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SEVERAL MODELS FOR WAVE‐STRUCTURE INTERACTIONS

D. LANNES

ABSTRACT. We present in this note two mathematical problems related to the
study of floating objects. In the first one, the fluid is described through the
one‐dimensional nonlinear shallow water equations; the main difficulty is to
solve the free boundary problem that consists in finding the location of the
contact points between the surface of the water and the floating object. In
the second one, the lateral sides of the object are assumed to be vertical, so
that that the coordinates of the contact points are known, but we consider
a fluid described by a Boussinesq model. The problem can be reduced to a
transmission problem and the presence of the dispersive terms requires the
development of new tools. We also describe the main points of the analysis
and refer to [9] and [4] respectively for full details.

1. INTRODUCTION

The floating body problem consists in studying the motion of a mechanical sys‐
tem formed by:

\bullet A fluid delimited above by a free surface. Here, for simplicity, we shall also
consider the case where the fluid domain is bounded below by a flat bottom
located at  z=-h_{0} , and we also assume the fluid to be incompressible and
in irrotational motion;

 \bullet A partially immersed solid  C . For simplicity, we shall consider the case of
an object  C which is fixed. In the case of a freely floating object, the motion
of the solid would be governed by Newton’s laws in which the gravity force
(and possibly other external forces) should be complemented by the force
and torque exerted by the liquid on the solid.

In the absence of the immersed object, the problem reduces therefore to the stan‐
dard water waves equations, so that the floating body problem can be viewed as
a water waves/structure interaction problem. One of the first authors to consider
it was Fritz John [10, 11], under several simplifying assumptions; in particular, he
considered the linearized equations around the rest state. Indeed, the full problem
is quite complex since two free boundary problems are involved. As said above,
the first one is the standard water waves problem consisting in describing the evo‐
lution of the surface of the fluid when it is in contact with the air. The second

free boundary problem comes from the fact that the wetted surface  \partial_{w}C(t) , i.e. the
portion of the boundary of the solid in contact with the fluid, depends on time.
John’s approach is still widely used, and is for instance the core of wave‐structure
simulation softwares.

Taking into account the nonlinear effect is now feasible, but at a considerable
computational cost since the Laplace equation for the velocity potential must be
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FIGURE 1. Notations

solved in a time dependant fluid domain that contains corners or wedges (at the con‐
tact line); we refer for instance to [6, 7, 8, 12]. Another possibility to be mentioned
is a direct CFD approach based on the numerical resolution of the full Navier‐Stokes
equations (see for instance [15]).

Recently, a reduced formulation of the floating body problem was proposed in
[14] in which a formulation of the water waves equation in terms of the surface
elevation  \zeta above the rest state  z=0 and the horizontal discharge  Q(t, X)=

  \int_{-h_{0}}^{\zeta}V(t, X, z)dz (  V being the horizontal velocity in the fluid domain) is proposed,
namely,

(1)  \{\begin{array}{l}
\partial_{t}\zeta+\nabla\cdot Q=0,
\partial_{t}Q+\nabla. (\frac{1}{h}Q\otimes Q)+gh\nabla\zeta+\nabla\cdot R(h, Q)+
ha_{NH}(h, Q)=0,
\end{array}
where  \nabla denotes the gradient with respect to the horizontal coordinates,  h=

  h_{0}+\zeta is the water height,  R(h, Q) measures the vertical variations of the horizontal
velocity and  a_{NH}(h, Q) is the non‐hydrostatic acceleration,

(2)   R(h, Q)=\int_{-h_{0}}^{\zeta}(V-\overline{V})\otimes(V-\overline{V}) ,

(3)   a_{NH}(h, Q)=\frac{1}{h}\int_{-h_{0}}^{\zeta}\nabla[\int_{z}^{\zeta}(\partial_
{t}V+V\cdot\nabla_{X,z}V) e_{z}],
with  e_{z} the vertical upward unit vector. It is shown in [14] that  R and  a_{NH}

are indeed functions of  \zeta and  Q only (through the resolution of nonlocal elliptic
equations).

Like the Zakharov‐Craig‐Sulem [16, 5] formulation, this formulation has the ad‐
vantage of depenting only on the time and horizontal space variables, and are cast
on the time independent horizontal plane  \mathbb{R}^{d} . Another advantage is that it can be
slightly modified to allow the presence of a floating object. In the configuration
shown in Figure 1 where the wetted surface  \partial_{w}C(t) can be described as the graph
of a function  \zeta_{w} over the interior region  \mathcal{I}(t) (the projection of the wetted surface
on the horizontal coordinate plane), the equations (1) become, in the presence of
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an immersed object,

(4)  \{\begin{array}{l}
\partial_{t}\zeta+\nabla\cdot Q=0,
\partial_{t}Q+\nabla\cdot(\frac{1}{h}Q\otimes Q)+gh\nabla\zeta+\nabla\cdot R(h, 
Q)+ha_{NH}(h, Q)=-\frac{h}{\rho}\nabla\underline{P},
\end{array}
where  \underline{P} stands for the pressure eveluated at the surface of the water. When this
surface is in contact with the air (we denote by  \mathcal{E}(t) the horizontal projection of
this region, and call it the exterior region), then  \underline{P} is assumed to be constant as in
the water waves problem. Therefore, in the exterior region  \mathcal{E}(t), (4) coincides with
the water waves equations (1). In the interior region  \mathcal{I}(t) , things are different and
we have  \underline{P}=\underline{P}_{i} , where  \underline{P}_{i} is the interior pressure, i.e. the pressure exerted by the
fluid on the bottom of the floating structure. This quantity is unknown and must
be understood as the Lagrangian multiplier associated to the constraint

(5)  \zeta(t, X)=\zeta_{w}(X) on  \mathcal{I}(t)

that is, the surface of the water coincides with the immersed bottom of the object
(whose position is known here since we assumed that the object is fixed).

Of course, the above equations remain extremely complex. It was hinted in [14]
that the same method could be adapted to simpler asymptotic models (instead of
the full water waves equations). The aim of this note is to present and provide a
mathematical study of two simple models in horizontal dimension  d=1 . In this
case, the interior region becomes an interval  \mathcal{I}(t)=(x_{-}(t), x_{+}(t)) and the exterior
region in  \mathcal{E}(t)=(-\infty, x_{-}(t))\cup(x_{+}(t), +\infty) and  \Gamma(t)=\{x_{-}(t), x_{+}(t)\} . These two
models are the following:

 \bullet The nonlinear shallow water equations with a floating object. The problem
is the following: find  x_{-}(t),  x+(t),  (\zeta, q) and  (q_{i}, \underline{P}_{i}) such that

(6)  \{\begin{array}{l}
\partial_{t}\zeta+\partial_{x}q=0,
\partial_{t}q+\partial_{x}(\frac{1}{h}q^{2})+gh\partial_{x}\zeta=0
\end{array} on

with

(7)  \{\begin{array}{l}
\partial_{x}q_{i}=0,
\partial_{t}q_{i}+\partial_{x}(\frac{1}{h_{w}}q_{\dot{{\imath}}}^{2})+
gh\partial_{x}\zeta_{w}=-\frac{h}{\rho}\partial_{x}\underline{P}_{i}
\end{array} on  (x_{-}(t), x_{+}(t)) ,

and with the coupling conditions

(8)  q(t, x\pm(t))=q_{i}(t) ,

(9)  \zeta(t, x\pm(t))=\zeta_{w}(x_{\pm}(t)) ,

(10)  \underline{P}_{i}(t, x\pm(t))=P_{atm},

the atmospheric pressure  P_{atm} being assumed to be constant. We present in
Section 2 a sketch of the proof of the results obtained in collaboration with
T. Iguchi in [9] (where the case of freely floating objects is also considered).

 \bullet The Boussinesq equations with a floating object with vertical sides. We con‐
sider a more complex fluid model that, contrary to (6), includes dispersive
terms (see [14, 3] for numerical simulations of wave structure interactions
based on such models). On the other hand, we assume that the object
is fixed and has vertical walls. A consequence of this assumption is that
the coordinates  x\pm(t) of the contact points are now time independent and
located without loss of generality at  -R and  R . Another consequence is
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the coupling condition (9) must be removed and that one must subsitute
(10) by another condition to be determined later.
In dimensionless variables (see details in Section 3), the problem is therefore
the following: find  (\zeta, q) and  (q_{i}, \underline{P}_{\dot{{\imath}}}) such that

(11)  \{\begin{array}{l}
\partial_{t}\zeta+\partial_{x}q=0,
(1-\frac{1}{3}\mu\partial_{x}^{2})\partial_{t}q+\varepsilon\partial_{x}(q^{2})+h
\partial_{x}\zeta=0
\end{array} on  (-\infty, -R)\cup(R, +\infty) ,

with  \varepsilon and  \mu small dimensionless parameters and

(12)  \{\begin{array}{l}
\partial_{x}q_{i}=0,
\partial_{t}q_{i}+\partial_{x}(\frac{1}{h_{w}}q_{i}^{2})+gh\partial_{x}\zeta_{w}
=-\frac{h}{\rho}\partial_{x}\underline{P}_{i}
\end{array} on  (-R, R) ,

and with the coupling conditions

(13)  q(t, \pm R)=q_{i}(t) ,

(14)  \underline{P}_{i}(t, \pm R)=P_{atm}+(\zeta(t, \pm R)-\zeta_{w}(\pm R))+P_{NH},
where  P_{NH} is a non‐hydrostatic corrector that will be determined in Section
3 where we sketch some of the results obtained in collaboration with D.

Bresch and G. Métivier in [4].

2. THE NONLINEAR SHALLOW WATER EQUATIONS WITH A FLOATING OBJECT

We recall that the problem consists in finding  x_{-}(t),  x_{+}(t),  (\zeta, q) and  (q_{i}, \underline{P}_{i})
such that

(15)  \{\begin{array}{l}
\partial_{t}\zeta+\partial_{x}q=0,
\partial_{t}q+\partial_{x}(\frac{1}{h}q^{2})+gh\partial_{x}\zeta=0
\end{array} on

with

(16)  \{\begin{array}{l}
\partial_{x}q_{i}=0,
\partial_{t}q_{i}+\partial_{x}(\frac{1}{h_{w}}q_{\dot{{\imath}}}^{2})+
gh\partial_{x}\zeta_{w}=-\frac{h}{\rho}\partial_{x}\underline{P}_{i}
\end{array} on  (x_{-}(t), x_{+}(t)) ,

and with the coupling conditions

(17)  q(t, x\pm(t))=q_{\dot{{\imath}}}(t) ,

(18)  \zeta(t, x_{\pm}(t))=\zeta_{w}(t, x_{\pm}(t)) ,

(19)  \underline{P}_{i}(t, x\pm(t))=P_{atm}

(see notations on Figure 2).

 (t, x)

  \mathcal{E}(t)\frac{}{/^{/}///////////////////////////////////\nearrow\swarrow
//////////////_{/},-(t)\mathcal{I}(t)\mathcal{E}+}\ovalbox{\tt\small REJECT}
\ovalbox{\tt\small REJECT}
FIGURE 2. Waves interacting with a floating body
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2.1. Reformulation of the equations. From the first equation of (16), the value
if the discharge is independent of  x in the interior region  (x_{-}(t), x_{+}(t)) ; we therefore
denote it  q_{i}(t) , while  q_{i}(t) stands for its time derivative. Integrating the second
equation of (16) from  x_{-}(t) to  x_{+}(t) and using the boundary condition (19) yields

  \dot{q}_{i}=\frac{1}{\int_{x-(t)}^{x_{+}(t)}\frac{1}{h_{w}}}[\frac{1}{2}
\frac{q_{\dot{{\imath}}}^{2}}{h_{w}^{2}}+gh_{w}I
where for all function  f , the notation  [f] stands for  [fI=f(x_{+})-f(x_{-}) .
The problem can therefore be reduced to an initial boundary value problem (with
free boundary) cast in the exterior domain, namely,

(20)  \{\begin{array}{l}
\partial_{t}\zeta+\partial_{x}q=0,
\partial_{t}q+\partial_{x}(\frac{1}{h}q^{2})+gh\partial_{x}\zeta=0
\end{array} on

with boundary conditions

(21)  q(t, x\pm(t))=q_{i}(t) where  q_{i}= \frac{1}{\int_{x-(t)}^{x_{+}(t)}\frac{1}{h_{w}}}[\frac{1}{2}\frac{q_{i}^
{2}}{h_{w}^{2}}+gh_{w}I
and

(22)  \zeta(t, x_{\pm}(t))=\zeta_{w}(x\pm(t)) .

We also impose initial conditions of the form

(23)  (\zeta, q)_{1_{t=0}}=(\zeta^{in}, q^{in}) in  \underline{\mathcal{E}},  x\pm|_{t=0}= −  x\pmın,  q_{i1_{t=0}}=q_{i}^{in}.

2.2. Statement of the main result. Usually, a  2\cross 2 hyperbolic initial boundary
value problem like (20) requires one boundary condition. The fact that we have here
two boundary conditions makes the initial boundary value problem overdetermined,
but this overdetermination is only apparent since we deal here with a free boundary
value problem. Therefore, the second boundary condition (22) can be seen as the
evolution equation for the free boundaries  x\pm(t) . The goal of this note is to explain
simply the mechanisms at work, and we therefore only state a rough version of the
result of [9] to which we refer for details, generalizations (to freely floating objects
for instance) as well as for a general theory for hyperbolic free boundary problems.

Theorem 1. [9] Assuming that the initial data are smooth enough and satisfy
appropriate compatibility conditions, that the water depth at  t=0 is everywhere
bounded from below by a positive constant, that the flow in the exterior domain is
subcritical and that the following conditions hold at the initial contact points

  \sqrt{g(h_{0}+\zeta^{in})}-|\frac{q^{\dot{{\imath}}n}}{h_{0}+\zeta^{in}-
\dot{x}_{\pm}(0)}|>0 and  \partial_{x}\zeta_{w}\neq\partial_{x}\zeta^{in},

there is a time  T>0 and a unique solution  (x\pm, \zeta, q, q_{i}) solving (15) ‐  (23) on  [0, T].
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2.3. Sketch of the proof. We shall study here a general family of free bound‐
ary problems to which (20) ‐  (22) can easily be related. We thus consider a  2\cross 2

quasilinear hyperbolic system on a moving domain  (\underline{x}(t), \infty) :

(24)  \partial_{t}U+A(U)\partial_{x}U=0 in  (\underline{x}(t), \infty)

with a boundary condition

(25)  U=U_{i} on  x=\underline{x}(t) ,

where  U_{\dot{{\imath}}}=U_{i}(t, x) is a given  \mathbb{R}^{2} ‐valued function, whereas  \underline{x}(t) is an unknown func‐
tion. There are therefore two scalar boundary conditions; as previously explained,
the problem is not overdetermined because one of these conditions must be un‐
derstood as an evolution equation for the free boundary  \underline{x} . Indeed, differentiating
the boundary condition  U(t, \underline{x}(t))=U_{i}(t, \underline{x}(t)) with respect to  t and taking the
Euclidean inner product of the resulting equation with  \partial_{x}U-\partial_{x}U_{\dot{{\imath}}} , we obtain

(26)  \underline{\dot{x}}=\chi((\partial U)_{1_{x=\underline{x}}}, (\partial U_{\dot{
{\imath}}})_{1_{x=\underline{x}}}) ,

where

  \chi(\partial U, \partial U_{\dot{{\imath}}})=-\frac{(\partial_{x}U-
\partial_{x}U_{\dot{{\imath}}})\cdot(\partial_{t}U-\partial_{t}U_{\dot{{\imath}}
})}{|\partial_{x}U-\partial_{x}U_{i}|^{2}}.
It has to be noted that this evolution equation is quite singular in the sense that it
involves derivatives of  U (while kinematic boundary conditions for instance would
only involve  U).

We assume throughout this section that there is  \mathcal{U} an open set in  \mathbb{R}^{2} , that
 A\in C^{\infty}(\mathcal{U}) and that there exists  c_{0}>0 such that for any  u\in \mathcal{U} , the matrix  A(u)
has eigenvalues  \lambda_{+}(u) and  -\lambda_{-}(u) satisfying  \lambda_{\pm}(u)\geq c_{0} . This condition ensures
that the system is strictly hyperbolic. We denote by  e\pm(u) normalized eigenvectors
associated to the eigenvalues  \pm\lambda_{\pm}(u) of  A(u) .
As shown by (26), a discontinuity of  \partial_{x}U at the free boundary is crucial so that we
will work in a class of solutions satisfying

(27)  |(\partial_{x}U-\partial_{x}U_{i})_{1_{x=x}}|\pm\geq c_{0}
for some positive constant  c_{0} (in the context of the floating body problem, this is
satisfied provided that the surface of the water makes a nonzero angle with the
surface of the boat at the contact points).

2.3.1. Fixing the boundary. We use a diffeomorphism  \varphi(t, \cdot) :  \mathbb{R}_{+}arrow(\underline{x}(t), \infty) (see
[9] for the construction of an appropriate diffeomorphism) and put   u=U\circ\varphi
and   u_{i}=U_{i}\circ\varphi . We also write  \partial_{t}^{\varphi}u=(\partial_{t}U)\circ\varphi and  \partial_{x}^{\varphi}u=(\partial_{x}U)\circ\varphi . Then,
the free boundary problem (24)  -(25) is recast as a problem on the fixed domain
 \Omega_{T}=[0, T]\cross \mathbb{R}_{+} :

(28)  \{\begin{array}{ll}
\partial_{t}^{\varphi}u+A(u)\partial_{x}^{\varphi}u=0   in \Omega_{T},
u_{1_{x=0}}=u_{i|_{x=0}}   on (0, T) .
\end{array}
We impose the initial conditions of the form

(29)  u_{1_{t=0}}=u^{in}(x) on  \mathbb{R}_{+},  \underline{x}(0)=0.

We also note that the equation (26) for the free boundary is then reduced to

(30)  \underline{\dot{x}}=\chi((\partial^{\varphi}u)_{1_{x=0}}, (\partial^{\varphi}u_
{i})_{1_{x=0}}) .

149



150

SEVERAL MODELS FOR WAVE‐STRUCTURE INTERACTIONS

The interior equation in (28) can be written as

 \partial_{t}u+\mathcal{A}(u, \partial\varphi)\partial_{x}u=0,

where  \mathcal{A}(u, \partial\varphi)=(\partial_{x}\varphi)^{-1}(A(u)-(\partial_{t}
\varphi)Id) . The eigenvalues of this matrix are
 (\partial_{x}\varphi)^{-1}(\pm\lambda\pm(u)-\partial_{t}\varphi) , whereas the corresponding eigenvectors are  e\pm(u) which
does not depend on  \partial\varphi . To conserve the strict hyperbolicity of the initial problem,
we assume further that

(31)  \lambda_{\pm}(u)\mp\partial_{t}\varphi\geq c_{0} in  (0, T)\cross \mathbb{R}_{+}.

2.3.2. Quasilinearization of the equations. As usual with fully nonlinear problems,
one is led to differentiate the equations in order to get a quasilinear structure. In
the case of free boundary problems, an additional change of variable (the so‐called
Alinhac unknown [1]) is usually needed because of the dependence of the linearized
equations on the diffeomorphism  \varphi . Here, differentiating the equations once is not
enough, so that we differenciate them twice to get a quasilinear structure, and we
need to introduce a second order Alinhac unknown, namely,  u_{(2)}=\partial_{t}^{\varphi}\partial_{t}^{\varphi}u.
‐ Quasilinearization of the boundary condition. We therefore differentiate twice the
condition  u=u_{i} on  x=0 and use the relation  \partial_{t}=\partial_{t}^{\varphi}+(\partial_{t}\varphi)\partial^{9} , to obtain after
some computations

 (Id-\underline{\dot{x}}A(u)^{-1})^{2}u_{(2)}+\underline{}(\partial_{x}
^{\varphi}u-\partial_{x}^{\varphi}u_{i})=g_{1}(\underline{x}, u, 
\partial^{\varphi}u, \partial^{\varphi}\partial^{\varphi}u_{i}) ,

where  g_{1} is a smooth function of its arguments. Decomposing this relation into
the direction  \partial_{x}^{\varphi}u-\partial_{x}^{\varphi}u_{i} and its perpendicular direction, we obtain an evolution
equation for  \underline{x} as

 \underline{}=\chi_{2}(\underline{\dot{x}}, u, u_{(2)}, \partial^{\varphi}u, 
\partial^{\varphi}u_{i}, \partial^{\varphi}\partial^{\varphi}u_{i}) ,

where  \chi_{2} is a smooth function of its arguments, and a boundary condition for  u_{(2)}
as

 \nu_{(2)}\cdot u_{(2)}=g_{(2)},

where  g_{(2)} is a smooth function of its arguments and

 \nu_{(2)}=((Id-\underline{\dot{x}}A(u)^{-1})^{2})^{T}((\partial_{x}^{\varphi}u-
\partial_{x}^{\varphi}u_{i})^{\perp}) .

‐Quasilinearization of the interior equation Differentiating twice the equation sat‐
isfied by  u one gets after some computations that

 \partial_{t(2)}u+\mathcal{A}(u, \partial\varphi)\partial_{x}u_{(2)}+B(u, 
\partial^{\varphi}u)u(2)=f_{(2)}(u, \partial^{\varphi}u)
with  B and  f_{(2)} depending smoothly on their arguments.
‐The quaslinear structure. Summarizing the above arguments, the initial value
problem (28)  -(29) yields the following:

(32)  \{\begin{array}{ll}
\partial_{t}u+\mathcal{A}(u, \partial\varphi)\partial_{x}u=0   in \Omega_{T},
u_{1_{t=0}}=u^{in}(x)   on \mathbb{R}+,
\underline{\nu}\cdot u_{1_{x=0}}=\underline{\nu}\cdot u_{i|_{x=0}}   on (0, T) ,
\end{array}
(with  \underline{\nu} any vector non colinear wih the eigenvector associated to the negative
eigenvalue of  \mathcal{A}), together with

(33)  \{\begin{array}{ll}
\partial_{t}u_{(2)}+\mathcal{A}(u, \partial\varphi)\partial_{x}u_{(2)}+B(u, 
\partial^{\varphi}u)u_{(2)}=f_{(2)}(u, \partial^{\varphi}u)   in \Omega_{T},
u_{(2)|_{t=0}}=u_{(2)}^{in}(x)   on \mathbb{R}_{+},
\nu_{(2)}\cdot u_{(2)|_{x=0}}=g_{(2)|_{x=0}}   on (0, T) ,
\end{array}
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and an equation for the evolution of the free boundary given by

(34)  \{\begin{array}{l}
\underline{}=\chi(\underline{\dot{x}}, u, u_{(2)}, \partial^{\varphi}u, 
\partial^{\varphi}u_{i}, \partial^{\varphi}\partial^{\varphi}u_{i})_{1_{x=0}} 
for t\in(0, T) ,
\underline{x}(0)=0, \underline{\dot{x}}(0)=x_{(1)}^{in},
\end{array}
where the initial data  u_{(2)}^{\dot{{\imath}}n} and  x_{(1)}^{in} should be chosen appropriately for the equiva‐

lence of (32)  -(34) with (28) -(29) .

2.3.3. Conclusion. The above system has a quasilinear structure and under the
above assumption and appropriate compatibility conditions, one can construct a
Kreiss symmetrizer (i.e. a symmetrizer for which the boundary condition is maxi‐
mally dissipative), get energy estimates, and run a fixed point argument (we refer
to [9] for full details).

3. THE BOUSSINESQ EQUATIONS WITH A FLOATING OBJECT WITH VERTICAL
SIDES

In this section, we consider the case a fluid described by the following Boussinesq
model in the exterior domain,

(35)  \{\begin{array}{l}
\partial_{t}\zeta+\partial_{x}q=0,
(1-\frac{1}{3}\mu\partial_{x}^{2})\partial_{t}q+\varepsilon\partial_{x}(q^{2})+h
\partial_{x}\zeta=0
\end{array} on  (-\infty, -R)\cup(R, +\infty) ;

the equations are here stated in dimensionless variables because the discussion on
the parameters  \varepsilon=a/L and  \mu=H_{0}^{2}/L^{2} is important (a is the typical amplitude of
the waves,  H_{0} the depth at rest, and  L the typical horizontal scale for the waves).
In the interior domain, since the object is fixed, we have

(36)  \{\begin{array}{l}
\partial_{x}q_{i}=0,
\partial_{t}q_{i}+h_{w}\partial_{x}\zeta_{w}=-\partial_{x}\underline{P}_{i}
\end{array} on  (-R, R) ,

(here  \underline{P}_{i} is the dimensionless interior pressure) and we have the coupling conditions

(37)  q(t, \pm R)=q_{\dot{{\imath}}}(t, \pm R) ,

(38)  \underline{P}_{i}(t, \pm R)=P_{atm}+(\zeta(t, \pm R)-\zeta_{w}(\pm R))+P_{NH}
(\pm R) ,

where  P_{NH} is a non‐hydrostatic corrector that is determined below. We also impose
initial conditions of the form

(39)  (\zeta, q)_{1_{t=0}}=(\zeta^{in}, q^{in}) in  \underline{\mathcal{E}},  q_{i1_{t=0}}=q_{i}^{in}.
The analysis of this system of equations is performed in [4]. As it is quite

technical, we only mention here some of the key points that make the equations
well posed.

3.1. Finding the non‐hydrostatic correction. In order to solve the equations,
it is necessary to find the non‐hydrostatic correction  P_{NH} in (38). This is done
through an energy conservation argument. For the Boussinesq model (35), there is
a local conservation of energy,

(40)  \partial_{t}e+\partial_{x}3=0

with

  e=\frac{1}{2}\zeta^{2}+\frac{\varepsilon}{6}\zeta^{3}+\frac{1}{2}q^{2}+
\frac{\mu}{6}(\partial_{x}q)^{2} and  3=q[ \zeta+\varepsilon\frac{2}{3}q^{2}+\varepsilon\frac{1}{2}\zeta^{2}-
\frac{\mu}{3}\partial_{x}\partial_{t}q]
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In the interior region, the energy density and flux are

  e_{i}=\frac{1}{2}\zeta_{w}^{2}+\frac{\varepsilon}{6}\zeta_{w}^{3}+\frac{1}{2}
q_{i}^{2} and   \mathfrak{F}_{i}=q_{i}[\zeta_{w}+\varepsilon\frac{2}{3}q_{\dot{{\imath}}}^{2}+
\varepsilon\frac{1}{2}\zeta_{w}^{2}+\underline{P}_{i}]
(recall that  \partial_{x}q_{i}=0 ) and the local conservation of energy reads

(41)  \partial_{t}e_{i}+\partial_{x}\mathfrak{F}_{i}=-0.

Since the object is fixed, the total energy  E_{tot} of the fluid should be constant,
where

 E_{tot}= \int_{|x|<R}\mathfrak{e}_{i}+\int_{|x|>R}\mathfrak{e}.
Time differentiating and using (40) and (41), we impose therefore that

 0=-[S_{i}I+[\mathfrak{F}1

With the coupling conditions (37) and (38) this yields

 [ \varepsilon\frac{1}{2}\zeta_{w}^{2}+P_{NH}I=[\varepsilon\frac{1}{2}\zeta^{2}-
\frac{\mu}{3}\partial_{x}\partial_{tq}I.
We therefore impose the following value for the non‐hydrostatic correction in (38),

(42)  P_{NH}= \varepsilon\frac{1}{2}(\zeta^{2}-\zeta_{w}^{2})-\frac{\mu}{3}
\partial_{x}\partial_{t}q at  x=\pm R.

This choice corresponds therefore to a conservation of the total energy.

3.2. Reformulation as a transmission problem. Integrating the second equa‐
tion in (36) from  -R to  R , we get, owing to (42),

 2R \dot{q}_{i}+[\zeta_{w}+\varepsilon\frac{1}{2}\zeta_{w}^{2}I=-[\zeta-
\zeta_{w}+\varepsilon\frac{1}{2}(\zeta^{2}-\zeta_{w}^{2})-\frac{\mu}{3}\partial_
{x}\partial_{tq}I
and therefore

 2R \dot{q}_{i}+[\zeta+\varepsilon\frac{1}{2}\zeta^{2}I=\frac{\mu}{3}
[\partial_{x}\partial_{tq}I.
We have therefore reduced the problem to the following transmission problem:

(43)  \{\begin{array}{l}
\partial_{t}\zeta+\partial_{x}q=0,
(1-\frac{1}{3}\mu\partial_{x}^{2})\partial_{t}q+\varepsilon\partial_{x}(q^{2})+h
\partial.\zeta=0
\end{array} on  (-\infty, -R)\cup(R, +\infty) ;

with transmission conditions

(44)  [qI=0,

(45)  - \frac{\mu}{3}\partial_{t}[\partial_{x}qI+[\zeta+\varepsilon\frac{1}{2}
\zeta^{2}I=-2R\dot{q}_{i},
where  q_{i} is defined as the common value  q_{i}=q(-R)=q(R) . The system is
completed by the initial condition

(46)  (\zeta, q)_{1_{t=0}}=(\zeta^{in}, q^{in}) .

Note that the similar problem without the dispersive terms was considered in [14]
in the  1D case, and in [2] in the  2D‐radial case.

3.3. Mathematical analysis of the system. We present here some important
steps related to the mathematical analysis of (43)‐(46) and more specifically to
the proof of a well‐posedness result over a time scale of order  O(1/\varepsilon) which is the
relevant time scale for Boussinesq models without floating objects [13]
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3.3.1. Reducing to a linear transmission condition. The fact that the transmission
condition (45) is nonlinear complicates the analysis; we therefore rewrite the system
in  (\theta, q) variables where

  \theta=\zeta+\varepsilon\frac{1}{2}\zeta^{2} or equivalently  \zeta=\theta+\varepsilon c(\theta) with  c( \theta)=-\frac{2\theta^{2}}{(1+\sqrt{1+2\varepsilon\theta})^{2}}.
We thus obtain a transmission problem with linear transmission conditions, namely

(47)  \{\begin{array}{l}
(1+\varepsilon c'(\theta))\partial_{t}\theta+\partial_{x}q=0,
{[}1-\frac{\mu}{3}\partial_{x}^{2}]\partial_{t}q+\varepsilon\partial_{x}(q^{2})+
\partial_{x}\theta=0
\end{array} on  (-\infty, -R)\cup(R, +\infty)

with the linear transmission conditions

(48)  [q]=0,

(49)  - \frac{\mu}{3}\partial_{t}[\partial_{x}qI+[\theta I=-2R\dot{q}_{i}
and the initial condition

(50)  (\theta, q)|_{t=0}=(\theta^{in}, q^{in})
where   \theta^{in}=\zeta^{in}+\varepsilon\frac{1}{2}(\zeta^{in})^{2}.

3.3.2. Reduction to an ODE. Let  R_{0} denote the inverse of  (1- \frac{\mu}{3}\partial_{x}^{2}) on  (-\infty, -R)\cup
 (R, \infty) with Dirichlet condition at  \pm R . The second equation in (47) can be written

(51)  \partial_{t}q=-R_{0}(\varepsilon\partial_{x}(q^{2})+\partial_{x}\theta)+\dot{q}
_{i}\exp(-\sqrt{\frac{3}{\mu}}|x|_{R}) ,

with  |x|_{R}=(x-R) if  x>R and  -R-x if  x<-R . Space differenciating yields

 \partial_{t}\partial_{x}q=-\partial_{x}R_{0}(\varepsilon\partial_{x}(q^{2})+
\partial_{x}\theta)\mp\sqrt{\frac{3}{\mu}}q_{i}\exp(-\sqrt{\frac{3}{\mu}}|x|_{R}
) ,

so that

 [\partial_{t}\partial_{x}qI=-[\partial_{x}R_{0}(\varepsilon\partial_{x}(q^{2})+
\partial_{x}\theta)I-2\sqrt{\frac{3}{\mu}}q_{\dot{{\imath}}}.
Using (49) this gives

  \frac{3}{\mu}[\theta I+\frac{6R}{\mu}q_{i}=-[\partial_{x}R_{0}
(\varepsilon\partial_{x}(q^{2})+\partial_{x}\theta)I-2\sqrt{\frac{3}{\mu}}q_{i}.
We therefore get the following expression for  q_{i},

 q_{i}=- \frac{1}{6R+2\sqrt{3\mu}}[3[\theta I+[\partial_{x}R_{0}
(\varepsilon\partial_{x}(q^{2})+\partial_{x}\theta)I]=:q_{i,1}.
Plugging into (51) we have therefore the following formulation of the problem

(52)  \partial_{t} (\begin{array}{l}
\theta
 q
\end{array})=(\begin{array}{l}
-\partial_{x}q
R_{0}(\varepsilon\partial_{x}(q^{2})+\partial_{x}\theta)-q_{\dot{{\imath}},1}
\exp(-\sqrt{\frac{3}{\mu}}|x|_{R})
\end{array}) .

If  n\geq 1 , it is quite easy to check that this is an ODE on   H^{n}\cross H^{n+1}((-\infty, -R)\cup
 (R, \infty)) so that one can get a solution in a standard way.
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3.3.3. Uniform estimates. As seen above, it is possible to construct a solution to
the transmission problem (47) ‐  (50) ; however, the existence time and the bounds
on the solution are not uniform when the parameters  \varepsilon and  \mu become small. We
sketch here the stategy developed in [4] to get uniform estimates:

(1) Uniform  L^{2}‐estimates for the linearized equations. This follows from com‐
putations similar to these performed above to derive the corrective term
 P_{NH} for the boundary value of the interior pressure in such a way that the
total energy of the system is conserved.

(2) Uniform bounds on the time derivative of the solution of the linearized
equations. These estimates can be obtained by time differentiating the
equations and using the  L^{2} ‐estimates. However, the resulting estimates
involve the norm of  \partial_{t}^{\dot{j}}0 and  \partial_{t}^{j}q at  t=0 . Contrary to what happens for
hyperbolic systems, it is not straightforward to control these quantities in
terms of Sobolev norms of the initial data. This requires the introduction
of compatibility conditions that prevent the creation of dispersive boundary
layers.

(3) Control of space derivatives. In the hyperbolic case, space derivatives can
be controled in terms of time derivatives using the equations. Here, this
is not directly possible because of the dispersive terms. The solution is to
derive an ODE satisfied by  \partial_{x}\theta and to control it through an analysis of this
ODE.

(4) Construction of a solution. Finding a appropriate functional space, one can
run an iterative scheme using the previous steps.
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