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Abstract

The linear stability of finite‐amplitude surface solitary waves with respect to transverse
perturbations (three‐dimensional perturbations) is studied on the basis of the Euler set of
equations. First, the linear stability to long‐wavelength transverse perturbations is
examined, and it is found that there exist transversely unstable surface soıitary waves for
the amplitude‐to‐depth ratio of over 0.713 (Kataoka& Tsutahara 2004). This critical ratio
is well below that (=0.781) for the longitudinal instability obtained by Tanaka (1986).
Next, the same transverse instability is examined numerically and we find that results are
consistent with the above analytical results in that the growth rates and the eigenfunctions
of growing disturbance modes agree well with those obtained by the theory (Kataoka
2010). Finalıy, time evolution of transversely distorted soıitary wave is simulated
numerically in order to give clear intuitive picture of unstable wave motion. In this report
we only treat the fmal topic on numerical simulation of a distorted solitary wave since the
first two topics were already published.

1. INTRODUCTION

We carry out numerical simulation of a surface solitary wave in order to demonstrate the existence of
transversely unstable surface solitary waves, which was analytically proved by Kataoka & Tsutahara
(2004). Transverse stability means a stability to disturbances that depend not only on the main wave
travelling direction, but also on its transverse direction. In contrast, longitudinal stability is a stability
to disturbances that depend onıy on the main wave travelling direction. Choosing the solitary wave
solution whose crest is distorted periodically in the transverse direction as the initial condition, we
simulate its time evolution numerically on the basis of the three‐dimensional Euler equations. It is
then confirmed that there really exist transversely unstable solitary waves which are longitudinally
stable.

As for the linear stability analysis, Tanaka (1986) first examined the longitudinal stability on the
basis of the Euler equations, and discovered that the longitudinal instability occurs for the surface
solitary waves whose maximum surface dispıacement is greater than 0.781 times the undisturbed
depth of the fluid. Tanaka et al. (1987) also conducted numerical simulation to study the time
development of a surface solitary wave disturbed by a longitudinal disturbance, and found that the
growth rate of sufficiently small disturbance agrees well with that of the linear stability anaıysis. The
more precise linear stabiıity analysis was carried out later by Longuet‐Higgins & Tanaka (1997).
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The transverse stability of surface solitary waves was examined by Kataoka & Tsutahara (2004).
The criterion of transverse instability is derived analytically, and it is found that the surface solitary
waves are transversely unstable if the maximum surface displacement is greater than 0.713 times the
undisturbed depth of the fluid. This critical amplitude is well below that  (=0.781) for the longitudinal
instability. This transverse instability is, however, proved only for the case where the transverse
wavelength of a disturbance is very long. It is, therefore, desired that this transverse instability is
confirmed by numerical simulation when a disturbance has some finite transverse wavelength. It
would be also useful to show how the unstable solitary wave evolves as time elapses.

In the present report, therefore, we will show some numerical results on time evolution of a
transversely distorted surface solitary wave, and demonstrate that there really exist transversely
unstable surface solitary wave which is  2D stable. It is also shown that there is a high transverse
wavenumber cutoff for this transverse instability.

2. PROBLEM AND BASIC EQUATIONS

Consider the three‐dimensional irrotational flow of an incompressible ideal fluid of undisturbed
depth  D with free surface under uniform acceleration due to gravity  g (Fig. ı). The effect of
surface tension is neglected. In what follows, all variables are non‐dimensionalized using  g and  D.

Introducing the Cartesian coordinates  x,  y,  z with the  z ‐axis pointed vertically upward and its
origin placed on the undisturbed free surface, we obtain the following set of non‐dimensional
governing equations for the flow:

 \nabla^{2}\phi=0 for  -1<z<\eta , (1)

  \frac{\partial\phi}{\partial z}=0 at  z=-1 , (2)

  \frac{\partial\eta}{\partial t}+\frac{\partial\phi}{\partial x}
\frac{\partial\eta}{\partial x}+\frac{\partial\phi\partial\eta}{\partial 
y\partial y}=\frac{\partial\phi}{\partial z} at   z=\eta , (3)

  \frac{\partial\phi}{\partial t}+\eta+\frac{1}{2}[(\frac{\partial\emptyset}
{\partial x})^{2}+(\frac{\partial\phi}{\Phi})^{2}+(\frac{\partial\phi}{\partial 
z})^{2}]=0 at   z=\eta , (4)

Fig. ı Geometry.
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where

  \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\Phi^{2}}+
\frac{\partial^{2}}{\partial z^{2}} , (5)

and  \phi(x,y,z,t) is the velocity potential,  \eta(x,y,t) is the vertical dispıacement of the free surface,
and  t is the time.

Let us first consider a steady solution of(1)‐(4) in the following form:

 \{_{\eta=\eta_{s}(x)}^{\phi=-vx+\Phi_{s}(x,z)} , (6)

where  \partial\Phi_{s}/\partial x ,  \partial\Phi_{s}/\partial z , and  \eta_{s} approach zero as   xarrow\pm\infty , and  v is a positive real parameter.

This soıution represents a steady propagation of localized wave against a umiform stream of constant

velocity  -v in the  x ‐direction. We call this solution a solitary wave solution. The existence of such

a solitary wave solution has already been confirmed numerically. The solution is characterized by a

single parameter  v , but for a cıear intuitive picture of wave form, we here use another parameter, the

dimensionless maximum surface displacement

  \eta_{\max}\equiv\max|\eta_{s}| . (7)

The solitary wave solution (6) is known to exist for  0<\eta_{\max}<0.833 , and stable with respect to

two‐dimensional disturbances (which depend on  x and z) for  0<\eta_{\max}<0.781 (Tanaka 1986).

This solitary wave solution can be obtained numerically by the method described in Tanaka (1986).

Here we will numerically simulate time evolution of the above solitary wave when its crest is

distorted periodically with respect to  y . The corresponding initial condition is specifically given by

 \{_{\eta=\eta_{s}(x+P_{\max}\cos\frac{\eta)}{Y_{\max}})}^{\phi=-vx+\Phi_{s}(x+
P_{\max}\cos\frac{\eta)}{Y_{\max}},z)_{at}},t=0 , (8)

where  P_{\max} and  Y_{\max} are given constants representing amplitude and transverse wavelength of a

disturbance, respectively. From symmetry, we can impose an impermeable condition at  y=0 and

 Y_{\max} , i.e.

  \frac{\partial\phi}{\partial y}=0 at  y=0,Y_{\max} . (9)

Thus, the problem is reduced to an initial‐boundary value problem of (1)‐(4) under the initial

condition (8) and the boundary condition (9) at  y=0 and  Y_{\max} . The parameters are  \eta_{\max} ,  P_{\max},
and  Y_{\max} . The numerical method to solve this problem is described in Section 3.
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3. NUMERICAL METHOD

The boundary conditions (3) and (4) at the surface   z=\eta can be reformulated as follows:

  \frac{\partial\eta}{\partial t}-v\eta_{x}=\tilde{\phi_{n}}\sqrt{1+\eta_{x}^{2}
+\eta_{y}^{2}} at   z=\eta , (10)

  \frac{\partial\tilde{\phi}}{\partial t}-v\tilde{\phi_{x}}+\eta-
\frac{\tilde{\phi_{n}}^{2}}{2}-\frac{\tilde{\phi_{x}}\eta_{x}+\tilde{\phi_{y}}
\eta_{y}}{\sqrt{1+\eta_{x}^{2}+\eta_{y}^{2}}}\tilde{\phi_{n}}+
\frac{(\tilde{\phi_{x}}\eta_{y}-\tilde{\phi_{y}}\eta_{x}Y+\tilde{\phi_{x}}^{2}+
\tilde{\phi_{y}}^{2}}{2(1+\eta_{X}^{2}+\eta_{y}^{2})}=0 at   z=\eta , (11)

where  \tilde{\phi}(x,y,t) is the velocity potential relative to the uniform stream evaluated at   z=\eta , or

 \tilde{\phi}(x,y,t)=\phi(x,y,\eta,t)+vx , and the subscripts  x and  y denote the partiaı differentiation with

respect to  x and  y , respectively (e.g.  \overline{\phi_{x}}\equiv\partial\overline{\emptyset}/\partial x=
\partial\phi/\partial x+v+(\partial\emptyset/\partial z)(\partial\eta/\partial 
x) ).  \tilde{\phi_{n}} is the

derivative upward normal to the surface of  \phi+vx evaluated at  z=\eta.

Using the Green’s formulation, we can obtain  \phi_{n} at the free surface in terms of  \phi N as the

solution of the following integral equation:

  \iint_{al1S}(\tilde{\phi}'\frac{\partial G}{\partial n'}-\tilde{\phi_{n}}'G)
dS'=-2z\tilde{\phi} , (12)

where the functions with a prime denote those at  (x',y') .  S represents the free surface and  dS'

the corresponding infinitesimal element which includes  (x',y') . The function  G is Green’s

function of the three‐dimensional Laplace equation (1) that satisfies  \nabla^{2}G=-4\pi\delta(x-x',y-y',z-z')
and  \partial Gl\partial z'=0 at  z'=-1 , where  \delta is the Dirac delta function. It is specificalıy given by

 G(x,y,z,x',y',z')= \frac{1}{r}+\frac{1}{\overline{r}} , (13)

where

 r=\sqrt{(x-x')^{2}+(y-y')^{2}+(z-z')^{2}},\overline{r}=\sqrt{(x-x')^{2}+(y-y')^
{2}+(z+z'+2)^{2}} . (14)

The set of equations for  \emptyset N and  \eta is given by (10)‐(12).

The derivatives of  \phi N and  \eta with respect to  x and  y in (10)‐(12) are evaluated by the

eighth‐order finite‐difference method.  \phi N is obtained from the boundary integral equation (12) in

which the integral is evaluated by the boundary element method (see Grilli et al. (2001) for details).

The computational domain is  -30<x<20,  0<y<Y_{\max} . The number of grids is 200 (in the  x

direction)  \cross 32 (in the  y direction). The grid points in the  x direction are concentrated toward
 x=0 to capture the motion of the solitary wave with higher accuracy. In the  y direction, these are

equally distributed. We apply a uniform‐stream condition at the upstream boundary  x=20 , and the

radiation condition (Pearson 1974) at the downstream boundary  x=-30 , which is expressed as

  \frac{\partial\tilde{\phi}}{\partial t}-v\frac{\partial\tilde{\phi}}{\partial 
x}=0, \frac{\partial\eta}{\partial t}-v\frac{\partial\eta}{\partial x}=0 . (15)

Small disturbances are radiated downstream from the solitary wave due to its distortion and arrive at
the downstream boundary. So we need to evaluate the effect of this artificial open boundary. Indeed
we have tested several cases where this open boundary is located much farther downstream and no
detectable differences were found over the region  -20<x<20.
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4. NUMERICAL RESULTS

The present problem (1)‐  (4), (8) , and (9) is characterized by three parameters: wave amplitude of the

solitary wave  \eta_{\max} , amplitude of a disturbance  P_{\max} , and half wavelength of a disturbance in the  y

direction  Y_{\max} (Fig. 2). In order to demonstrate the existence of transversely unstable solitary waves,

which was proved analytically when disturbances are infinitesimal (Kataoka & Tsutahara 2004), we

here put the amplitude of the disturbance at some small values. We conducted calculation of

 P_{\max}=0.01 , 0.02, and 0.03, and the qualitative results of wave behavior are independent of  P_{\max}.
Here only the results for  P_{\max}=0.03 are presented.

Figure 3 shows time evolution of surface profiles at a particular cross section  y=0 when

 \eta_{m\mathfrak{N}}=0.76 for three different values of  Y_{m\mathfrak{N}}=10,20 and 30. For all cases, surface of a distorted

solitary wave is subject to an oscillatory motion with respect to both  x and  z ‐axes. That is, the

crest point of a distorted solitary wave traces an ellipse in the clockwise sense. After one cycle ofthis

elliptic motion, in the next cycle, the crest point again traces an ellipse, but with some difference in

its radius. Each figure shows the surface profile near the crest of the solitary wave on the cross

section  y=0 . The dashed line is the initial profile while the solid (red and blue) lines are those in

the first (red) and second (blue) cycles, respectively. It is obvious from Fig.3 (a) that the maximum

wave height in the second cycle is smaller than that in the first cycle. Figure 3 (b) shows, however,

that the maximum wave height is almost unchanged in the first and second cycles, and figure 3 (c)

clearly indicates that the maximum height is amplified in the second cycle. Thus, the solitary wave

for  \eta_{\max}=0.76 is unstable to transverse perturbations oflong half wavelength  Y_{m\mathfrak{N}}>20.

For the other values of  \eta_{\max} , we find that the solitary wave is neutrally stable at around

 Y_{\max}=30 for  \eta_{m\mathfrak{N}}=0.74 and at  Y_{\max}=15 for  \eta_{\max}=0.78 (figures are not shown). Let us now

evaluate the transverse stability of the solitary wave by using the maximum‐height difference at two

extreme times of the same cycle. Specifically, if the ratio of the difference in the second cycle to that

ion

Fig. 2 Initial condition.
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Fig. 3 Time deveıopment ofa disturbed soıitary wave for  \eta_{m\Re}=0.76 and  P_{ma}=0.03:(a)Y_{\max}=10 ;

(b)  y_{\max}=20;(c)Y_{mu}=30.

Table 1 Stability of solitary waves  (\eta_{\max}=0.74,0.76,0.78) to perturbations of transverse half wavelength
 Y_{\max}=10,20,30 , and 40.
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in the first cycle is between 0.95 and 1.05, the solitary wave is defined to be neutrally stable. If it is

larger than 1.05, the wave is defined as unstable and if smaller than 0.95, stable. The stability results

based on this rule are arranged in Table 1. We can clearly see that there is a general tendency that the

solitary wave is more unstable as  \eta_{\max} and  Y_{\max} become larger.

5. CONCLUDING REMARKS

Time evolution of transversely distorted surface solitary wave is numerically simulated on the basis

of the three‐dimensional Euler equations. It is demonstrated that there exist transversely unstable

surface solitary waves that are longitudinally stable for  0.74\leq\eta_{\max}\leq 0.78 . Specifically, it is

confirmed that the initial distortion of the crest in the transverse direction increases as time elapses

for  Y_{\max}>30 ,  Y_{\max}>20 , and  Y_{\max}>15 when  \eta_{\max}=0.74 , 0.76, and 0.78, respectively (results are

shown here only for  \eta_{mae}=0.76 ). These results indicate that there is a short‐wavelength cutoff to the

transverse instability.

REFERENCES

Grilli, S.T., Guyenne, P., and Dias, F., “A fully non‐linear model for three‐dimensional overturning
waves over an arbitrary bottom”, Intl J. Numer. Meth. Fluids 35 (2001), pp.829‐867.

Kataoka, T., “Transverse instability of surface solitary waves. Part 2. Numerical linear stability
analysis”, J. Fluid Mech. 657 (2010), pp. 126‐170.

Kataoka, T. and Tsutahara, M., “Transverse instability of surface solitary waves”, J. Fluid Mech. 512
(2004), pp.211‐221.

Longuet‐Higgins, M. and Tanaka, M., “On the crest instabilities of steep surface waves”, J. Fluid
Mech. 336 (1997), pp.51‐68.

Pearson, R.A., “Consistent boundary conditions for numerical models of systems that admit dispersive
waves”, J. Atmos. Sci. 31 (1974) p.1481.

Tanaka, M., “The stability of solitary waves”, Phys. Fluids 29 (1986), pp.650‐655.

Tanaka, M., Dold, J.W., Lewy, M., and Peregrine, D. H., “Instability and breaking of a solitary wave”,
J. Fluid Mech. 185 (1987), pp.235‐248.

76


