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1. Introduction

Intemal waves show interface deformation when they reach a continental shelf after travelling in the deep

ocean, as studied by e.g. Ostrovsky& Stepanyants (ı989). Grimshaw et al. (2004) numericalıy simulated the

transformation of internal solitary waves using the EKdV eq., obtained by Lee & Beardsley (1974) by

extending the KdV eq. However, the applicability of the nonlinear wave equations, derived using

perturbation methods for two‐ıayer systems, is restricted owing to the perturbation assumptions, such that,

for example, the Benjamin‐Ono (BO) equation (Benjamin, 1967; Ono, 1975), as well as the deeper version

derived by Choi & Camassa (1999), can be adopted for internal waves in offshore deep regions, while the

 KdV equation, and the shallower version by Choi & Camassa (1999), for those in shaılower water over a

continental shelf. In the derivation process for the deeper version by Choi & Camassa (1999), O(hı)  <<

 O(h_{2}) is assumed, where  h_{1} and  h_{2} are the thickness ofthe upper and lower layers in stiıl water, respectively,

whiıe for the shaııower version by Choi & Camassa (1999),  O(alh)=1 , O(hıll)  <<1 , and  O(h_{2}ll)<<1 are

assumed, where alh, and  l, are the representative values for the ratio between wave height and layer

thickness, and wavelength, respectively. Conversely, the set of equations based on a variational principle

(Kakinuma, 2001), without any assumption concerning wave nonlinearity or dispersion, is expected to be

applicable to nonlinear waves propagating from deep to shallow water, ifthe vertical distribution ofvelocity

potential is described appropriately.

In the present study, the set of nonlinear equations based on the variational principle, is solved

numerically using the implicit scheme developed by Nakayama & Kakinuma (2010), to simulate internal

waves in two‐layer systems over topography, in consideration of both the strong nonıinearity, and the strong

dispersion, of internal waves.

2. Nonlinear equations for surface/internal waves and numerical method

The illustration in Fig. 1 is our schematic for the multi‐ıayer system of fluids, represented as  i(i=1, 2, \cdot\cdot, 1)

from top to bottom, respectively, showing only inviscid and incompressible motion. The thickness of the i‐

layer in still water is denoted by  h_{l}(x) . None of the fluids mix even in motion, and the density in the  i‐layer,

 \rho_{l} , is spatiaıly uniform and temporalıy constant in each layer.
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 y\approx L_{\vec{\bullet}}

Fig. 1. A schematic for a multi‐layer fluid system.

In the  i‐layer, if both the dispıacement of one interface,  z=\eta_{l,1-j}(x,t) (  j=0 or 1), and the pressure on

the other interface,  p_{-j}(x,t) , are known, then the unknown variables are the velocity potential  \phi,  (x,z,t) and

the interface displacement  \eta_{i_{j}}(x,t) , such that the definition of the functional for the variational problem in

the i‐ıayer,  F_{l} , is as folıows (Kakinuma, 2001), by adjusting the functional introduced by Luke (ı965):

 F_{l}[ \phi_{l},\eta_{lj}]=\int_{t_{0}}^{t_{1}}\iint_{A}L_{l}[\phi_{l},
\eta_{lj}]dAdt , (1)

 L_{l}[ \phi_{l},\eta_{i_{j}},]=\int_{\eta_{l}}^{\eta,1}0[\frac{\partial\phi_{l}
}{\partial t}+\frac{1}{2}(\nabla\phi_{l})^{2}+\frac{{\imath}}{2}
(\frac{\partial\phi_{l}}{\partial z})^{2}+gz+\frac{p_{l-j}+P_{l}}{\rho_{l}}]dz, (2)

where  \eta_{l},0(x,t) and  \eta_{l},1(x,t) are the displacements of the lower and upper interfaces of the  i‐layer,

respectively;  p_{l},0(x,t) and  p_{l},1(x,t) are the pressures at the ıower and upper interfaces of the i‐ıayer,

respectively;   P_{l}= \sum_{k={\imath}}^{l-1}(\rho_{l}-\rho_{k})gh_{k};\nabla is a partial differential operator in the horizontal plane, i.e.,

 \nabla=(\partial/\partial x,\partial/\partial y);(\nabla\phi,)^{2}\equiv|\nabla
\phi_{i}|^{2} . The gravitational acceleration  g is 9.8  m/s^{2} . The plane  A , which is the

orthogonal projection ofthe object domain on to the x‐y plane, is assumed to be independent oftime.

Fluid motion is assumed to be irrotational, resuıting in the existence of velocity potentiaı  \phi_{I} , which is

expanded into a power series of vertical position  z with weightings  f_{l,\alpha_{I}} , in a manner similar to that for the

derivation of surface wave equations by Isobe (1995), as

  \phi_{l}(x,z,t)=\sum_{\alpha_{l}=0}^{N_{l}-1}[f_{l,\alpha_{\ovalbox{\tt\small 
REJECT}}}(x,t)\cdot z^{\alpha_{t}}]\equiv f_{l,\alpha_{I}}\cdot z^{\alpha_{I}} , (3)

where  N_{l} is the number ofterms for an expanded velocity potential in the  i‐layer.

If we consider a two‐ıayer fluid system, over a seabed of a fixed profile, i.e.,  z=\eta_{2,0}=b(x) , then the

Euler‐Lagrange equations for the variational problem are reduced to the nonlinear surface/internal wave

equations for two‐layer fluid motion as
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[Upper layer]

  \zeta^{\alpha_{1}}\frac{\partial\zeta}{\partial t}-\eta^{\alpha_{1}}
\frac{\partial\eta}{\partial t}+\frac{{\imath}}{\alpha_{1}+\beta_{1}+1}
\nabla[(\zeta^{\alpha_{1}+\beta_{1}+1}-\eta^{\alpha_{{\imath}}+\beta_{1}+1})
\nabla f_{1.\beta_{1}}]-\frac{\alpha_{1}\beta_{1}}{\alpha_{1}+\beta_{1}-1}
(\zeta^{\alpha_{1}+\beta_{1}-1}-\eta^{\alpha_{{\imath}}+\beta_{1}-1})
f_{1\beta_{1}}=0 , (4)

  \zeta^{\beta_{1}}\frac{\partial f_{1\beta_{1}}}{\partial t}+\frac{1}{2}\zeta^{
\beta_{1}+r_{1}}\nabla f_{{\imath},\beta_{1}}\nabla f_{{\imath},\gamma_{1}}+
\frac{1}{2}\beta_{{\imath}}\gamma_{{\imath}}\zeta^{\beta_{1}+\gamma_{1}-2}
f_{{\imath},\beta_{1}}f_{{\imath} r_{1}}+g\zeta=0 , (5)

  \eta^{\beta_{1}}\frac{\partial f_{{\imath},\beta}}{\partial t}+\frac{{\imath}}
{2}\eta^{\beta_{{\imath}}+\gamma_{1}}\nabla f_{{\imath},\beta}\nabla f_{1,
\gamma_{1}}+\frac{1}{2}\beta_{{\imath}}\gamma_{1}\eta^{\beta_{1}+\gamma_{1}-2}f_
{1\beta_{{\imath}}}f_{1\gamma_{1}}+g\eta+\frac{p}{\rho_{1}}=0 , (6)

[Lower layer]

  \eta^{\alpha_{2}}\frac{\partial\eta}{\partial t}+\frac{{\imath}}{\alpha_{2}+
\beta_{2}+1}\nabla[(\eta^{\alpha_{2}+\beta_{2}+1}-b^{\alpha_{2}+\beta_{2}+1})
\nabla f_{2,\beta_{2}}]-\frac{\alpha_{2}\beta_{2}}{\alpha_{2}+\beta_{2}-1}(\eta^
{\alpha_{2}+\beta_{2}-1}-b^{\alpha_{2}+\beta_{2}-1})f_{2\beta_{2}}=0 , (7)

  \eta^{\beta_{2}}\frac{\partial f_{2\beta_{2}}}{\partial t}+\frac{1}{2}
\eta^{\beta_{2}+\gamma_{2}}\nabla f_{2,\beta_{2}}\nabla f_{2,\gamma_{2}}+
\frac{1}{2}\beta_{2}\gamma_{2}\eta^{\beta_{2}+r_{2}-2}f_{2,\beta_{2}}f_{2,
\gamma_{2}}+g\eta+\frac{1}{\rho_{2}}[p+(\rho_{2}-\rho_{{\imath}}) ghı  ]=0 , (8)

where the surface, and the interface, profiıes are described by  z=\eta_{1,1}=\zeta(x,t) , and z  =\eta ı,0  =\eta_{2,1}=\eta(x,t) ,

respectively; the pressure at the interface is denoted by  p=p_{1,0}=p_{2,1} . The sum rule ofproduct is adopted for

subscripts  \alpha_{l},  \beta_{l} , and  \gamma_{l} , such that, for example,  \alphaı in the first term on the ıeft‐hand side of Eq. (4) denotes

the power of  \zeta

After eliminating  p from Eqs. (6) and (8), we obtain

  \eta^{\beta_{2}}\frac{\partial f_{2\beta_{2}}}{\partial t}+\frac{1}{2}
\eta^{\beta_{2}+\gamma_{2}}\nabla f_{2,\beta_{2}}\nabla f_{2,\gamma_{2}}+
\frac{1}{2}\beta_{2}\gamma_{2}\eta^{\beta_{2}+\gamma_{2}-2}f_{2,\beta_{2}}f_{2},
r_{2}+(1-\frac{\rho_{1}}{\rho_{2}})g(\eta+h_{1}) (9)

 - \frac{\rho_{{\imath}}}{\rho_{2}} (\eta^{\beta_{{\imath}}}\frac{\partial 
f_{1\beta_{1}}}{\partial t}+\frac{1}{2}\eta^{\beta_{1}+\gamma_{1}}\nabla 
f_{{\imath},\beta_{{\imath}}}\nabla f_{1,\gamma_{1}}+\frac{1}{2}\beta_{1}\gamma_
{{\imath}}\eta^{\beta_{1}+\gamma_{{\imath}}-2}f_{{\imath}} \beta{\imath} 
f_{{\imath}\gamma_{{\imath}}})=0.
In this paper, the top face of the upper layer is assumed to touch a fixed horizontal plate at  z=0 , such

that  \zeta=0 without any surface wave. In order to represent both the nonlinearity and dispersion of internaı

waves propagating from deep to shallow, or shallow to deep, regions, the numbers ofterms for the expanded

velocity potentials introduce in Eq. (3), are  N_{1}=3 and  N_{2}=5 for the upper and lower layers, respectively,

referrin g to the accuracy of the numerical results obtamined by Yamashita & Kakinuma (20ı5), using the

same equations for the internaı solitary waves.

The fundamental equations mentioned above, are solved using the fmite‐difference implicit scheme

developed by Nakayama & Kakinuma (2010). The incident wave is a soıitary‐wave solution, obtained for

the same equations, using the numerical method presented by Yamashita and Kakinuma (2015). In the

following discussion, the fluid density ratio  \rho_{1}/\rho_{2} is 0.98; in the offshore deep region, the thickness of the

upper and ıower ıayers in stilı water, is hı  = 0.01h and  h_{2}=0.99h, respectiveıy, where  h is the total water

depth.
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Fig. 2. The target domain with a slope in Case 1‐A, where  h_{2}lh_{1}=99.0 in the deep area I, while  h_{2}lh_{1}=4.0 in the
shalıow area III. The broken line shows the critical level  z_{c} , defmed by Eq. (10).
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Fig. 3. The target domain with a mound in Case 2‐A, where h2lhı  =99.0 in the deep area I, while  h_{2}lh_{1}=4.0 in the
shallow area III. The broken line shows the critical level  z_{c} , defined by Eq. (10).

Tab.1. The still‐water thickness ratios between the lower and upper layers,  h_{2}lh_{1} , in the shallow area III.

3. Conditions for numerical computation

Figures 2 and 3 show the target domains for computation, where the totaı water depth is uniform in the areas

I, III, and V, while the slope gradient is 0.ı and  -0.1 in the areas II and IV, respectively. The still‐water

thickness ratios between the lower and upper layers,  h_{2}lh_{1} , in the shallow area III, are shown in Tab. 1. The

broken ıines in the figures show the elevation of criticaı leveı  z_{c} , defmed by Funakoshi & Oikawa (1986) as

 z_{c}=b/({\imath}+\sqrt{\rho_{2}/\rho_{{\imath}}}) . (10)
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Fig. 4. The interface profile ofthe incident internal solitary wave, given in the deep area I, in comparison with the
corresponding BO solution.

In the deep area I, the interface exists above the critical level, such that downward convex intemal

waves are stable, while in the shalıow area III for Cases 1‐C and 1‐D, as well as Cases 2‐C and 2‐D, the

interface exists below the critical level, therefore upward convex internal waves are stable.

The grid width, and time step, for computation are  \Delta x=0.01h , and  \Delta t=0.01\Delta xlC_{\dot{{\imath}},0,I} , respectively,

where  C_{\dot{{\imath}},0,I} is the phase velocity of linear intemal waves in the area I, on the assumption that the internal

waves propagate in shallow water. The phase velocity of linear internal waves in shallow water,  C_{i,0} , is

evaluated by

 C_{i,0}=\sqrt{(\rho_{2}-\rho_{1})gh_{1}h_{2}/(\rho_{2}h_{1}+\rho_{1}h_{2})} (11)

Shown in Fig. 4 is the interface profile of the incident minternaı solitary wave, given in the deep area I

for all the present cases, in comparison with the corresponding BO solution, where the ratio between wave

height and upper layer thickness in still water, alhı, is 0.1.

4. Internal waves propagating from deep to shallow regions

Figure 5 shows the interface profile at each time in Case 1‐O, where  h_{2}lh_{1}=8.0 in the shallow area III. The

intemaı wave shows disintegration over the continentaı shelf in the area III after passing the sıope, resulting

in two downward convex intemal waves.

In Fig. 6, the interface profile at  tC_{i,0,I}  lh=34.9 in Case 1‐A, where  h_{2}lh_{1}=4.0 in the shallow area III, is

compared with the theoretical solutions for the corresponding intemal solitary wave. According to the figure

for Case 1‐A, although the BO‐type downward convex internal wave is stable in the deep area I, the KdV‐

type downward convex wave appears in the shaııow area III.

Figure 7 shows the interface profile at  tC_{i,0,I}  lh=30.5 in Case ı‐B, where  h_{1}=h_{2} in the shallow area III.

In this case, the intemal wave shows instabiıity, ıeading to a long wave train.

Shown in Fig. 8 is the time variation of the interface profiıe in Case 1‐D, where  h_{2}lh_{1}=0.4 in the

shallow area III. Partial reflection of the internal wave occurs at the boundary between the areas II and III,
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Fig. 5. The time variation ofthe interface profile in Case 1‐O, where  h_{2}lh_{1}=8.0 in the shallow area III.
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Fig. 6. The interface profile at  tC_{\dot{{\imath}},0,I}lh=34.9 in Case 1‐A, where  h_{2}lh_{1}=4.0 in the shallow area III, in comparison
with the BO and  KdV solutions for the corresponding intemal solitary wave.
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Fig. 7. The interface profile at  tC_{\dot{{\imath}},0,I}lh=30.5 in Case 1‐B, where hı  = h2 in the shalıow area III.

owing to the change in slope gradient. The total length of the internal wave train increases as the waves

propagate.

Depicted in Fig. 9 is the interface profile at  tC_{\dot{{\imath}},0,I}lh=34.9 in Case 1‐C, where  h_{2}lh_{1}=0.5 in the shallow

area III, in comparison with the  KdV solution for the corresponding internal solitary wave. According to the
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Fig. 8. The time variation ofthe interface profile in Case 1‐D, where  h_{2}lh_{1}=0.4 in the shallow area III.
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Fig. 9. The interface profile at  tC_{i,0,I}lh=34.9 in Case 1‐C, where  h_{2}lh_{1}=0.5 in the shallow area III, in
comparison with the  KdV solution for the corresponding internal solitary wave.

figure, the BO‐type downward convex intemal wave in the deep area has changed to a  KdV ‐type upward

convex intemal wave in the shallow area, for the interface elevation exceeds the critical level over the slope.

The reversal of convex direction, i.e., convex flipping, of internal waves were shown in the numerical results

obtamined by Helfrich et aı. (1984), as welı as the field data from the observation by Orr & Mignerey (2003).

Figure 10 shows the relative energy, i.e., the ratios ofkinetic and potential energy to the total energy  E_{i},

in Case ı‐C, where h2lhı  =0.5 in the shallow area III. For instance,  E_{i,K,I+II} is the kinetic energy of internal

waves in both the deep area I, and the area II with the slope, while  E_{\dot{{\imath}},P,III} is the potentiaı energy of intemal

waves in the shallow area III. In Case 1‐C, the potential energy becomes larger than the kinetic energy for

the intemal waves in the shallow area III, aıthough the kinetic energy is slightıy ıarger than the potentiaı

energy for the incident intemal solitary wave in the deep area I.

5. Internal waves propagating over a mound

Intemal waves passing through a region over a mound, as shown in Fig. 3, have also been numerically

simulated: the lowest elevation of the interfaces at each location is shown in Fig. ıl. In Cases 1‐A and 2‐A,
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Fig. 10. The relative kinetic and potential energy, i.e.,  E_{\dot{{\imath}},K}lE_{i} and  E_{i,P}lE_{i} , respectiveıy, in Case ı‐C, where h2lhı
 =0.5 in the shallow area III;  E_{i} is the total energy of internal waves. For example,  E_{i,K,1+1I} denotes the
kinetic energy of internaı waves in both the areas I and II.
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Fig. 11. The distributions ofthe lowest elevation  \eta_{m\dot{{\imath}}n} ofthe interfaces in Cases 1‐A, 1‐B, and 1‐C, where  h_{2}lh_{1}=

 4.0,1.0 , and 0.5, respectiveıy, in the shallow area III shown in Fig. ı, as welı as Cases 2‐A, 2‐B, and 2‐
 C , where  h_{2}lh_{1}=4.0,1.0 , and 0.5, respectively, in the shallow area III shown in Fig. 2.

where the interface exists above the critical level also in the shallow area III, the ıowest elevation of wave‐

trough interface in Case 2‐A is higher than that in Case 1‐A at  xlh>25.0 , which means that the wave height

of the first internal wave decreases after its passing the shallow area III. Conversely, the lowest elevation of

the interfaces in Cases 2‐B and 2‐C is lower than that in Cases 1‐B and 1‐C, respectively, at  xlh>25.0.

6. Conclusions

The intemal waves propagating from the deep to shalıow, or the shallow to deep, areas in the two‐layer fluid

systems, were numerically simulated by solving the set of nonlinear equations, based on the variational
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principle in consideration of both the strong nonlinearity and strong dispersion of internal waves. When the

BO‐type downward convex internaı waves propagated into the shalıow areas, the convex direction of

interfaces in the shalıow areas, depended on the elevational relationship between the interface, and the

critical level, in the shallow area. In the cases where the elevation of the still‐water interface was below, or

equaı to, the criticaı ıeveı in the shaılow area, the disintegration of intemaı waves occurred remarkabıy,

leading to a long wave train. When the intemal wave travelled in the deeper area after passing the shallow

area, the wave height decreased when the interface eıevation is higher than the critical leveı also in the

shaııow area.
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