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1 Introduction

Freak wave has been a hot topic in the wave community for the last two decades. In
this opportunity celebrating Prof. Mitsuhiro Tanaka’s retirement in March of 2019, I
would like to present a brief overview ofwhere everything started, and where we are
after 20 years of extensive research on freak waves. In the course, I will highlight the
contributions of Prof. Tanaka, which are not as welı recognized in the community as
they deserve to be. I would also like to convey a message that the significance of
modulational instability in the formation of freak waves in the ocean is notjust about the
occurrence probability but should include analysis ofthe wave geometry and kinematics,
as well as its association with meteorological conditions.

2 Freak wave research: where everything started

The wave community recognizes the paper by Trulsen and Dysthe (1997) presented at
the 21^{st} Symposium on Navaı Hydrodynamics as the first presenting the possibility of
modulational instability as a cause of freak wave generation in the ocean. They state
that the “basic assumption is that these waves can be produced by nonlinear self‐
modulation of a slowly modulated wave train,” and that “field observations have been
presented, suggesting that the wave conditions leading to freak waves can be described
as a narrow‐banded weakly nonıinear wave trains.” This concept is further elaborated in
Dysthe and Truısen (1999) in which they point out that analytical solution to the Non‐
Linear Schrodinger equation (NLS hereafter) such as the Ma breather and the Peregrine
solutions may provide “useful and simple analyticaı models for ‘freak’ wave events.”
Indeed, the NLS became an apparatus to produce a wide variety of freak’ looking waves
that “appear from nowhere and disappear without a trace” (Akhmediev et al. 2009).

The expression presented by Akhmediev captures the most important characteristics of
the freak waves, that is its isolation from the surrounding waves in both space and time.
However, many studies have focused on its statistical properties rather than its
appearance. Freak waves are statisticalıy rare, as depicted by the variations of its name;
rogue wave, mad dog wave, abnormal wave, and extreme wave. The question is how
rare is this wave, and will nonlinearity enhance its occurrence probability? The role of
the modulationaı instability or the quasi‐resonance is to slightly modify the Gaussian
statistics ofrandom wave field and thereby enhance the tail ofthe distributions ofwave
height and crest height. The nonlinear modification of the higher‐order moments ofthe
surface elevation was derived by Yuen and Lake in ı982 based on the Zakharov’s
equation (Zakharov 1968). Janssen (2003) recognized its significance in expıaining the
freak wave occurrence and shown that as the spectral bandwidth narrows, the Kurtosis
increases. The key was the balance of the nonlinearity and dispersion, and the parameter
relating their contributions was coined the Benjamin‐Feir Index (NFI) in recognition to
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the first work by Benjamin and Feir (1967) on the instability ofthe Stokes wave.
Janssen (2003) had shown that Kurtosis increases with BFI (Fig. lleft). Onorato et al.
(2004) experimentaıly showed that the tail ofthe exceedance probability of a random
unidirectional wave field indeed enhances with the BFI (Fig. 1 right). This is because
the slight deviation ofthe surface elevation distribution from Gaussian modifies the
probabiıity density function in the sense of Gram‐Charrier expansion (Mori and Janssen
2006). As a result ofthese researches, the evaluation and understanding ofkurtosis of
the random wave field became the central issue of freak wave research. In retrospect,
this probably deterred the focus ofthe freak wave research from the understanding and
detection of its unusual appearance as depicted by Akhmediev et al. (2009).
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Figure ı: (left) Kurtosis plotted against the BFI (Benjamin‐Feir Index) for random
unidirectionaı wave field (reproduced from Janssen 2003); (right) Exceedance probability
density ofwave height for different BFIs (reproduced from Onorato et al. 2004).

3 Freak wave research: where we are

Notwithstanding the numerous researches demonstrating the increase ofKurtosis as the
spectrum narrows, in the last several years, several papers were presented denying the
relevance ofmodulational instability in the realistic ocean waves. Trulsen et aı. (20ı5)
analyzing the seas state during the Prestige accident, stated that “the possible nonlinear
interaction between the two crossing wave system practically did not modify neither the
kurtosis nor the largest crest elevation implying that modulational instabiltiy is absent in
case ofthe mixed sea condition. The studies ofthe Andrea wave in the North Sea

(Magnusson and Donelan 2015) showed that “the Benjamin‐Feir instability may not have
been a strong contributing factor to the development of rogue waves” (Dias et al. 2015) as
welı, and the “rogue waves are likely to be rare occurrences ofweakly nonıinear random
seas” (Fedele et al. 2016). Investigations of observed wave records also show that “random
superposition of nonlinear waves is sufficient to explain the observations of individual rogue
waves” (Gemmrich and Thomson 2017), and “the crest enhancement due to modulational
instabiıity has been shown‐theoreticaıly, numerically and observationally‐to be minor”
(Donelan and Magnusson 2017).

The common technique used is the combination ofthe third‐generation wave model and
the Higher‐Order Spectral simulation (HOS, West et al. 1987). In the context of freak wave
study, Toffoli et al. (2008, 2010) and Sergeeva and Slunyaev (2013) are recognized as the
first studies to use HOS simulation to elucidate the phase‐resolved statistics based on a given
wave spectrum. In the aforementioned studies, known large wave events such as the Andrea
storm, Prestige accident case, Draupner wave, and Killard wave, were investigated based on
the “realistic” wave spectrum. The aim was to fmd out how large the kurtosis can be under
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realistic sea condition, and the results are that the Kurtosis remained small (Table 1). That is
because the directional spreading suppresses the effect of quasi‐resonance, discovered
numericaıly and theoreticaıly by controlled experiments systematically changing the
directional spreading (Socquet‐Juglard et al. 2005, Waseda 2006, Waseda et al. 2009,
Onorato et al.  2009ab , Mori and Janssen 2011), Fig.2.

The work ofProfessor Tanaka on HOS simuıation ofthe directional wave field is welı

known discovering that the Hasselman‐type nonlinear transfer function can be attained only
after a short period starting from the initialıy ıinear wave field (Tanaka 2001). However, his
work on the freak wave using HOS is less known to the community. In his RIAM report
(Tanaka 2006), he had conducted simulations of a wave field initialized with JONSWAP
frequency spectrum and cosine to the power of  n directional spreading. He recognized that
while Kurtosis increases with the total energy (steepness), the occurrence probability of
freak waves remain the same (Fig. 3). That is not surprising as his simulations were
conducted with a broad directional spreading ( n=2 and 4); the excess Kurtosis remained less
than 0.1 while the uni‐drectional case was around 0.5. It is interesting, however, that this
work precedes the various works conducting a systematic study on the directional spreading
to the kurtosis, and that he had already casted doubt on the validity ofthe parameterization
ofthe occurrence probability of freak waves by the Kurtosis.

Table 1: Summary the estimated kurtosis from HOS simulation, and the depth condition of
the historical freak waves.
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Figure 2: Kurtosis (k4) plotted against the directional spreading  (1/A) . Adapted from
Waseda et al. (2019) and modified.
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Figure 3: (left) Ratio freak waves plotted against excess kurtosis, adapted and altered from
Tanaka (2006); (right) A snapshot ofthe surface elevation from the HOS simulation
(reporoduced from Tanaka 2005).

Based on these numerical simulations, Professor Tanaka had investigated the relation
between freak wave occurrence probability and nonlinearity, and conjectured that the
generation of freak wave is associated with a formation of a wave group (Fig. 3 right).
Wave group can linearıy form when the spectrum is narrow, but when high waves are
generated due to random superposition, the nonlinearity kicks in and enhance the
development ofthe wave group. The nonlinear coherent wave groups will sustain much
longer than a ıinearly superposed wave groups.

During the  2lst symposium on Naval Hydrodynamics in 1997, when Trulsen and Dysthe
first presented the idea of moduıationaı instabiıity as a cause ofthe freak wave generation,
Stansberg raised a question: One has reason to believe that increased spectral bandwidth
as well as multidirectionality will reduce the growth of nonlinear self‐modulations. This has,
for example, been experimentally demonstrated in Stansberg (1995), where these effects
have been systematicaıly investigated. It may possibly be explained by the reduced “lifetime”
ofwave groups.” In retrospect, the foresight ofthis statement is rather fascinating. First, he
had pointed out correctly that the directional spread will suppress the chances of
modulational instability to occur (see Fig. 4). Second, he had related that to the reduction of
the “lifetime” ofthe wave groups. This latter point will be elaborated in our study.

Time Isl  r_{me} lsl

Fig. I. Wave elevation from bichromatic test records.
  A=long\cdotcrested.  B=short‐crested ( bi‐directional).

Figure 4: An evidence ofthe suppression ofmodulational instability by increased directional
spread, reproduced from Stansberg in 1995.
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4 Freak wave research: where we should head

The outstanding questions are:
Why wouldn’t the kurtosis increase in directional seas?
Is there a better indicator representing the significance ofnonlinearity?
How narrow can the directional spectrum be in the ocean?

In answer to these questions, we consider that the following points need to be considered:
Bound (Canonical) and Dynamic kurtosis;
Lifetime and the freak wave geometry;
Spectral evolution and its meteorological causes.

The question is whether the third order nonlinear wave interaction is relevant in enhancing
the taiı ofthe wave height and crest distributions or not. The estimated kurtosis from
different studies summarized in Table ı shows a marginal change from the Gaussian state.
These values are considered too small to modify the distribution of the wave height,

 P(H)=P_{Rayieigh}(H)\cross(1+C_{4}f(H)) , (1)

where  \kappa_{40} is the excess kurtosis or the fourth cumulant. The form of  f(H) are presented by
Tayfun and Fedele (2007), Mori and Janssen (2006) and Mori and Yasuda (2002) and others
in different forms. In the so‐called Tayfun (1980) or Tayfun‐Fedeıe (2007) distribution, the
wave height shouıd be corrected by the steepness. The fact that the  C_{4} is negligible means
that the second order nonlinearity is sufficient to explain the probability distribution of ocean
waves, therefore, the Tayfun distribution is suitable. This is the basis ofthe conjecture that
the “modulational instability” is not playing a role in the generation ofthe freak waves.

We cast doubt on this conjecture. The total kurtosis  C_{4} can be separated into canonicaı and
dynamic components, Janssen (2009),

 C_{4}=C_{4} canonical  +C_{4}^{dynamic} . (2)

While  C_{4}^{canonical} is always positive,  C_{4}^{dynamic} can take a negative value. Therefore, a small
value of  C_{4} does not necessarily imply that  C_{4}^{dynamic} is negligible. The canonical kurtosis
accounts for the second order nonıinearity or the Stokes correction. The dynamic kurtosis is a
consequence ofthe moduıational instability and was derived by Janssen (2003). He had
shown numerically that the kurtosis increases from the initial state due to modulational
instabiıity, and was confirmed experimentally by Onorato et al. (2004). Unless the spectrum
largely changes, the  C_{4}^{canonical} remains unchanged while  C_{4}^{dynamic} changes at the dynamic
time scale ( 0(100) periods).

Two freak waves were observed at the deep water mooring station JKEO (JAMSTEC
Kuroshio Extension Observatory) in 2009 (Waseda et al. 2012, 2015). Separated by only a
day, the two events occur under completely different sea states, one unidirectional and narrow
spectrum (JKEO‐Narrow) and other bimodal and broad spectrum (JKEO‐Broad). Based on
both the observed directionaı spectra and the third‐generation model estimates, the HOS
simulations were conducted (Fujimoto et al. 2018). Following the usual procedure, the
kurtosis was estimated from the 100 ensembles, totaling 5000 wave periods. In case ofthe
JKEO‐Narrow, the totaı kurtosis increased gradually in 50 wave periods, while the total
kurtosis remained nearly unchanged in case ofthe JKEO‐Broad (Fig. 5). To elucidate the
bound contribution and the dynamic contribution of the nonlinearity, the HOS simulations
were conducted with  M=2 and  M=3 settings where  M represents the truncation order of the
nonlinearity. The exact resonance of four waves occur at  M=3 only.

Onorato et al. (2007) have shown that the Hamiltonian dynamical equation is equivalent to
the HOS formulation. It was shown that by Fourier transforming the  M=3 HOS equation, the
third order evolution equation ofthe free surface eıevation and the surface velocity potentials
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derived from the Hamiltonian formalism are re‐derived. Obviously, the quadratic interaction
of free waves occurs at the third order. Then, it is natural to consider that the  M=2 HOS
solution contains only the three wave interaction. However, the Hamiltonian dynamical
equation without applying the canonical transformation contains interaction of free and bound
waves, thereby allowing interaction ofpseudo‐four‐waves at  M=2 . Consequently, the
kurtosis obtained at  M=2 does not only contain the canonical Kurtosis as derived by Janssen
(2009) but includes contribution from the pseudo‐four‐wave interaction. The reduced gravity
equation (e.g. Krasitskii 1994) expresses the interaction among four free waves excluding the
contributions of such contamination by bound waves:

 i \frac{\partial a_{1}}{\partial t}=\omega_{1}a_{1}+\int T_{1,2,3,4}a_{2}^{*}a_
{3}a_{4}\delta_{1+2-3-4}dk_{123} . (3)

This is because the bound contributions are incorporated in the interaction coefficient:

 T_{1,2,3,4}=W_{1234}^{(2)}+f(V^{(-)}, V^{(+)}) . (4)

The first term  W_{1234}^{(2)} is called the direct interaction while  f(V^{(-)}, V^{(+)}) is called the virtual‐

state interaction (Janssen 2009). The former appears only at  M=3 HOS simulation, but the
latter appears at  M=2 HOS simulation. As such, the total kurtosis from the  M=2 HOS
simulation is contaminated by the virtual‐state interaction. However, the difference ofthe
 M=3 and the  M=2 kurtoses is the dynamical kurtosis  C_{4}^{dynamic}.

The total kurtoses were evaluated from the HOS simulations ofthe JKEO‐Narrow and the

JKEO‐Broad cases (Fujimoto et al. 20ı8). The  C_{4} tends to increase in the case ofJKEO‐
Narrow but remains constant for the JKEO‐Broad case (Fig. 5). By taking the difference of
 M=3 and  M=2 cases, the  C_{4}^{dynamic} is evaıuated. For both cases, the  C_{4}^{dynamic} is negative.
The  c_{4}^{aynamic} tends to increase when the directional spread is narrow (JKEO‐Narrow case)
but remains unchanged otherwise. That means that the modulational instability is taking
place when the directionaı spread is small. This fact can easiıy be dismissed ifonıy the total
kurtosis is studied. Of course, the value ofthe total kurtosis remains small and therefore the
alteration of the probability density (1) will be minor. This is the reason why the presence of
nonıinear interaction at the third order was dismissed in most other studies. The totaı kurtosis

is not the best indicator to identify the relevance ofthe nonlinear interaction.

JKEO‐Narrow
0.07  0.

0.0  0.

0.0  0.
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Figure 5: Evolution ofthe total kurtosis for the JKEO‐Narrow case (left) and the JKEO‐Broad
case (right). The thin solid lines indicate the  M=3 results and the dashed lines indicate the
 M=2 resuıts. The shaded region indicates the standard deviation ofthe ensembıe average.
Adapted from Fujimoto et aı. (20ı8) and annotated.
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Two alternative indices are suggested in Fujimoto et al. (2018). First is the life time ofthe
coherent wave groups. The wave groups that contain freak waves are identified in the HOS
simulation. For the JKEO‐Narrow case, relatively long‐lived coherent wave groups are
identified (Fig. 6 left). On the other hand, the life‐time ofthe wave groups are much shorter
in the case ofJKEO‐Broad and those groups are scattered in the space‐time domain.
Therefore, the probability density function ofthe life‐time ofthe freak wave groups is much
enhanced at the tail ofthe distribution when the directional spreading is narrow. Random
superposition may explain the generation ofthe short‐time wave groups in the case ofbroad
spectrum, but when the directional spreading is narrow, the wave groups become more
coherent and thereby the lifetime becomes longer. The presence ofthe wave group in a
random directional wave field was noticed by Tanaka (2005) and Stansberg have pointed out
that the life time ofthe wave group will reduce as the directional spread broadens. Indeed,
the investigations ofthe two observed freak wave cases reveaıed that these hypotheses are
correct.

These coherent wave groups are localized in the space‐time domain. Although the wave
spectrum is directionally spread, evolution of each individuaı wave group bares the
characteristic ofthe solution ofthe NLS. Lo and Mei (1987) investigated the evolution of
wave groups with Dysthe’s equation (Dysthe 1979) and showed that the wave crest deforms
and becomes asymmetric. The shape ofthe freak wave, therefore, is an indication that the
modulational instability is taking place. The averaged shape ofthe freak waves ofthe JKEO‐
Narrow and JKEO‐Broad are compared in Fig. 7 (Fujimoto et al. 2018). Apparently, the
front trough is shallower than the rear trough in case of JKEO‐Broad, while the JKEO‐Broad
case seems more symmetric. The front‐rear asymmetry is one ofthe characteristics ofthe
waves in a coherent nonıinear wave group (Clamond et al 2006). It is quite interesting to see
how the findings from the uni‐directional modulated wave train applies to the directional
waves in the ocean. And what is more profound is that this asymmetry appears only when the
directionaı spread was narrow. This fact is closely related to the evolution ofwaves
described by the envelope equations (NLS, Dysthe etc.) and is pronounced when the
directional spread is narrow. The asymmetry was not as strongly affected by the lifetime. As
a final remark, the short lifetime freak waves possibly due to random superposition and the
long lifetime freak waves possibly due to nonlinear focusing coexist and their distribution
depends on the spectral broadness.
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Figure 6: Freak wave groups identified in the HOS simulation for the JKEO‐Narrow case
(left) and the JKEO‐Broad case (right). Coıor indicates indices assigned to each freak wave
group. Reproduced from Fujimoto et al. (2018).
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Figure 7: Side views of average freak wave shapes  \eta\overline{(}x) for JKEO‐Narrow (upper) and
JKEO‐Broad (lower) ensembıe HOS simulation results. The propagation directions are
rotated such that the mean wave directions are from left to right. Left and right columns
correspond to long‐lifetime and short‐lifetime freak waves, respectively. Figures are adapted
from Fujimoto et al. (2018) and modified.

It is clear that modulational instability plays an important role when the directional
distribution is narrow. Then the question is how often such directionally confined spectra are
realized in the ocean. During the marine accident cases near Japan, hindcast analyses
revealed that the directional spectrum narrowed preconditioned by different meteorologicaı
causes. One ofthe most dynamicalıy interesting case was the nonlinear interaction ofthe
swell system and windsea, such that the swell system grew at an expense ofthe energy ofthe
windsea propagating at an angle (Tamura et aı. 2009). Another case was related to the
running fetch condition ofthe gaıe system (Waseda et al. 2012) and others were reıated to a
variety ofmeteorological conditions (Waseda et al. 2014). A systematic study of an idealized
typhoon was conducted by Mori (2012) and showed that certain quadrant of the typhoon
affected sea resulted in a directionally narrow spectrum.

Here we give an example of another violent weather system caıled the Explosive Cyclone
(EC) or the Bomb Cyclone. The EC is a midlatitude cyclone that grow rapidıy due to
excessive heat and moisture flux, typically at a rate higher than 24  hPa decrease within 24
hours. The 21 year hindcast simuıation (TodaiWW3, Waseda et al. 2016, Webb et al. 2016)
was analyzed identifying typical as well as composited wave systems under EC (Kita et al.
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2018). The presence of fronts and the rapid translation speed distinguishes the wave
development from that under influence oftyphoon. Notably, a delay in the growth ofthe
windsea with respect to the minimum pressure, and two isolated areas where the directional
spectrum narrow. The spatial distributions ofthe significant wave height, wind speed,
directional spreading and frequency bandwidth are depicted in Fig. 8 for one ofthe strongest
ECs. The directionalıy narrow and steep wave systems are realized in two ıocations, Zone  A

and  B as indicated in the inserted schematic. Zone A is located behind the cold front

associated with the dry conveyor beıt wind system. Whereas zone  B is located along the
warm front associated with the cold conveyer belt wind system. These two locations are
robust as they commonly exist within a large number ofECs studied in Kita et al. (2018). It
is of interest to see ifthe occurrence probability ofthe freak waves increase at these locations.
An attempt was made comparing the observed wave records with the hindcasted wave field in
the North Sea revealing that the occurrence probabiıity enhances when the directional
spectrum narrows (Waseda et al. 2012). Further study is warranted.
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Figure 8: Snapshots of ocean wave and atmosphere fields at 6:00 UTC on January 15th, 2013.
Color scales are used to display (a)  H_{-}s, (b) U‐ı0, (c)  0_{-}\theta,  (d)Q_{-}p . White contours in all
diagrams show SLP. The inserted schematic in the left illustrates ocean waves under EC
conditions at most mature development stage. Nomenclature is provided in Kita et al. (2018)
where these images are adapted from.

5 Concluding remark

In the last  20years, freak wave research involved researchers from the oceanography,
engineering and physics communities and evoıved into an interdisciplinary research subject.
As an outcome, oiı and gas industry has now incorporated the “freak wave” conditions in
their design criterion and the classification society has now started to consider incorporating
the “freak wave” condition as well. In the meantime, physical community has ıargely shifted
their interest to the study of optical rogue wave that is a much cleaner and controlled media to
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study rogue wave generation mechanism in the context ofNLS. So, what have we learned
about freak waves in the ocean?

Unfortunately, the community is now largely split into two groups; one that considers linear
superposition ofrandom waves as the main or the only mechanism, and the other that
considers modulational instability is important. This is a rather unfortunate situation as the
issue is not a black or white question. Some freak waves are generated due to random
focusing and some others are generated due to modulational instability. It seems that a study
based on a selected observation cannot prove anything.

Our opinion is summarized below:
a) Relatively smalı occurrence probabiıity of freak waves does not necessarily imply lack

of nonlinear process in the formation of freak waves
b) For any sea state, freak waves due to modulational instability and linear focusing coexist
c) Spectral narrowing occurs under certain meteorological condition

It seems that there is still a considerable lack of observational evidence as to prove what
mechanism is responsible for the freak wave generation in the real ocean. Study of an
extensive wave records such as Christou and Evans (2014) should be revisited and the
conditionaı analysis similar to the one conducted by Waseda et al. (2012) should be applied.
The spatio‐temporal measurements such as Benetazzo et al. (2015) should be revisited as well
extending its capability to visualize a much broader area containing the wave group. And last
but not least, the directional spectral estimate of both by the third generation wave model and
the in‐situ and satellite observations should be revisited as they both tend to show a broader
spectral peak which is crucial in understanding the dynamics of freak wave generation.
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