linear dispersion in our approaches can be modelled accurately

up to an infinite number of terms in the expansion. Although nonlinear terms become fixed

in this case, the deviations from realistic situation may be small. An additional advantage is

that solutions can be analytically presented around the above integrable cases in approximate

forms, thus extending the range of their applicability. Namely, perturbation techniques

based on these extended models may be a better solution [56] than choosing the NLSE

as a ‘zero order’ approximation. Thus, adding new members to the family of integrable

equations should be considered as adding significantly more power to our ability to do

accurate mathematical modelling of physical phenomena.
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