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Abstract

We present a fifth‐order nonlinear spectral model describing the spectral evolution of
nonlinear surface gravity waves in water of finite depth. Using the equivalence between
pseudo‐spectral and spectral formulations, it is shown that the spectral model can be easily
obtained using a truncated Hamiltonian from the pseudo‐spectral formulation. The fifth‐
order model is written explicitly in terms of two canonical variables (the Fourier transforms
of the surface elevation and the free surface velocity potential) and preserves the Hamiltonian
structure of the original water wave problem. Under discrete approximation, the time‐
periodic solutions of the spectral model for progressive and standing waves are shown to be
consistent with the classical solutions of Stokes and Rayleigh, respectively, when truncated
at the third order.

1 Introduction

For three‐dimensional water waves, the free surface boundary conditions can be written (Za‐
kharov 1967), in terms of the surface elevation \zeta(x, t) and the free surface velocity potential
 \Phi(x, t) , as

  \frac{\partial\zeta}{\partial t}+\nabla\Phi\cdot\nabla\zeta=(1+
|\nabla\zeta|^{2})W, \frac{\partial\Phi}{\partial t}+\frac{1}{2}|\nabla\Phi|^{2}
+g\zeta=\frac{1}{2}(1+|\nabla\zeta|^{2})W^{2} , (1.1)
where  x is the the horizontal coordinate,  t is time,  \nabla is the horizontal gradient, and  g is the
gravitational acceleration. In (1.1),  \Phi(x, t)\equiv\phi(x, z=\zeta, t) and  W\equiv\partial\phi/\partial z(x, z=\zeta, t) are
the velocity potential and the vertical velocity evaluated at the free surface, respectively, where
 \phi and  z are the three‐dimensional velocity potential and the vertical coordinate, respectively.
The two equations in (1.1) can be regarded as a system of nonlinear evolution equations for  \zeta
and  \Phi once  W is expressed in terms of  \zeta and  \Phi . Depending upon how to close this system,
various theoretical models have been developed.

A theoretical model particularly useful for numerical computations of the evolution of
broadband nonlinear surface waves was proposed by West et al. (1987), who wrote  W in
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an infinite series that depend on  \zeta and  \Phi . By substituting the infinite series into (1.1),  a

closed system of nonlinear evolution equations for  \zeta and  \Phi was obtained. After assuming
the wave steepness is small, the series can be truncated at a desrired order of nonlinearity and
the resulting system has been studied numerically using a pseudo‐spectral method by numerous
researchers, including, for example, Tanaka  (2001a, b) , Bateman et al. (2001), Choi et al (2005),
and Goullet & Choi (2011). Similar approaches have been proposed by Dommermuth & Yue
(1987), Criag& Sulem (1993), and Clamond& Grue (2001).

An alternative approach to describe the evolution of boradband nonlinear waves was pro‐
posed by Zakharov (196S), who obtained a nonlinear integro‐differential equation in spectral
space for a single complex amplitude, which is a linear combination of the Fourier transforms of
 \zeta and  \Phi . As a number of multiple integrals are required to be evaluated, the evolution equation
of Zakharov is less efficient for numerical computations than the pseudo‐spectral model of West
et al. (1987). Nevertheless, his evolution equation is so useful for further analysis to describe
the time evolution of wave spectra. For example, in his seminal work, Zakharov (196S) reduced
the third‐order equation to a relatively simpler form for resonant four‐wave interactions. This
equation is also often referred to as the (reduced) Zakharov equation, which has been studied
numerically (Annenkov & Shriar 2001). The spectral models of Zakharov (1968) have been
further extended to the fourth order by Stiassnie & Shemer (1984) to describe the five‐wave
interactions of gravity waves. Later the spectral models were reformulated by Krasitskii (1994)
directly from a Hamiltonian approach along with canonical transformations to simplify the
Hamiltonian. For the earlier development of of the spectral formulation, see, for example, Yuen
& Lake (1982) and Mei et al. (2005).

As one can imagine, the formulation of Zakharov (196S) should be equivalent to that of
West et al. (1987). Therefore, it is expected to be straightforward to recover one formulation
from the other. This is particularly useful if one is interested in a spectral model valid at a
high order as the pseudo‐spectral model of West et al. (1987) can be found conveniently at any
order of nonlinearity through recursion formulas. Here it is shown that a fifth‐order spectral
model can be indeed obtained in a straightforward manner from the pseudo‐spectral model of
West et al. (1987) by taking advantage of its Hamiltonian structure.

2 Pseudo‐spectral formulation

2.1 Expansion

By expansing  W in Taylor series about  z=0 , it was shown by West et al. (1987) that the
expression for  W can be written in infinite series as

 W= \sum_{n=1}^{\infty}W_{n},  W_{n}= \sum_{j=0}^{n-1}C_{j}[\Phi_{n-j}] for  n\geq 1 , (2.1)

where  \Phi_{n} are given by

 \Phi_{1}=\Phi,   \Phi_{n}=\sum_{j=1}^{n-1}A_{j}[\Phi_{n-j}] for  n\geq 2 , (2.2)
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and operators  \mathcal{A}_{n} and  C_{n} are defined, with  \triangle=\nabla^{2} , by

  \mathcal{A}_{2m}=(-1)^{m+1}\frac{\zeta^{2m}}{(2m)!}\triangle, \mathcal{A}_{2m+
1}=(-1)^{m}\frac{\zeta^{2m+1}}{(2m+1)!}\triangle^{m}\mathcal{L} , (2.3)

 C_{2m}=(-1)^{m+1} \frac{\zeta^{2m}}{(2m)!}\triangle^{m}\mathcal{L}, C_{2m+1}=(-
1)^{m+1}\frac{\zeta^{2m+1}}{(2m+1)!}\triangle^{m+1} . (2.4)

The linear operator  \mathcal{L}[f] is given by  \mathcal{L}[f]=\mathcal{F}^{-1}[-k\tanh(kh)\mathcal{F}[f]] , where  h is the water depth,

and  \mathcal{F} and  \mathcal{F}^{-1} represent the Fourier transform and its inverse, respectively. Alternatively, the
linear operator  \mathcal{L} can be written as   \mathcal{L}[f]=\int K(x-\xi)f(\xi)d\xi , where the kernel  K(x) is defined
in Fourier space as  \mathcal{F}[K(x)]=-k\tanh(kh) .

Although the expansion for  W given by (2.1) requires no formal introduction of a small
parameter, except for the existence of Taylor series, the series given by  (2.1)-(2.2) can be
considered as an expansion in terms of (small) wave steepness, in particular, when the infinite
series need to be truncated for numerical simulations or further approximations. From  \zeta\nabla=
 O(\epsilon) and  \zeta \mathcal{L}=O(\epsilon) , where  \epsilon=a/\lambda with  a and  \lambda being the characteristic wave amplitude and
wavelength, respectively, one can see that  \Phi_{n}=O(\epsilon^{n}) and  W_{n}=O(\epsilon^{n}) . Therefore, the rate of
convergence is expected to improve as  \epsilon decreases.

2.2 System of West et al. (1987)

By substituting into (1.1) the expansion for  W given by (2.1), the evolution equations for  \zeta and
 \Phi are given by

  \frac{\partial\zeta}{\partial t}=\sum_{n=1}^{\infty}Q_{n}(\zeta, \Phi) , \frac
{\partial\Phi}{\partial t}=\sum_{n=1}^{\infty}R_{n}(\zeta, \Phi) , (2.5)

where  Q_{n} and  R_{n} are given by

 Q_{1}=W_{1},  Q_{2}=W_{2}-\nabla\Phi\cdot\nabla\zeta,  Q_{n}=W_{n}+|\nabla\zeta|^{2}W_{n-2} for  n\geq 3 , (2.6)

  R_{1}=-g\zeta, R_{2}=-\frac{1}{2}|\nabla\Phi|^{2}+\frac{1}{2}W_{1}^{2} R_{3}=
W_{1}W_{2},

  R_{n}=\frac{1}{2}\sum_{j=0}^{n-2}W_{n-j-1}W_{j+1}+\frac{1}{2}|\nabla\zeta|^{2}
\sum_{\dot{j}=0}^{n-4}W_{n-j-3}W_{j+1} for  n\geq 4 . (2.7)

Here the expressions of  W_{n} are given by (2.1). Notice that  Q_{n}=O(\epsilon^{n}) are linear in  \Phi while
 R_{n}=O(\epsilon^{n}) are quadratic in  \Phi.

For small amplitude waves, the system (2.5) can be linearized, with  W_{1}=-\mathcal{L}[\Phi] , to

  \frac{\partial\zeta}{\partial t}=-\mathcal{L}[\Phi], \frac{\partial\Phi}
{\partial t}=-g\zeta , (2.8)

which can be combined into  \partial^{2}\zeta/\partial t^{2}=g\mathcal{L}[\zeta] . The same equation also holds for  \Phi . Substituting
 (\zeta, \Phi)\sim\exp[i(k\cdot x-\omega t)] into (2.8) yields the linear dispersion relation given by

 \omega^{2}=gk\tanh  kh , (2.9)
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where we have used  \mathcal{L}[e^{i}k\cdot x]=-k\tanh kh  e^{ik\cdot x} . While the leading‐order terms (  Q_{1} and  R_{1} )
represent linear dispersive effects,  Q_{n} and  R_{n} for  n\geq 2 describe nonlinear dispersive effects
and nonlinear wave interactions.

Following West et al. (1987), the system given by (2.5) has been studied extensively
in recent years using a pseudo‐spectral method based on Fast Fourier Transform (FFT), for
example, by Tananka  (2001a, b) and many others. For numerical computations, after assuming
 \zeta and  \Phi are doubly periodic in space so that they can be written in Fourier series, the linear
operators  \triangle and  \mathcal{L} in  (2.3)-(2.4) are evaluated in Fourier space:

 \triangle=-k_{j}^{2}, \mathcal{L}=-k_{j}T_{j} , (2.10)

where  j=(j, l),  k_{j}=(jK_{x}, lK_{y}),  k_{j}=|k_{j}|,  T_{j}=\tanh(k_{j}h) , and with  K_{x} and  K_{y} being the
fundamental wavenumbers in the  x and  y directions, respectively. Then the two nonlinear
operators  \mathcal{A}_{n} and  C_{n} defined by (2.3) and (2.4) are computed as

  \mathcal{A}_{2m}=-\frac{\zeta^{2m}}{(2m)!}k_{j}^{2m} \mathcal{A}_{2m+1}=-\frac
{\zeta^{2m+1}}{(2m+1)!}k_{j}^{2m+1}T_{j} , (2.11)

 C_{2m}= \frac{\zeta^{2m}}{(2m)!}k_{j}^{2m+1}T_{j}, C_{2m+1}=\frac{\zeta^{2m+1}}
{(2m+1)!}k_{j}^{2m+2} (2.12)

In (2.11), to compute  \mathcal{A}_{2m}[f] , the Fourier transform of  f is multiplied by  -k_{j}^{2m}/(2m)! in Fourier
space and, then, its inverse Fourier transform is multiplied by  \zeta^{2m} in physical space. Finally,
after evaluating its right‐hand sides up to a desired order of nonlinearity, the system given by
(2.5) is integrated in time.

2.3 Hamiltonians

Zakharov (196S) showed that the totoal energy defined by

 E= \frac{1}{2}\int(g\zeta^{2}+\Phi\frac{\partial\zeta}{\partial t}) d  x , (2.13)

is the Hamiltonian for the water wave problem so that the evolution equations for  \zeta and  \Phi can
be written as

  \frac{\partial\zeta}{\partial t}=\frac{\delta E}{\delta\Phi}, \frac{0\Phi}
{\partial t}=-\frac{\delta E}{\delta\zeta} , (2.14)

where  \delta E/\delta\zeta and  \delta E/\delta\Phi represent the functional derivatives of  E with respect to the two
conjugate variables  \zeta and  \Phi , respectively. Therefore, the total energy  E is conserved. From
(2.5), the total energy  E defined in (2.13) can be expanded, in infinite series, as

 E= \frac{1}{2}\int(g\zeta^{2}+\Phi\sum_{n=1}^{\infty}Q_{n})dx=\sum_{n=2}
^{\infty}E_{n} , (2.15)

where  Q_{n} are given by (2.7) and the n‐th order energy  E_{n} is given by

 E_{2}= \frac{1}{2}\int(g\zeta^{2}+\Phi Q_{1}) dx,  E_{n}= \frac{1}{2}\int\Phi Q_{n-i}dx for n) 3. (2.16)
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2.4 Fifth‐order model

When truncated at  O(\epsilon^{5}) , the fifth‐order nonlinear evolution equations for  \zeta and  \Phi can be
obtained as

  \frac{\partial\zeta}{\partial t}=\sum_{n=1}^{5}Q_{n}(\zeta, \Phi) , 
\frac{\partial\Phi}{\partial t}=\sum_{n=1}^{5}R_{n}(\zeta, \Phi) , (2.17)

where  Q_{n} and  R_{n} are given, explicitly, by

 Q_{1}=-\mathcal{L}[\Phi] , (2.18)

 Q_{2}=-\nabla\cdot(\zeta\nabla\Phi)-\mathcal{L}[\zeta \mathcal{L}[\Phi]] , (2.19)

 Q_{3}=- \mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\Phi]]+\frac{1}{2}
\zeta^{2}\nabla^{2}\Phi]-\nabla^{2}(\frac{1}{2}\zeta^{2}\mathcal{L}[\Phi]) , (2.20)

 Q_{4}=- \mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\Phi]
]+\frac{1}{2}\zeta^{2}\nabla^{2}\Phi]+\frac{1}{2}\zeta^{2}\nabla^{2}(\zeta 
\mathcal{L}[\Phi])-\frac{1}{6}\zeta^{3}\nabla^{2}\mathcal{L}[\Phi]]
 - \nabla^{2}(\frac{1}{2}\zeta^{2}\mathcal{L}[\zeta \mathcal{L}[\Phi]]+\frac{1}
{3}\zeta^{3}\nabla^{2}\Phi) , (2.21)

 Q_{5}=- \mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\zeta
\mathcal{L}[\Phi]]+\frac{1}{2}\zeta^{2}\nabla^{2}\Phi]+\frac{1}{2}\zeta^{2}
\nabla^{2}(\zeta \mathcal{L}[\Phi])-\frac{1}{6}\zeta^{3}\nabla^{2}\mathcal{L}
[\Phi]]
 + \frac{1}{2}\zeta^{2}\nabla^{2}(\zeta \mathcal{L}[\zeta \mathcal{L}[\Phi]]+
\frac{1}{2}\zeta^{2}\nabla^{2}\Phi)-\frac{1}{6}\zeta^{3}\nabla^{2}\mathcal{L}
[\zeta \mathcal{L}[\Phi]]-\frac{1}{24}\zeta^{4}\nabla^{2}\nabla^{2}\Phi]

 - \nabla^{2}(\frac{1}{2}\zeta^{2}\mathcal{L}[\zeta \mathcal{L}[\zeta 
\mathcal{L}[\Phi]]+\frac{1}{2}\zeta^{2}\nabla^{2}\Phi]+\frac{1}{3}\zeta^{3}
\nabla^{2}(\zeta \mathcal{L}[\Phi])-\frac{1}{8}\zeta^{4}\nabla^{2}\mathcal{L}
[\Phi]) , (2.22)

  R_{1}=-g\zeta , (2.23)

 R_{2}=- \frac{1}{2}\nabla\Phi\cdot\nabla\Phi+\frac{1}{2}(\mathcal{L}[\Phi])^{2} , (2.24)

 R_{3}=\mathcal{L}[\Phi](\mathcal{L}[\zeta \mathcal{L}[\Phi]]+\zeta\nabla^{2}
\Phi) , (2.25)

 R_{4}= \mathcal{L}[\Phi]\mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\Phi]]+
\frac{1}{2}\zeta^{2}\nabla^{2}\Phi]+\nabla^{2}[\frac{1}{4}\zeta^{2}(\mathcal{L}[
\Phi])^{2}]+\frac{1}{2}(\mathcal{L}[\zeta \mathcal{L}[\Phi]]+\zeta\nabla^{2}
\Phi)^{2}
 + \frac{1}{2}\zeta(\nabla^{2}\zeta)(\mathcal{L}[\Phi])^{2}-\frac{1}{2}\zeta^{2}
(\nabla \mathcal{L}[\Phi])^{2} (2.26)

 R_{5}= \mathcal{L}[\Phi]\mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[\zeta 
\mathcal{L}[\Phi]]+\frac{1}{2}\zeta^{2}\nabla^{2}\Phi]+\frac{1}{2}\zeta^{2}
\nabla^{2}(\zeta \mathcal{L}[\Phi])-\frac{1}{6}\zeta^{3}\nabla^{2}\mathcal{L}
[\Phi]]
 + \nabla^{2}(\frac{1}{2}\zeta^{2}\mathcal{L}[\Phi]\mathcal{L}[\zeta \mathcal{L}
[\Phi]]+\frac{1}{3}\zeta^{3}\mathcal{L}[\Phi]\nabla^{2}\Phi)-\zeta^{2}(\nabla 
\mathcal{L}[\Phi])\cdot(\nabla \mathcal{L}[\zeta \mathcal{L}[\Phi]]+\frac{2}{3}
\zeta\nabla(\nabla^{2}\Phi))
 + \frac{1}{6}\zeta^{3}(\nabla^{2}\mathcal{L}[\Phi])(\nabla^{2}\Phi)+
(\mathcal{L}[\zeta \mathcal{L}[\Phi]]+\zeta\nabla^{2}\Phi)(\mathcal{L}[\zeta 
\mathcal{L}[\zeta \mathcal{L}[\Phi]]+\frac{1}{2}\zeta^{2}\nabla^{2}\Phi]+
\frac{1}{2}\zeta(\nabla^{2}\zeta)\mathcal{L}[\Phi])

(2.27)

The expressions of the corresponding Hamiltonians  E_{n}(n=2, \cdots, 6) are explicitly given by

 E_{2}= \frac{1}{2}\int(g\zeta^{2}-\Phi \mathcal{L}[\Phi]) dx, (2.28)

 E_{3}= \frac{1}{2}\int\{\zeta\nabla\Phi\cdot\nabla\Phi-\zeta(\mathcal{L}[\Phi])
^{2}\} dx, (2.29)

 E_{4}=- \frac{1}{2}\int\zeta \mathcal{L}[\Phi](\mathcal{L}[\zeta \mathcal{L}
[\Phi]]+\zeta\nabla^{2}\Phi) dx, (2.30)
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 E_{5}=- \frac{1}{2}\int\{\zeta(\mathcal{L}[\zeta \mathcal{L}[\Phi]])^{2}+
\frac{1}{3}\zeta^{3}(\nabla^{2}\Phi)^{2}
 + \zeta \mathcal{L}[\Phi](\mathcal{L}[\zeta^{2}\nabla^{2}\Phi]+\frac{1}{2}\zeta
\nabla^{2}(\zeta \mathcal{L}[\Phi])-\frac{1}{6}\zeta^{2}\nabla^{2}\mathcal{L}
[\Phi])\}  dx , (2.31)

 E_{6}=- \frac{1}{2}\int\{\zeta \mathcal{L}[\zeta \mathcal{L}[\zeta \mathcal{L}[
\Phi]]](\mathcal{L}[\zeta \mathcal{L}[\Phi]]+\zeta\nabla^{2}\Phi)+\mathcal{L}
[\zeta \mathcal{L}[\Phi]](\zeta^{2}\nabla^{2}(\zeta \mathcal{L}[\Phi])-\frac{1}
{3}\zeta^{3}\nabla^{2}\mathcal{L}[\Phi])
 +( \frac{1}{2}\zeta^{2}\nabla^{2}\Phi)\mathcal{L}[\frac{1}{2}\zeta^{2}
\nabla^{2}\Phi]+\zeta^{2}\mathcal{L}[\Phi](\frac{1}{2}\nabla^{2}(\zeta^{2}
\nabla^{2}\Phi)-\frac{1}{12}\zeta^{2}\nabla^{2}(\nabla^{2}\Phi))\}  dx . (2.32)

When truncated at  O(\epsilon^{3}) , the system given by (2.17) becomes the third‐order system obtained
by Choi (1995), who showed that the truncated system also preserves the Hamiltonian structure.
Likewise, it can be shown that the fifth‐order model given by (2.17) is a Hamiltonian system.

3 Spectral Formulation

3.1 System for continuous spectrum

To obtain a nonlinear system in spectral space,  \zeta and  \Phi are expressed as

  \zeta(x, t)=\int a(k, t)e^{-ik\cdot x} d  k ,   \Phi(x, t)=\int b(k, t)e^{-ik\cdot x} d  k , (3.1)

where  a(k, t) and  b(k, t) representing the Fourier transforms of  \zeta and  \Phi , respectively. Notice
that  a(-k, t)=a^{*}(k, t) and  b(-k, t)=b^{*}(k, t) , with the asterisks representing the complex
conjugates, as  \zeta and  \Phi are real‐valued functions.

One way to find such a system is to take the Fourier transform of (2.5), which would yield
the nonlinear evolution equations for  a(k, t) and  b(k, t) as

  \frac{\partial a}{\partial t}-kTb=\sum_{n=2}^{\infty}q_{n}, \frac{\partial b}{
\partial t}+ga=\sum_{n=2}^{\infty}r_{n} , (3.2)

where  q_{n} and  r_{n} representing the Fourier transforms of  Q_{n} and  R_{n} given by  (2.6)-(2.7) can be
written as

 q_{n}= \iint\cdot\cdot\int\alpha_{0,1,\cdots,n}^{(n)}b_{1}a_{2}a_{3}\cdots 
a_{n}\delta_{0-1-n}dk_{1}dk_{2}\cdots dk_{n} , (3.3)

 r_{n}= \iint\cdot\int\beta_{0,1,\cdots,n}^{(n)}b_{1}b_{2}a_{3}\cdots a_{n}
\delta_{0-1-n}dk_{1}dk_{2}\cdots dk_{n} . (3.4)

In  (3.3)-(3.4) , we have used the following short‐hand notations

 a_{j}=a(k_{j}, t) , b_{j}=b(k_{j}, t) , \delta_{j-l}=\delta(k_{j}-k_{l}) , 
k_{0}=k , (3.5)

where  \delta is the Dirac delta function. Under the third‐order approximation, the system given by
(3.2) was derived first by Zakharov (196S) for infinitely deep water and by Stiassnie & Shemer
(1984) for finite depth water. The system has been also extended to  O(\epsilon^{4}) by Stiassnie &
Shemer (1984).

Although it is straightforward, finding the explicit expressions of  \alpha_{0,1,\cdots,n}^{(n)} and  \beta_{0,1,\cdots,n}^{(n)} by
taking the Fourier transform of (2.5) is lengthy and cumbersome, in particular, as the order
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of nonlinearity increases. An alternative and more convenient way is to use the Hamiltonian,
as shown by Krasitskii (1994), whose approach will be adopted here to obtain the fifth‐order
system. From (2.16), the n‐th order Hamiltonian  H_{n}=E_{n}/(2\pi)^{2} can be written in spectral
space as

 H_{2}= \frac{1}{2}\iint(ga_{1}a_{2}+k_{1}T_{1}b_{1}b_{2})\delta_{1+2}dk_{1}
dk_{2} , (3.6)

 H_{n}= \frac{1}{2}\iint\cdot\cdot\int h_{1,2,3,\cdots,n}^{(n)}b_{1}b_{2}a_{3}  a_{n}\delta_{1+\cdots+n}dk_{1}dk_{2}dk_{3}\cdots dk_{n} for  n\geq 3 . (3.7)

For example, under the fifth‐order approximation,  h_{1,2,3,\cdots,n}^{(n)} for  n=3,4,5,6 can be written
explicitly as

 h_{1,2,3}^{(3)}=-(k_{1}\cdot k_{2}+\theta_{1}\theta_{2}) , (3.8)

 h_{1,2,3,4}^{(4)}=-(k_{2}^{2}\theta_{1}-\theta_{1}\theta_{2}\theta_{2+3}) , (3.9)

 h_{1,2,3,4,5}^{(5)}=-[( \frac{1}{6}k_{2}^{2}-\frac{1}{2}k_{2+3}^{2}+\theta_{1+
3}\theta_{2+4})\theta_{1}\theta_{2}-k_{2}^{2}\theta_{1}\theta_{2+3+4}+\frac{1}
{3}k_{1}^{2}k_{2}^{2}] (3.10)

 h_{1,2,3,4,5,6}^{(6)}=[( \theta_{1}\theta_{1+3}-k_{1}^{2})\theta_{2}\theta_{2+
4}\theta_{2+4+5}+(\frac{1}{3}k_{2}^{2}-k_{2+4}^{2})\theta_{1}\theta_{2}\theta_{1
+3}
 + \frac{1}{4}k_{1}^{2}k_{2}^{2}\theta_{2+5+6}+\frac{1}{2}k_{1}^{2}k_{1+3+4}^{2}
\theta_{2}-\frac{1}{12}k_{1}^{4}\theta_{2}] (3.11)

where

 k_{j}=|k_{j}|,  \theta_{j}=k_{j}T_{j},  T_{j}=\tanh(k_{\dot{j}}h) ,  k_{m+n}=|k_{m}+k_{n}|,  T_{m+n}=\tanh(k_{m+n}h) .

(3.12)
The evolution equations for  a(k, t) and  b(k, t) can be then obtained from Hamilton’s equations:

  \frac{\partial a}{\partial t}=\frac{\delta H}{\delta b^{*}}, \frac{\partial b}
{\partial t}=-\frac{\delta H}{\delta a^{*}} . (3.13)

From  (3.6)-(3.7) and (3.13), the expressions of  \alpha_{0,1,\cdots,n}^{(n)} and  \beta_{0,1\cdots,n}^{(n)} in  (3.3)-(3.4) are found, in

terms of  h_{1,2,3,\cdots,n}^{(n)} , as

  \alpha_{0,1,\cdots,n}^{(n)}=\frac{1}{2}(h_{-0,1,2,\cdots,n}^{(n+1)}+h_{1,-0,2,
\cdots,n}^{(n+1)}) , (3.14)

  \beta_{0,1\cdots,n}^{(n)}=-\frac{1}{2} (h_{1,2,-0,3,\cdots,n}^{(n+1)}+ +h_{1,
2,3,\cdots,n,-0}^{(n+1)}) (3.15)

Notice that the interaction coefficients  h_{1,2,\cdots,n}^{(n)} in  (3.8)-(3.11) are not symmetric. In other

words, except for  h_{1,2,3}^{(3)} , they change when indices 1 and 2 are interchanged although their
Hamiltonians given by (3.7) remain unchanged. This is also true for indices 3,  n . Never‐
theless, if necessary, they can be easily made symmetric, as shown by Krasitskii (1994).

3.2 System for discrete spectrum

When a nonlinear wave field can be represented by a superposition of discrete modes,  a(k, t)
and  b(k, t) can be written as

 a(k, t)= \sum_{j}\delta(k-k_{j})a_{j}(t) , b(k, t)=\sum_{j}\delta(k-k_{j})b_{j}
(t) , (3.16)
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where  k_{-j}=-k_{j} . In (3.16), the summations should be in general taken over all discrete modes
involved in nonlinear wave interactions unless an additional approximation is made.

When truncated at  O(\epsilon^{M}) , the amplitude equations for  a_{j} and  b_{j} under the M‐th order
approximation are given, from (3.2), by

  \frac{da_{j}}{dt}-k_{j}T_{j}b_{j}=\sum_{n=2}^{M}[\sum_{j_{1},j_{2},\cdot\cdot 
j_{n}}.,\alpha_{j,j_{1},\cdots,j_{n}}^{(n)}b_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots 
a_{j_{n}}\delta_{0-1-n]} (3.17)

  \frac{db_{j}}{dt}+ga_{j}=\sum_{n=2}^{M}[\sum_{j_{1},j_{2},\cdot\cdot j_{n}}.,
\beta_{j,j_{1},\cdots,j_{n}}^{(n)}b_{j_{1}}b_{j_{2}}a_{j_{3}}\cdots a_{j_{n}}
\delta_{0-1-n]} (3.18)

where  \delta_{0-1-n}=\delta_{j-j_{1}-j_{n}} . The corresponding Hamiltonians are given by

 H_{2}= \frac{1}{2}\sum_{j_{1}}\sum_{j_{2}}(ga_{j_{1}}a_{j_{2}}+k_{j_{1}}
T_{j_{1}}b_{j_{1}}b_{j_{2}})\delta_{1+2} , (3.19)

 H_{n}= \frac{1}{2}\sum_{j_{1},j_{2},\cdot\cdot,j_{n}}.h_{j_{1},j_{2}}^{(n)}, 
\cdot\cdot\cdot, j_{n}b_{j_{1}}b_{j_{2}}a_{j_{3}} a_{j_{n}}\delta_{1+2+\cdots+n} , (3.20)

from which the amplitude equations given by  (3.17)-(3.18) can be obtained from the Hamilton’s
equations:

  \frac{\partial a_{j}}{\partial t}=\frac{\partial H}{\partial b_{j}^{*}}, \frac
{\partial b_{j}}{\partial t}=-\frac{\partial H}{\partial a_{j}^{*}} , (3.21)

where  H= \sum_{n}H_{n} . For  M=5 , the expressions of  h_{j_{1},j_{2}}^{(n)},  j_{n} are defined by  (3.8)-(3.11) and

 \alpha_{j,j_{1}}^{(n\prime},  \cdot\cdot\cdot,  j_{n} and  \beta_{j,j_{1}}^{(n\prime},  \cdot\cdot\cdot,  j_{n} are given by  (3.14)-(3.15) .

When  k_{j}=(jK_{x}, lK_{y}),  (3.16) represent the Fourier series of  \zeta and  \Phi and equations (3.17)‐
(3.18) determine their evolution of the Fourier coefficients,  a_{j} and  b_{j} . If a finite number of
Fourier modes are used for numerical computations, solving the ordinary differential equations
given by  (3.17)-(3.18) is equivalent to solving (2.5) using the pseudo‐spectral method described
in §2.2. Unfortunately, the evaluation of the right‐hand sides is computationally expensive
and, therefore, solving a dynamical system is in general less effective than the pseudo‐spectral
method based on FFT.

3.3 Time‐periodic solutions of the third‐order spectral model

Under the third‐order approximation  (M=3) , the amplitude equations for  a_{j} and  b_{j} can be
written, from  (3. 17)-(3.18) , as

  \frac{da_{j}}{dt}=k_{j}T_{j}b_{j}+\sum_{j_{1\dot{J}2}}(k_{j}\cdot k_{j_{1}}-k_
{j}T_{j}k_{j_{1}}T_{j_{1}})b_{j_{1}}a_{j_{2}}\delta_{0-1-2}
 + \sum_{j_{1\dot{J}2},j_{3}}[k_{j}T_{j}(k_{j_{1}}T_{j_{1}}k_{j_{1}+j_{2}}
T_{j_{1}+j_{2}}-\frac{1}{2}k_{j_{1}}^{2})-\frac{1}{2}k_{j}^{2}k_{j_{1}}T_{j_{1}}
]b_{j_{1}}a_{j_{2}}a_{j_{3}}\delta_{0-1-2-3} , (3.22)

  \frac{db_{j}}{dt}=-ga_{j}+\sum_{j_{1},j_{2}}\frac{1}{2}(k_{j_{1}}\cdot 
k_{j_{2}}+k_{j_{1}}T_{j_{1}}k_{j_{2}}T_{j_{2}})b_{j_{1}}b_{j_{2}}\delta_{0-1-2}
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 + \sum_{j_{1\dot{J}2}j_{3}}[k_{j_{1}}T_{j_{1}}(-k_{j_{2}}T_{j_{2}}k_{j-j_{1}}T_
{j-j_{1}}+k_{j_{2}}^{2})]b_{j_{1}}b_{j_{2}}a_{j_{3}}\delta_{0-1-2-3} . (3.23)

When we assume that the waves are propagating in the  x‐direction so that  k_{j}=(k_{j}, 0)
with  k_{j}=jk and  (a_{j}, b_{j})=(a_{j}, b_{j}) , equations  (3.22)-(3.23) describe the evolution of the Fourier
coefficients of  \zeta and  \Phi . Furthermore, we assume that the first harmonics are initially dominant
and all other higher‐harmonics are excited through nonlinearity so that

 a_{j}=O(\epsilon) , a_{0}=O(b_{0})=O(b_{2_{\dot{J}}})=O(a_{2j})=O(\epsilon^{2})
, a_{3j}=O(b_{3j})=O(\epsilon^{3}) . (3.24)

Then, the third‐order system  (3.22)-(3.23) can be approximated by four ordinary differential
equations: for the j‐th mode,

  \frac{da_{j}}{dt}-k_{\dot{j}}T_{j}b_{j}=2k_{j}^{2}(1-T_{j}T_{2_{\dot{J}}})
a_{j}^{*}b_{2_{J}}-k_{j}^{2}(1+T_{j}^{2})a_{2_{\dot{J}}}b_{j}^{*}
 -2k_{j}^{3}T_{j}(1-T_{\dot{j}}T_{2_{\dot{J}}})|a_{j}|^{2}b_{j}-k_{j}^{3}T_{j}a_
{j}^{2}b_{j}^{*} , (3.25)

  \frac{db_{j}}{dt}+ga_{j}=-2k_{\dot{j}}^{2}(1-T_{j}T_{2j})b_{j}^{*}
b_{2_{\dot{j}}}+2k_{\dot{j}}^{3}T_{j}(1-T_{j}T_{2j})a_{j}|b_{j}|^{2}+k_{\dot{j}}
^{3}T_{j}a_{j}^{*}b_{\dot{j}}^{2} , (3.26)

and, for the  2j‐th mode,

  \frac{da_{2j}}{dt}-k_{2j}T_{2j}b_{2j}=2k_{j}^{2}(1-T_{j}T_{2_{\dot{j}}})a_{j}
b_{j} , (3.27)

  \frac{db_{2_{j}}}{dt}+ga_{2_{j}}=\frac{1}{2}k_{j}^{2}(1+T_{j}^{2})b_{j}^{2} . (3.28)

The Hamiltonian for the system is given, by imposing (3.24) to  (3.19)-(3.20) , by

 H=(g|a_{j}|^{2}+k_{j}T_{j}|b_{j}|^{2})+(g|a_{2j}|^{2}+k_{2j}T_{2j}|b_{2j}|^{2})
 + \frac{1}{2}[h_{j,\dot{j},-2_{\dot{j}}}^{(3)}b_{j}^{2}a_{2j}^{*}+h_{-J,-j,2j}^
{(3)}b_{j}^{*2}a_{2j}+2h_{2_{\dot{j}},-j,-j}^{(3)}b_{2j}b_{j}^{*}a_{j}^{*}+2h_{-
2j,j,j}^{(3)}b_{2j}^{*}b_{j}a_{j}]

 + \frac{1}{2}[h_{j,\dot{j},-j,-j}^{(4)}b_{j}^{2}a_{j}^{*2}+h_{-\dot{j},-j,j,j}^
{(4)}b_{j}^{*2}a_{\dot{j}}^{2}
 +(h_{\dot{j},-j,j,-j}^{(4)}+h_{\dot{j},-j,-j,j}^{(4)}+h_{-j,j,j,-j}^{(4)}+h_{-
j,j,-j,j}^{(4)})|b_{j}|^{2}|a_{j}|^{2}]

 =(g|a_{j}|^{2}+k_{j}T_{j}|b_{j}|^{2})+(g|a_{2j}|^{2}+k_{2_{\dot{j}}}
T_{2_{\dot{J}}}|b_{2_{\dot{j}}}|^{2})
‐   \frac{1}{2}k_{j}^{2}(1+T_{j}^{2})(b_{j}^{2}a_{2j}^{*}+b_{j}^{*2}a_{2_{\dot{j}}
})+2k_{j}^{2}(1-T_{j}T_{2j})(b_{2j}b_{j}^{*}a_{j}^{*}+b_{2j}^{*}b_{j}a_{j})

‐   \frac{1}{2}k_{j}^{3}T_{j}(b_{j}^{2}a_{j}^{*2}+b_{\dot{j}}^{*2}a_{\dot{j}}^{2})
-2k_{\dot{j}}^{3}T_{j}(1-T_{j}T_{2j})|b_{j}|^{2}|a_{j}|^{2} (3.29)

where we have used  h_{2j,-j,-j}^{(3)}=h_{-j,2j,-j}^{(3)} and  h_{-2j,j,j}^{(3)}=h_{j,-2_{\dot{J}},j}^{(3)} . Here the amplitude equations
of the third‐harmonics (  a_{3_{j}} and  b_{3_{\dot{j}}} ) as not written as they have no effect on the dynamics of
the first harmonics of interest unless the higher‐order nonlinearity is included. Therefore, we
consider only the first two harmonics here.
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3.3.1 Progressive waves

When linearized,  (3.25)-(3.26) can be reduced to

  \frac{da_{j}}{dt}=k_{\dot{j}}T_{j}b_{\dot{j}}, \frac{db_{j}}{dt}=-ga_{j} , (3.30)

whose solution can be written as

 a_{j}=\overline{a}_{j}e^{i\omega_{j}t} b_{\dot{j}}=i(g/\omega_{j})\overline{a}_
{j}e^{i\omega_{j}t} (3.31)

so that

 b_{j}=i(g/\omega_{j})a_{j} . (3.32)

Here  \omega_{j}>0 satisfies the linear dispersion relation (2.9):

 \omega_{\dot{j}}^{2}=gk_{j}T_{j} . (3.33)

At the second order, the particular solutions of  (3.27)-(3.28) for the second harmonics can be
obtained, using  da_{2j}/dt=2\omega_{j}a_{2j} and  db_{2_{\dot{J}}}/dt=2\omega_{j}b_{2_{\dot{J}}} , as

 a_{2j}= \frac{1}{\omega_{2j}^{2}-4\omega_{\dot{j}}^{2}}[4i\omega_{j}k_{j}^{2}(1
-T_{j}T_{2j})a_{j}b_{\dot{j}}+k_{j}^{3}T_{2j}(1+T_{j}^{2})b_{\dot{j}}^{2}] (3.34)

 b_{2j}= \frac{1}{2_{\dot{j}}^{-4\omega_{j}^{2}}2}[-2gk_{j}^{2}(1-T_{j}T_{2j})a_
{j}b_{j}+i\omega_{\dot{j}}k_{\dot{j}}^{2}(1+T_{j}^{2})b_{\dot{j}}^{2}] (3.35)

where  \omega_{2j}^{2}=gk_{2j}T_{2j} is the natural frequency of the second harmonics of wavenumber  k_{2j}=2k_{j}
and we have assumed that  \omega_{2j}\neq 2\omega_{j} . When substituting the linear solution (3.31) into (3.34)‐
(3.35), the second harmonic solutions can be found as

 a_{2j}= \alpha_{2j}\overline{a}_{j}^{2}e^{2i\omega_{j}t} \alpha_{2j}=gk_{j}^{2}
(\frac{4-3T_{j}T_{2j}+T_{2j}/T_{j}}{4\omega_{\dot{j}}^{2}-\omega_{2j}^{2}})=
k_{j}(\frac{3-T_{\dot{j}}^{2}}{2T_{j}^{3}}) (3.36)

 b_{2j}= i\beta_{2j}\overline{a}_{\dot{j}}^{2}e^{2i\omega_{j}t} \beta_{2j}=\frac
{g^{2}k_{j}^{2}}{\omega_{j}}(\frac{3-2T_{j}T_{2j}+T_{j}^{2}}{4\omega_{j}^{2}-
\omega_{2j}^{2}})=\omega_{j}(\frac{3+T_{j}^{4}}{4T_{\dot{j}}^{4}}) (3.37)

where we have used, for the last expressions of  \alpha_{2j} and  \beta_{2_{\dot{J}}},

 T_{2j}=2T_{j}/(1+T_{\dot{j}}^{2}) . (3.38)

From (3.31),  a_{2j} and  b_{2j} given by  (3.36)-(3.37) can be expressed, in terms of  a_{j} and  b_{j} , as

 a_{2_{\dot{J}}}=\alpha_{2j}a_{\dot{j}}^{2}+O(\epsilon^{3}) , b_{2j}=i\beta_{2j}
a_{\dot{j}}^{2}+O(\epsilon^{3}) . (3.39)

To study the nonlinear behavior of the first harmonics (  a_{j} and  b_{j} ), although not necessary,
it is convenient to use a single amplitude equation, for example, for  a_{j} . After substituting (3.32)
and (3.39) into the right‐hand sides of  (3.25)-(3.26) , the time evolution equation for  a_{j} correct
to  O(\epsilon^{3}) can be found as

  \frac{d^{2}a_{j}}{dt^{2}}+\omega_{j}^{2}(1+\alpha_{j}|a_{\dot{j}}|^{2})a_{j}=0 , (3.40)
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where  \alpha_{j} is given by

  \alpha_{j}=k_{j}^{2}[\frac{16T_{j}+(1-18T_{j}^{2}+9T_{j}^{4})T_{2j}}{2T_{j}
(2T_{\dot{j}}-T_{2j})}]=k_{j}^{2}(\frac{9T_{j}^{4}-10T_{j}^{2}+9}{2T_{j}^{3}})>0 . (3.41)

Similarly, the amplitude equation for  b_{j} can be found as

  \frac{d^{2}b_{j}}{dt^{2}}+\omega_{\dot{j}}^{2}(1+\beta_{j}|b_{j}|^{2})b_{j}=0,
\beta_{j}=(\omega_{j}^{2}/g^{2})\alpha_{j} . (3.42)

For a time‐periodic solution of (3.40),  a_{j}(t) is written as

 a_{j}(t)=A_{j}e^{i\Omega_{j}t} \Omega_{j}=\omega_{j}[1+\delta_{j}+
O(\epsilon^{4})] (3.43)

where  \delta=O(\epsilon^{2}) is the nonlinear correction to the wave frequency. By substituting (3.43) into
(3.40), one can find, at the order of  O(\epsilon^{3}) , that

  \delta_{j}=\frac{1}{2}\alpha_{j}A_{j}^{2}=(\frac{9T_{j}^{4}-10T_{j}^{2}+9}{4T_
{j}^{3}})k_{j}^{2}A_{j}^{2} , (3.44)

which is the nonlinear frequency correction of Stokes waves in water of finite depth, as shown,
for example, in Whitham (1976, §13.13). As a special case, for infinitely deep water  (T_{j}arrow 1
and  T_{2_{j}}arrow 1) , the expression of  \alpha_{j},  \delta_{\dot{j}} , and  a_{2_{\dot{J}}} are given by

 \alpha_{j}=4k_{j}^{2}, \delta_{j}=2k_{j}^{2}A_{j}^{2}, a_{2j}=k_{j}A_{j}^{2}
e^{2i\omega_{j}t} (3.45)

This solution corresponds to that of Stokes (1847), where the wave amplitude  \overline{a}_{j} is defined as
 \overline{a}_{j}=2A_{j} so that  \delta_{j}=k_{\dot{j}}^{2}\overline{a}_{\dot{j}}^{2}/2.

3.3.2 Standing waves

For standing wave solutions, we must have

 a_{j}=a_{-j}=a_{j}^{*}, b_{j}=b_{-j}=b_{j}^{*} , a_{0}=0 , (3.46)

so that  \zeta and  \Phi can be written as

  \zeta(x, t)=2\sum_{j\geq 0}a_{j}(t)\cos(k_{j}x), \Phi(x, t)=2\sum_{j\geq 0}
b_{j}(t)\cos(k_{j}x) , (3.47)

which satisfy the side‐wall boundary conditions at  x=0 and  L with

 k_{j}=j\pi/L , (3.48)

where  L is the tank length. Then, as  a_{j} and  b_{j} are real, their evolution equations are given,
from  (3.22)-(3.23) , or directly from  (3.25)-(3.26) , by

  \frac{da_{j}}{dt}-k_{j}T_{j}b_{\dot{j}}=2k_{j}^{2}(1-T_{\dot{j}}T_{2j})a_{\dot
{j}}b_{2_{\dot{j}}}-k_{j}^{2}(1+T_{j}^{2})a_{2_{\dot{j}}}b_{j}-k_{j}^{3}T_{j}(3-
2T_{j}T_{2j})a_{\dot{j}}^{2}b_{j} , (3.49)

  \frac{db_{j}}{dt}+ga_{j}=-2k_{j}^{2}(1-T_{\dot{j}}T_{2_{\dot{j}}})b_{j}b_{2j}+
k_{\dot{j}}^{3}T_{\dot{j}}(3-2T_{j}T_{2j})a_{\dot{j}}b_{\dot{j}}^{2} , (3.50)
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while the time evolution of the second harmonics  a_{2j} and  b_{2j} are governed by  (3.27)-(3.28) .
When we linearize  (3.49)-(3.50) , the leading‐order solutions can be found as

 a_{j}=A_{j}e^{i\omega_{j}t}+C.C . ,  b_{j}=i(g/\omega_{j})A_{j}e^{i\omega_{j}t}+C.C . , (3.51)

where the complex conjugates (C.C.) are needed as  a_{j} and  b_{j} are real functions. At the second‐
order, the particular solutions of  (3.27)-(3.28) for the second harmonics can be found as

 a_{2_{J}}=(\alpha_{2_{\dot{J}}}A_{j}^{2}e^{2i\omega_{j}t}+C.C.)+\gamma_{2_{\dot
{J}}}|A_{j}|^{2} b_{2j}=(i\beta_{2j}A_{\dot{j}}^{2}e^{2i\omega_{j}t}+C.C.) , (3.52)

with  \alpha_{2j},  \beta_{2_{\dot{j}}} , and  \gamma_{2j} given by

  \alpha_{2j}=k_{j}(\frac{3-T_{j}^{2}}{2T_{\dot{j}}^{3}}) \beta_{2j}=
\frac{gk_{j}}{\omega_{j}}(\frac{3+T_{j}^{4}}{4T_{j}^{3}}) \gamma_{2j}=k_{j}
(\frac{1+T_{j}^{2}}{T_{j}}) (3.53)

For standing waves, since it is not possible to write  a_{2j} and  b_{2j} in terms of  a_{j} or  b_{j} , the system
cannot be reduced to a single equation for  a_{j} or  b_{j} . Therefore, in general, it is necessary to
solve the system given by  (3.49)-(3.50) along with  (3.27)-(3.28) , except for the infinitely deep
water case, for which  a_{2_{j}}=k_{\dot{j}}a_{j}^{2} as  \alpha_{2j}=k_{j} and  \gamma_{2j}=2k_{j}.

For a time‐periodic solution, we write  a_{j} and  b_{j} as

 a_{j}=A_{j}e^{i\Omega_{j}t}+A_{3j}e^{3i\Omega_{j}t}+C.C.  +O(\epsilon^{5}) ,  \Omega_{j}=\omega_{j}[1+\delta_{j}+O(\epsilon^{4})]+O(\epsilon^{5}) ,

 b_{j}=B_{j}e^{i\Omega_{j}t}+B_{3_{\dot{J}}}e^{3i\Omega_{j}t}+C.C. +
O(\epsilon^{5}) ,

where  A_{j}=O(\epsilon),  B_{j}=O(\epsilon),  A_{3j}=O(\epsilon^{3}),  B_{3j}=O(\epsilon^{3}) , and  \delta_{j}=O(\epsilon^{2}) have been assumed
real. By substituting  (3.54)-(3.55) into  (3.49)-(3.50) with (3.52), the nonlinear correction to
the wave frequency can be determined at  O(\epsilon^{3}) as

  \delta_{j}=(\frac{9-12T_{j}^{2}-3T_{j}^{4}-2T_{j}^{6}}{4T_{j}^{4}})k_{\dot{j}}
^{2}A_{\dot{j}}^{2} , (3.56)

which has been obtained by Tadjbakhsh & Keller (1960). As pointed out by Tadjbakhsh &
Keller (1960),  \delta_{j} is negative for  k_{j}h>1.058 , implying that the frequency decreases as the wave
amplitude increases, which is observed for a soft spring. On the other hand, for  k_{\dot{j}}h<1.058,
 \delta_{j} is positive, which corresponds to the case of a hard spring.

For infinitely deep water  (harrow\infty, T_{j}arrow 1),  (3.56) can be reduced to  \delta_{j}=-2k_{\dot{j}}^{2}A_{\dot{j}}^{2} , which
is the result obtained by Rayleigh (1915), where the wave amplitude is defined as  \overline{a}_{j}=4A_{j} so
that  \delta_{j}=-k_{j}^{2}\overline{a}_{\dot{j}}^{2}/8.

4 Conclusion

Using the equivalence between the spectral formulation of Zakharov (196S) and the pseudo‐
spectral formulation of West et al. (1968), we obtain an explicit fifth‐order spectral model that
governs the evolution of the Fourier transforms of the surface elevation  \zeta and the free surface
velocity potential  \Phi . Compared with a lower‐order one, the fifth‐order model would improve
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the description of the spectral evolution of broadband nonlinear waves of finite amplitudes.
When discretized, the model provides a dynamical system for any number of discrete modes,
which would be useful to study nonlinear standing waves in a sloshing tank. Although only the
third‐order solutions for traveling and standing waves have been presented, the fifth‐order time‐
periodic solutions can be easily obtained from the model presented here. It should be remarked
that, as the higher‐order Hamiltonians are also available from the pseudo‐spectral formulation
of West et al. (1987) via recursion formulas, it is straightforward to find a higher‐order spectral
model although it would be complicated.
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