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Kakinuma model for internal gravity waves in the rigid‐lid case

Tatsuo Iguchi

Department of Mathematics, Keio University

1 Introduction

This article is based on an on‐going joint research with Vincent Duchêne at Université

de Rennes 1 in France. We consider the motion of internal gravity waves at the interface

of two immiscible incompressible and inviscid fluids in (n+1)‐dimensional space. For
simplicity, we assume that the water surface of the upper layer is flat, that is, rigid‐lid.

Let  t be the time,  x=  (x_{1} . , x_{n}) the horizontal spatial coordinates, and  z the vertical
spatial coordinate. We assume also that the interface, the rigid‐lid, and the bottom are

represented as  z=\zeta(x, t),  z=h_{1} , and  z=-h_{2}+b(x) , respectively, where  \zeta=\zeta(x, t) is
the elevation of the internal layer,  h_{1} and  h_{2} are mean thicknesses of the upper and lower

layers, and  b=b(x) represents the bottom topography. Therefore, the upper layer  \Omega_{1}(t)
and the lower layer  \Omega_{2}(t) of the water have the form

 \Omega_{1}(t)=\{X=(x, z)\in R^{n+1};\zeta(x, t)<z<h_{1}\},

 \Omega_{2}(t)=\{X=(x, z)\in R^{n+1};-h_{2}+b(x)<z<\zeta(x, t)\}.

We denote the internal layer, the rigid‐lid, and the bottom by  \Gamma(t),  \Sigma_{1} , and  \Sigma_{b} , respec‐

tively. Furthermore, we assume that the waters in the upper and the lower layers have

constant densities  \rho_{1} and  \rho_{2} , respectively, which satisfy Rayleigh’s stability condition

 (\rho_{2}-\rho_{1})_{9}>0,

where  g is the gravitational constant.

As in the case of water waves, the basic equations for the internal gravity waves have

a variational structure and a Lagrangian is given in terms of velocity potentials  \Phi_{1} and

 \Phi_{2} in the upper and the lower layers and the interface elevation  \zeta . T. Kakinuma [7, 8, 9]
approximated the velocity potentials  \Phi_{1} and  \Phi_{2} in the Lagrangian by

  \Phi_{1}^{app}(x, z, t)=\sum_{i=0}^{N_{1}}\Psi_{1i}(z;b)\phi_{1i}(x, t) , 
\Phi_{2}^{app}(x, z, t)=\sum_{i=0}^{N_{2}}\Psi_{2i}(z;b)\phi_{2i}(x, t) ,
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where  \{\Psi_{1i}\} and  \{\Psi_{2i}\} are appropriate function systems in the vertical coordinate  z

and may depend on the bottom topography  b , whereas  \phi_{1}=(\phi_{10}, \phi_{11}, \ldots, \phi_{1N_{1}}) and

 \phi_{2}=(\phi_{20}, \phi_{21}, \ldots, \phi_{2N_{2}}) are unknown variables. The Euler‐Lagrange equation of the ap‐

proximated Lagrangian in terms of  (\phi_{1}, \phi_{2}, \zeta) is the Kakinuma model for internal gravity

waves. Different choice of the function systems  \{\Psi_{1i}\} and  \{\Psi_{2i}\} yields different Kakinuma

models and it is important to choose good function systems. In view of the mathemat‐

ical analysis to the Isobe‐Kakinuma model for water waves given by Y. Murakami and

T. Iguchi [12], R. Nemoto and T. Iguchi [13], and T. Iguchi [4, 5], we will choose the
approximated velocity potentials as

  \Phi_{1}^{app}(x, z, t)=\sum_{i=0}^{N}(z-h_{1})^{2i}\phi_{1i}(x, t) ,   \Phi_{2}^{app}(x, z, t)=\sum_{i=0}^{N^{*}}(z+h_{2}-b(x))^{p_{i}}\phi_{2i}(x, 
t) , (1)

where  p_{0},p_{1} , . . . ,  p_{N^{*}} are nonnegative integers satisfying  0=p_{0}<p_{1}<  <p_{N^{*}} . In this

article, according to the presence of the bottom topography we will chose these indices as
follows:

(H1) In the case of the flat bottom  b(x)\equiv 0,  N^{*}=N and  p_{i}=2i(i=0,1, \ldots, N)

(H2) In the case of a general bottom topography,  N^{*}=2N and  p_{i}=i(i=0,1, \ldots, 2N)

We analyze the linear dispersion relation of the Kakinuma model, which will be com‐

pared with that of the basic equations for the internal gravity waves. It is revealed that the

Kakinuma model under our choice of the function system would be a higher order shallow

water approximation to the internal gravity waves. Then, we will consider the linearized

equations to the Kakinuma model around an arbitrary flow. After freezing coefficients,

we analyze the linear dispersion relation and derive a stability condition. As was shown

by T. Iguchi, N. Tanaka, and A. Tani [6] and D. Lannes [10], the initial value problem
to the internal gravity waves is ill‐posed and there is no stability regime. However, the

initial value problem to the Kakinuma model is well‐posed under the stability condition,

although the model would be a higher order shallow water approximation. This is one of

the advantages of the Kakinuma model.

2 Basic equations for internal gravity waves

The motion of the waters is described by the velocity potentials  \Phi_{1} and  \Phi_{2} and the

pressures  P_{1} and  P_{2} in the upper and the lower layers satisfying the equations

 \triangle_{X}\Phi_{1}=0 in  \Omega_{1}(t) , (2)

 \triangle_{X}\Phi_{2}=0 in  \Omega_{2}(t) , (3)
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where  \triangle x is the Laplacian with respect to  X , that is,  \triangle x=\triangle+\partial_{z}^{2} and  \triangle=\partial_{1}^{2}+\cdots+\partial_{n}^{2}.
Bernoulli’s laws of each layers have the form

  \rho_{1}(\partial_{t}\Phi_{1}+\frac{1}{2}|\nabla_{X}\Phi_{1}|^{2}+gz)+P_{1}=0 in  \Omega_{1}(t) , (4)

  \rho_{2}(\partial_{t}\Phi_{2}+\frac{1}{2}|\nabla_{X}\Phi_{2}|^{2}+gz)+P_{2}=0 in  \Omega_{2}(t) . (5)

The dynamical boundary condition on the interface is given by

 P_{1}=P_{2} on  \Gamma(t) . (6)

The kinematic boundary conditions on the interface, on the rigid‐lid, and on the bottom

are given by

 \partial_{t}\zeta+\nabla\Phi_{1}\cdot\nabla\zeta-\partial_{z}\Phi_{1}=0 on  \Gamma(t) , (7)

 \partial_{t}\zeta+\nabla\Phi_{2}\cdot\nabla\zeta-\partial_{z}\Phi_{2}=0 on  \Gamma(t) , (8)

 \partial_{z}\Phi_{1}=0 on  \Sigma ı, (9)

 \nabla\Phi_{2}\cdot\nabla b-\partial_{z}\Phi_{2}=0 on  \Sigma_{b} . (10)

These are the basic equations for the internal gravity waves. It follows form Bernoulli’s

laws (4)  -(5) and the dynamical boundary condition (6) that

  \rho_{1}(\partial_{t}\Phi_{1}+\frac{1}{2}|\nabla_{X}\Phi_{1}|^{2}+g\zeta)-
\rho_{2}(\partial_{t}\Phi_{2}+\frac{1}{2}|\nabla_{X}\Phi_{2}|^{2}+g\zeta)=0 on  \Gamma(t) . (11)

It is easy to see that the basic equations (2) -(10) for unknowns  (\zeta, \Phi_{1}, \Phi_{2}, P_{1}, P_{2}) are
equivalent to (2) -(3) and (7) -(11) for unknowns  (\zeta, \Phi_{1}, \Phi_{2}) .

In the case of water waves, J. C. Luke [11] showed that the basic equations have a
variational structure and his Lagrangian is given by the vertical integral of the pressure

difference  P-P_{atm} in the water region, where  P_{atm} is an atmospheric pressure. Therefore,

it is natural to expect that even in the case of internal gravity waves the vertical integral

of the pressure in the water regions would give a Lagrangian  \mathscr{L} , so that we first define

 \mathscr{L}_{pre} by

  \mathscr{L}_{pre}=\int_{-h_{2}+b(x)}^{\zeta(x,t)}P_{2}(x, z, t)dz+
\int_{\zeta(x,t)}^{h_{1}}P_{1}(x, z, t)dz.
By using Bernoulli’s laws (4) -(5) to remove the pressures  P_{1} and  P_{2} , we see that

  \mathscr{L}_{pre}=-\rho_{2}\int_{-h_{2}+b}^{\zeta}(\partial_{t}\Phi_{2}+
\frac{1}{2}|\nabla_{X}\Phi_{2}|^{2})dz-\rho_{1}\int_{\zeta}^{h_{1}}(\partial_{t}
\Phi_{1}+\frac{1}{2}|\nabla_{X}\Phi_{1}|^{2})dz
 - \frac{1}{2}(\rho_{2}-\rho_{1})g\zeta^{2}+\frac{1}{2}(\rho_{2}g(-h_{2}+b)^{2}-
\rho_{1}gh_{1}^{2}) .
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The last term does not contribute the variation of this Lagrangian, so that we define a

Lagrangian  \mathscr{L}=\mathscr{L}(\Phi_{1}, \Phi_{2}, \zeta) by

  \mathscr{L}(\Phi_{1}, \Phi_{2}, \zeta)=-\rho_{2}\int_{-h_{2}+b}^{\zeta}
(\partial_{t}\Phi_{2}+\frac{1}{2}|\nabla_{X}\Phi_{2}|^{2})dz-\rho_{1}
\int_{\zeta}^{h_{1}}(\partial_{t}\Phi_{1}+\frac{1}{2}|\nabla_{X}\Phi_{1}|^{2})dz
 - \frac{1}{2}(\rho_{2}-\rho_{1})g\zeta^{2} , (12)

and the action function  \mathscr{J}=\mathscr{J}(\Phi_{1}, \Phi_{2}, \zeta) by

  \mathscr{J}(\Phi_{1}, \Phi_{2}, \zeta)=\int_{t_{0}}^{t_{1}}\int_{R^{n}}
\mathscr{L}(\Phi_{1}, \Phi_{2}, \zeta) dxdt.

In fact, taking the first variation of this action function we have

 \delta \mathscr{J}(\Phi_{1}, \Phi_{2}, \zeta)

 = \rho_{1}\int_{t_{0}}^{t_{1}}\int_{\Omega_{1}(t)}(\triangle_{X}\Phi_{1})\delta
\Phi_{1} dXdt  + \rho_{2}\int_{t_{0}}^{t_{1}}\int_{\Omega_{2}(t)}(\triangle_{X}\Phi_{2})\delta
\Phi_{2} dXdt

 + \int_{t_{0}}^{t_{1}}\int_{R^{n}}\{\rho_{1}(\partial_{t}\Phi_{1}+\frac{1}{2}
|\nabla_{X}\Phi_{1}|^{2}+g\zeta)-\rho_{2}(\partial_{t}\Phi_{2}+\frac{1}{2}
|\nabla_{X}\Phi_{2}|^{2}+g\zeta)\}_{z=\zeta}\delta\zetadxdt

 - \rho_{1}\int_{t_{0}}^{t}\int_{R^{n}}  (\partial_{t}\zeta+\nabla\Phi_{1} . \nabla\zeta-\partial_{z}\Phi_{1})
\delta\Phi_{1}|_{z=\zeta}dxdt
 + \rho_{2}\int_{t_{0}}^{t_{1}}\int_{R^{n}}  (\partial_{t}\zeta+\nabla\Phi_{2} . \nabla\zeta-\partial_{z}\Phi_{2})
\delta\Phi_{2}|_{z=\zeta}dxdt
 - \rho_{1}\int_{t_{0}}^{t_{1}}\int_{R^{n}}(\partial_{z}\Phi_{1})\delta\Phi_{1}
|_{z=h_{1}} dxdt

 - \rho_{2}\int_{t_{0}}^{t_{1}}\int_{R^{n}}  (\nabla\Phi_{2} . \nabla\zeta-\partial_{z}\Phi_{2})\delta\Phi_{2}|_{z=-h_{2}+b}dxdt,

where we used integration by parts. Therefore, the corresponding Euler‐Lagrange equa‐

tions are exactly the same as the basic equations, that is, (2) -(3) and (7)  -(11) .

3 Kakinuma model

Plugging (1) into the Lagrangian (12), we obtain an approximate Lagrangian

 \mathscr{L}^{app}(\phi_{1}, \phi_{2}, \zeta):=\mathscr{L}(\Phi_{1}^{app}, \Phi_
{2}^{app}, \zeta) ,
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where  \phi_{1}=(\phi_{10}, \phi_{11}, \ldots, \phi_{1N})^{T} and  \phi_{2}=(\phi_{20}, \phi_{21}, \ldots, \phi_{2N^{*}}) . This approximate La‐

grangian can be written explicitly as

  \mathscr{L}^{app}=-\rho_{1}\{\sum_{i=0}^{N}\frac{1}{2i+1}H_{1}^{2i+1}\partial_
{t}\phi_{1i}
 + \frac{1}{2}\sum_{\dot{i},j=0}^{N} (\frac{1}{2(i+j)+1}H_{1}^{2(i+j)+1}
\nabla\phi_{ii} . \nabla\phi_{ij}+\frac{4i_{\dot{j}}}{2(i+j)-1}H_{1}^{2(i+j)-1}
\phi_{ii}\phi_{1j})\}

 - \rho_{2}\{\sum_{i=0}^{N^{*}}\frac{1}{p_{i}+1}H_{2}^{p_{i+}1}\partial_{t}\phi_
{2i}
 + \frac{1}{2}\sum_{i,j=0}^{N^{*}}(\frac{1}{p_{i}+p_{j}+1}H_{2}^{p_{i}+p_{j}+1}
\nabla\phi_{2i}\cdot\nabla\phi_{2j}-\frac{2p_{i}}{p_{i}+p_{j}}H_{2}^{p_{i}+p_{j}
}\phi_{2i}\nabla b\cdot\nabla\phi_{2j}

 + \frac{p_{i}p_{j}}{p_{i}+p_{j}-1}H_{2}^{p_{i}+p_{j}-1}(1+|\nabla b|^{2})
\phi_{2i}\phi_{2j})\}
 - \frac{1}{2}(\rho_{2}-\rho_{1})g\zeta^{2},

where  H_{1} and  H_{2} are thicknesses of the upper and the lower layers, that is,

 H_{1}(t, x)=h_{1}-\zeta(x, t) , H_{2}(x, t)=h_{2}+\zeta(x, t)-b(x) . (13)

The corresponding Euler‐Lagrange equation is the Kakinuma model, which has the form

  \ovalbox{\tt\small REJECT}^{H_{2}^{p_{i}}\partial_{t}\zeta}\rho_{1}\{\sum_{j=
0}^{N}H_{1}^{2_{i}}\partial_{t}\zeta-\rho_{2\{}
 - \sum_{j=0}^{N}\{\nabla\cdot(\frac{1}{2(i+j)+1}H_{1}^{2(i+j)+1}\nabla\phi_{ij}
)-\frac{4i_{\dot{j}}}{2(i+\dot{J})-1}H_{1}^{2(i+j)-1}\phi_{1j}\}=0

for  i=0,1 , ,  N,

 + \sum_{;=0}^{N^{*}}\{\nabla\cdot(\frac{1}{p_{i}+p_{j}+1}H_{2}^{p_{i}+p_{j}+1}
\nabla\phi_{2j}-\frac{p_{j}}{p_{i}+p_{j}}H_{2}^{p_{i}+p_{j}}\phi_{2j}\nabla b)
 + \frac{p_{i}}{p_{i}+p_{j}}H_{2}^{p_{i}+p_{j}}\nabla b\cdot\nabla\phi_{2j}-
\frac{p_{i}p_{j}}{p_{i}+p_{j}-1}H_{2}^{p_{i+}p_{j}-1}(1+|\nabla b|^{2})\phi_{2j}
\}=0

for  i=0,1 , ,  N^{*},

 H_{1}^{2j} \partial_{t}\phi_{1j}+g\zeta+\frac{1}{2}(|\sum_{j=0}^{N}H_{1}^{2j}
\nabla\phi_{ij}|^{2}+(\sum_{j=0}^{N}2jH_{1}^{2j-1}\phi_{ij})^{2})\}
  \sum_{j=0}^{N^{*}}H_{2}^{p_{j}}\partial_{t}\phi_{2j}+g\zeta

 + \frac{1}{2}(|\sum_{j=0}^{N^{*}}(H_{2}^{p_{j}}\nabla\phi_{2j}-p_{j}H_{2}
^{p_{j}-1}\phi_{2j}\nabla b)|^{2}+(\sum_{j=0}^{N^{*}}p_{j}H_{2}^{p_{j}-1}
\phi_{2j})^{2})\}=0.
(14)
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Here and in what follows we use the notational convention  0/0=0.
In the case  N=0 , that is, if we approximate the velocity potentials in the Lagrangian

by functions independent of the vertical spatial variable  z as

 \Phi_{1}^{app}(x, z, t)=\phi_{1}(x, t) , \Phi_{2}^{app}(x, z, t)=\phi_{2}(x, t) ,

then the Kakinuma model is reduced to the nonlinear shallow water equations

 \{\begin{array}{l}
\partial_{t}\zeta-\nabla\cdot((h_{1}-\zeta)\nabla\phi_{1})=0,
\partial_{t}\zeta+\nabla\cdot((h_{2}+\zeta-b)\nabla\phi_{2})=0,
\rho_{1}(\partial_{t}\phi_{1}+g\zeta+\frac{1}{2}|\nabla\phi_{1}|^{2})-\rho_{2}
(\partial_{t}\phi_{2}+g\zeta+\frac{1}{2}|\nabla\phi_{2}|^{2})=0.
\end{array} (15)

4 Linear dispersion relation

Assuming that  b(x)\equiv 0 , we linearize the Kakinuma model (14) around the rest state.
By putting  \varphi_{1}=(\phi_{10}, h_{1}^{2}\phi_{11}, \ldots, h_{1}^{2N}\phi_{1N})^{T} and  \varphi_{2}=(\phi_{20}, h_{2}^{p1}\phi_{21}, \ldots, h_{2}^{p_{N^{*}}}\phi_{2N^
{*}})^{T} , the

linearized equations have the form

 (\begin{array}{lll}
0   -\rho_{1}1^{T}   \rho_{2}1^{T}
h_{1}1   O   O
-h_{2}1   O   O
\end{array})  \partial_{t}  (\begin{array}{l}
\zeta
\varphi_{1}
\varphi_{2}
\end{array})
 + (\begin{array}{lll}
(\rho_{2}-\rho_{1})g   0^{T}   0^{T}
0   -h_{1}^{2}A_{1}^{(0)}\triangle+A_{1}^{(1)}   O
0   O   -h_{2}^{2}A_{2}^{(0)}\triangle+A_{2}^{(1)}
\end{array})(\begin{array}{l}
\zeta
\varphi_{1}
\varphi_{2}
\end{array})=0 , (16)

where  1=  ( 1 . ,  1)^{T} and matrices  A_{k}^{(0)} and  A_{k}^{(1)} for  k=1,2 are given by

 A_{1}^{(0)}=( \frac{1}{2(i+\dot{j})+1})_{0\leq i,j\leq N} A_{1}^{(1)}=
(\frac{4ij}{2(i+j)-1})_{0\leq i,j\leq N}
 A_{2}^{(0)}=( \frac{1}{p_{i}+p_{j}+1})_{0\leq i,j\leq N^{*}}, A_{2}^{(1)}=
(\frac{p_{i}p_{j}}{p_{\dot{i}}+p_{j}-1})_{0\leq i,j\leq N^{*}}

Therefore, the linear dispersion relation to the Kakinuma model is given by

 \det (\begin{array}{lll}
(\rho_{2}-\rho_{1})g   i\rho_{1}\omega 1^{T}   -i\rho_{2}\omega 1^{T}
-ih_{1}\omega 1   A_{1}(h_{1}\xi)   O
ih_{2}\omega 1   O   A_{2}(h_{2}\xi)
\end{array})=0,
where  \xi\in R^{n} is the wave vector,  \omega\in C the angular frequency, and  A_{k}(\xi)=|\xi|^{2}A_{k}^{(0)}+A_{k}^{(1)}
for  k=1,2 . We can expand this dispersion relation as

 (\rho_{1}h_{1}\det\~{A}_{1}(h_{1}\xi)\det A_{2}(h_{2}\xi)+\rho_{2}h_{2}
\det\~{A}_{2}(h_{2}\xi)\det A_{1}(h_{1}\xi))\omega^{2}
 -(\rho_{2}-\rho_{1})g\det A_{1}(h_{1}\xi)\det A_{2}(h_{2}\xi)=0,
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where

 \~{A}_{k}(\xi)=(\begin{array}{ll}
0   1^{T}
-1   A_{k}(\xi)
\end{array})
for  k=1,2 . Therefore, the dispersion relation for the Kakinuma model has the form

  \omega^{2}=\frac{(\rho_{2}-\rho_{1})g\det A_{1}(h_{1}\xi)\det A_{2}(h_{2}\xi)}
{\rho_{1}h_{1}\det\tilde{A}_{1}(h_{1}\xi)\det A_{2}(h_{2}\xi)+\rho_{2}h_{2}
\det\tilde{A}_{2}(h_{2}\xi)\det A_{1}(h_{1}\xi)} . (17)

Concerning the determinants appearing in the above dispersion relation, we have the

following proposition.

Proposition 1 1. For any  \xi\in R^{n}\backslash \{0\} , the symmetric matrices  A_{1}(\xi) and  A_{2}(\xi) are

positive.

2. There exists  c_{0}>0 such that for any  \xi\in R^{n} we have  \det\~{A}_{k}(\xi)\geq c_{0} for  k=1,2.

3.  |\xi|^{-2}\det A_{1}(\xi) and  |\xi|^{-2}\det A_{2}(\xi) are polynomials in  |\xi|^{2} of degree  N and  N^{*} and

the coefficient of  |\xi|^{2N} and  |\xi|^{2N^{*}} are  \det A_{1}^{(0)} and  \det A_{2}^{(0)} , respectively.

4.  \det\~{A}_{1}(\xi) and  \det\~{A}_{2}(\xi) are polynomials in  |\xi|^{2} of degree  N and  N^{*} and the coefficient

of  |\xi|^{2N} and  |\xi|^{2N^{*}} are  \det\~{A}_{1}^{(0)} and  \det\~{A}_{2}^{(0)} , respectively.

Thanks of this proposition and the dispersion relation (17), the linearized system (16) is
classified into the dispersive system, so that the Kakinuma model is a nonlinear dispersive

system of equations. Therefore, we can define the phase speed  c_{K}(\xi) of the plane wave

solution to (16) related to the wave vector  \xi\in R^{n} by

 c_{K}(\xi)=\pm\sqrt{\frac{(\rho_{2}-\rho_{1})g|\xi|^{-2}\det A_{1}(h_{1}\xi)
\det A_{2}(h_{2}\xi)}{\rho_{1}h_{1}\det\tilde{A}_{1}(h_{1}\xi)\det A_{2}(h_{2}
\xi)+\rho_{2}h_{2}\det\tilde{A}_{2}(h_{2}\xi)\det A_{1}(h_{1}\xi)}}.
On the other hand, the phase speed  c_{IW}(\xi) to the internal gravity waves is given by

 c_{IW}(\xi)=\pm\sqrt{\frac{(\rho_{2}-\rho_{1})g|\xi|^{-1}\tanh(h_{1}|\xi|)\tanh
(h_{2}|\xi|)}{\rho_{2}\tanh(h_{1}|\xi|)+\rho_{1}\tanh(h_{2}|\xi|)}}
As a shallow water limit  h_{1}|\xi|,  h_{2}|\xi|arrow 0 , we have

 c_{IW}(\xi)\simeq c_{LIW}=\pm\sqrt{\frac{(\rho_{2}-\rho_{1})gh_{1}h_{2}}
{\rho_{2}h_{1}+\rho_{1}h_{2}}} . (18)

Here,  c_{LIW} is the phase speed of the linear internal gravity waves. The following theorem

is one of our main result in this article and shows that the Kakinuma model is a higher

order shallow water approximation to the internal gravity waves at least in the linear
level.
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Theorem 1 There exists a positive constant  C depending only on  N such that for any

 \xi\in R^{n} we have

 |( \frac{c_{IW}(\xi)}{c_{LIW}})^{2}-(\frac{c_{K}(\xi)}{c_{LIW}})^{2}|\leq 
C(h_{1}|\xi|+h_{2}|\xi|)^{4N+2}
Now, let us compare this error estimate with those of well‐known models for internal

gravity waves. In the case of the shallow water equations (15), the corresponding error
estimate is

 |( \frac{c_{IW}(\xi)}{c_{LIW}})^{2}-1|\leq C(h_{1}|\xi|+h_{2}|\xi|)^{2}
As for the Choi‐Camassa model given in [2], the corresponding error estimate is

 |( \frac{c_{IW}(\xi)}{c_{LIW}})^{2}-(\frac{c_{CC}(\xi)}{c_{LIW}})^{2}|\leq C(h_
{1}|\xi|+h_{2}|\xi|)^{4}.
Therefore, the Kakinuma model is a much higher shallow water approximation than the
well‐known models.

5 Stability condition

We linearize the equations in (14) around an arbitrary flow  (\phi_{1}, \phi_{2}, \zeta) and denote the
variation by  (\dot{\phi}_{1},\dot{\phi}_{2},\dot{\zeta}) . By neglecting lower order terms, the linearized equations have
the form

 \{\begin{array}{l}
\partial_{t}\dot{\zeta}+u_{1}\cdot\nabla\dot{\zeta}-\sum_{\dot{j}=0}^{N}\frac{1}
{2(i+\dot{j})+1}H_{1}^{2j+1}\triangle\dot{\phi}_{1j}=f_{1i} for i=0,1, , N,
\partial_{t}\dot{\zeta}+u_{2}\cdot\nabla\dot{\zeta}+\sum_{j=0}^{N^{*}}\frac{1}
{p_{i}+p_{j}+1}H_{2}^{p_{j}+1}\triangle\dot{\phi}_{2j}=f_{2i} for i=0,1, N^{*},
\rho_{1}\sum_{j=0}^{N}H_{1}^{2_{\dot{J}}}(\partial_{t}\dot{\phi}_{1j}+u_{1}\cdot
\nabla\dot{\phi}_{1j})-\rho_{2}\sum_{j=0}^{N^{*}}H_{2}^{p_{J}\prime}
(\partial_{t}\dot{\phi}_{2j}+u_{2}\cdot\nabla\dot{\phi}_{2j})-a\dot{\zeta}=f_{0}
,
\end{array} (19)

where

 \{\begin{array}{l}
u_{1}=\sum_{i=0}^{N}H_{1}^{2i}\nabla\phi_{1i}=(\nabla\Phi_{1}^{app})|_{z=\zeta},
w_{1}=-\sum_{i=0}^{N}2iH_{1}^{2i-1}\phi_{1i}=(\partial_{z}\Phi_{1}^{app})|_{z=
\zeta},
u_{2}=\sum_{i=0}^{N^{*}}(H_{2}^{p_{i}}\nabla\phi_{2i}-p_{i}H_{2}^{p_{i}-1}
\phi_{2i}\nabla b)=(\nabla\Phi_{2}^{app})|_{z=\zeta},
w_{2}=\sum_{i=0}^{N^{*}}p_{\dot{i}}H_{2}^{p_{i}-1}\phi_{2i}=(\partial_{z}
\Phi_{2}^{app})|_{z=\zeta}
\end{array} (20)
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are approximate horizontal and vertical velocities in the upper and the lower layers on
the interface and

 a= \rho_{2}(\sum_{\dot{i}=0}^{N^{*}}p_{i}H_{2}^{p_{i}-1}(\partial_{t}\phi_{2i}+
u_{2}\cdot\nabla\phi_{2i})+\sum_{i=0}^{N^{*}}p_{i}(p_{i}-1)H_{2}^{p_{i}-2}(w_{2}
-u_{2}\cdot\nabla b)\phi_{2i}+g)
 + \rho_{1}(\sum_{i=0}^{N}2iH_{1}^{2i-1}(\partial_{t}\phi_{1i}+u_{1}
\cdot\nabla\phi_{1i})+w_{1}\sum_{i=0}^{N}2i(2i-1)H^{2(i-1)}\phi_{1i}-g)

 =(\partial_{z}(P_{2}^{app}-P_{1}^{app}))|_{z=\zeta} . (21)

Here,  P_{1}^{app} and  P_{2}^{app} are approximate pressures in the upper and the lower layers calculated

from Bernoulli’s laws (4) -(5) , that is,

 P_{1}^{app}=- \rho_{1}(\partial_{t}\Phi_{1}^{app}+\frac{1}{2}|\nabla_{X}
\Phi_{1}^{app}|^{2}+gz) ,

 P_{2}^{app}=- \rho_{2}(\partial_{t}\Phi_{2}^{app}+\frac{1}{2}|\nabla_{X}
\Phi_{2}^{app}|^{2}+gz) .

Now, we freeze the coefficients in (19). Putting

 \{\begin{array}{l}
\dot{\varphi}_{1}=(\dot{\phi}_{10}, H_{1}^{2}\dot{\phi}_{11}, \ldots, H_{1}^{2N}
\dot{\phi}_{1N})^{T},
\dot{\varphi}_{2}=(\dot{\phi}_{20}, H_{2}^{p_{1}}\dot{\phi}_{21}, \ldots, H_{2}^
{p_{N^{*}}}\dot{\phi}_{2N^{*}})^{T},
\end{array}
we can rewrite (19) in a matrix form as

 (\begin{array}{lll}
0   -\rho_{1}1^{T}   \rho_{2}1^{T}
H_{1}1   O   O
-H_{2}1   O   O
\end{array})  \partial_{t}  (\begin{array}{l}
\dot{\zeta}
\dot{\varphi}_{1}
\dot{\varphi}_{2}
\end{array})
 + (\begin{array}{lll}
a   -\rho_{1}1^{T}(u_{1}\cdot\nabla)   \rho_{2}1^{T}(u_{2}\cdot\nabla)
H_{1}1(u_{1}\cdot\nabla)   -H_{1}^{2}A_{1}^{(0)}\triangle   O
-H_{2}1(u_{2}\cdot\nabla)   O   -H_{2}^{2}A_{2}^{(0)}\triangle
\end{array}) (\begin{array}{l}
\dot{\zeta}
\dot{\varphi}_{1}
\dot{\varphi}_{2}
\end{array})=(\begin{array}{l}
-f_{0}
f_{1}
-f_{2}
\end{array})

Therefore, the corresponding linear dispersion relation is given by

 \det (\begin{array}{lll}
a   i\rho_{1}(\omega-u_{1}\cdot\xi)1^{T}   -i\rho_{2}(\omega-u_{2}\cdot\xi)1^{T}
-\dot{{\imath}}H_{1}(\omega-u_{1}\cdot\xi)1      
\dot{{\imath}}H_{2}(\omega-u_{2}\cdot\xi)1   O   (H_{2}|\xi|)^{2}A_{2}^{(0)}
\end{array}), (H_{1}|\xi|)^{2}A_{1}^{(0)} O

which can be expanded as

  \frac{\rho_{1}}{H_{1}a_{1}}(\omega-u_{1}\cdot\xi)^{2}+\frac{\rho_{2}}{H_{2}
a_{2}}(\omega-u_{2}\cdot\xi)^{2}-a|\xi|^{2}=0 , (22)

where

 a_{k}= \frac{\det A_{k}^{(0)}}{\det\tilde{A}_{k}^{(0)}}, \~{A}_{k}^{(0)}=
(\begin{array}{ll}
0   1^{T}
-1   A_{k}^{(0)}
\end{array}) (23)
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for  k=1,2 . It is easy to see that the solutions  \omega to the dispersion relation (22) are real
for any  \xi\in R^{n} if and only if

 a- \frac{\rho_{1}\rho_{2}}{p_{1}H_{2}a_{2}+\rho_{2}H_{1}a_{1}}|u_{1}-u_{2}|^{2}
\geq 0.
This leads us the following stability condition

 a- \frac{\rho_{1}\rho_{2}}{\rho_{1}H_{2}a_{2}+\rho_{2}H_{1}a_{1}}|u_{1}-u_{2}|^
{2}\geq c_{0} (24)

for some positive constant  c_{0} , which is equivalent to

  \partial_{z}(P_{2}^{app}-P_{1}^{app})-\frac{\rho_{1}\rho_{2}}{\rho_{1}H_{2}
a_{2}+\rho_{2}H_{1}a_{1}}|\nabla\Phi_{2}^{app}-\nabla\Phi_{1}^{app}|^{2}\geq 
c_{0} on  \Gamma(t) .

We note that  a_{1} and  a_{2} are positive constants depending only on  N and converges to  0

as   Narrow\infty . Therefore, as  N goes to infinity the regime of the stability diminishes.

6 Well‐posedness of the initial value problem

We proceed to consider the initial value problem to the Kakinuma model (14) under
the initial condition

 (\phi_{1}, \phi_{2}, \zeta)|_{t=0}=(\phi_{1(0)}, \phi_{2(0)}, \zeta_{(0)}) . (25)

Here, we remark that the Kakinuma model has a drawback, that is, the hypersurface
 t=0 is characteristic for the Kakinuma model, so that the initial value problem to the

Kakinuma model (14) and (25) is not solvable in general. In fact, if the problem has a
solution  (\phi_{1}, \phi_{2}, \zeta) , then by eliminating the time derivative  \partial_{t}\zeta from the equations we see

that the solution has to satisfy the relations

  \ovalbox{\tt\small REJECT}\frac{1}{.(2j+1}H_{1}^{2j+1}\nabla\phi_{1j})^{fori=
1,2,..,N}H_{1}^{2i}\sum_{\sum_{j=0}^{j=0}\nabla}.(.\frac{1}{2j+1,(}H_{1}^{2j+1}
\nabla\phi_{1j})+\sum^{H_{2}^{-\sum_{N^{*}}^{N}\{\nabla.\frac{1}{2(i+\dot{j})+1}
.H_{1}^{2(i+j)+1}\nabla\phi_{1j})-\frac{4ij}{2(i+\dot{j})-1}H_{1}^{2(i+j)-1}
\phi_{1j}.\}.=0}p_{i}}\{\cdot\frac{1}{p_{i}+p_{j}+1}H_{2}^{p_{i}+p_{j}+1}
\frac{p_{j}}{p_{i}+p_{j}}H_{2}^{p_{\dot{i}}+p_{j}}\phi_{2j}\nabla b)j=0j=
0N_{\nabla}N+\frac{\nabla(p_{i}}{p_{i}+p_{j}}H_{2}^{p_{\dot{i}}+p_{j}}\nabla 
b\nabla\phi_{2_{\dot{J}}}-\frac{\nabla\phi_{2j}-p_{i}p_{j}}{p_{i}+p_{j}-1}H_{2}^
{p_{\dot{i}}+p_{j}-1}(1+|\nabla b|^{2})\phi_{2j}.\}=0fori=0,1,.,N^{*} (26)
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In the following we write  \phi_{1}=(\phi_{10}, \phi_{1}')^{T},  \phi_{2}=(\phi_{20}, \phi_{2}')^{T},  \phi_{1(0)}=(\phi_{10(0)}, \phi_{1(0)}')^{T} , and

 \phi_{2(0)}=(\phi_{20(0)}, \phi_{2(0)}')^{T} . We denote by  H^{m}=H^{m}(R^{n}) and  W^{m,\infty}=W^{m,\infty}(R^{n}) the  L^{2}

and the  L^{\infty} Sobolev spaces of order  m , respectively. The following theorem states that the

initial value problem to the Kakinuma model is well‐posed locally in time in the Sobolev

space  H^{m} under the necessary conditions (26), the stability condition (24), and positivity
of the thicknesses of the upper and lower layers.

Theorem 2 Let  g,  \rho_{1},  \rho_{2},  h_{1},  h_{2},  c_{0},  M_{0} be positive constants and  m an integer such that

 m>n/2+1 . There exists a time  T>0 such that if the initial data  (\phi_{1(0)}, \phi_{2(0)}, \zeta_{(0)}) and

the bottom topography  b satisfy

 \{\begin{array}{l}
\Vert(\nabla\phi_{10(0)}, \nabla\phi_{20(0)}, \zeta_{(0)})\Vert_{H^{m}}+
\Vert(\phi_{1(0)}', \phi_{2(0)}')\Vert_{H^{m+1}}+\Vert b\Vert_{W^{m+2,\infty}}
\leq M_{0},
h_{1}-\zeta_{(0)}(x)\geq c_{0}, h_{2}+\zeta_{(0)}(x)-b(x)\geq c_{0} for x\in 
R^{n},
\end{array}
the necessary conditions (26), and the stability condition (24), then the initial value prob‐
lem (14) and (25) to the Kakinuma model has a unique solution  (\phi_{1}, \phi_{2}, \zeta) satisfying

 \nabla\phi_{10}, \nabla\phi_{20}, \zeta\in C([0, T];H^{m}) , \phi_{1}', 
\phi_{2}\in C([0, T];H^{m+1}) .

We note that the initial value problem to the full equations for internal gravity waves is

ill‐posed whereas the problem to the Kakinuma model is well‐posed, although the Kak‐

inuma model would be a higher order shallow water approximation of the full equations.

This interesting inconsistency comes from the fact that as a deep water limit we have

 | \xi|arrow\infty 1\dot{{\imath}}m(\frac{c_{K}(\xi)}{c_{LIW}})^{2}=\frac{(\rho_
{2}h_{1}+\rho_{1}h_{2})\det A_{1}^{(0)}\det A_{2}^{(0)}}{\rho_{2}h_{1}\det A_{1}
^{(0)}\det\tilde{A}_{2}^{(0)}+\rho_{1}h_{2}\det A_{2}^{(0)}\det\tilde{A}_{1}
^{(1)}}>0,
which is not consistent with

 | \xi|arrow\infty 1\dot{{\imath}}m(\frac{c_{IW}(\xi)}{c_{LIW}})^{2}=0.
As for the Choi‐Camassa model, we have

 | \xi|arrow\infty 1\dot{{\imath}}m(\frac{c_{CC}(\xi)}{c_{LIW}})^{2}=0,
which is consistent with the above deep water limit to the full equations. This is one of

the reasons why there is no stability regime for the Choi‐Camassa model as in the case

of the full equations.

If the initial data  (\phi_{1(0)}, \phi_{2(0)}, \zeta_{(0)}) and the bottom topography  b are sufficiently small,

then the stability condition (24) and positivity of the thicknesses of the upper and lower
layers are automatically satisfied under Rayleigh’s stability condition  (\rho_{2}-\rho_{1})g>0.
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However, it is not evident how we prepare the initial data so that they satisfy the necessary

conditions (26). On the other hand, as was shown by T. B. Benjamin and T. J. Bridges
[1] and W. Craig and M. D. Groves [3] the basic equations (2)  -(10) for internal gravity
waves have a Hamiltonian structure and the Hamiltonian is given by the total energy

  \mathscr{H}=\int_{\Omega_{1}(t)}\frac{1}{2}\rho_{1}|\nabla_{X}\Phi_{1}|^{2}dX+
\int_{\Omega_{2}(t)}\frac{1}{2}\rho_{2}|\nabla_{X}\Phi_{2}|^{2}dX
 + \int_{R^{n}}  ( \int_{0}^{\zeta}\rho_{1}(-g)zdz+\int_{0}^{\zeta}\rho_{2} gzdz  ) dx.

The canonical variables are  (\zeta, \phi) , where  \phi is defined by

 \phi=-\rho_{1}\Phi_{1}|_{z=\zeta}+\rho_{2}\Phi_{2}|_{z=\zeta}.

Therefore, it is natural to impose the initial data on these canonical variables. The

corresponding quantity to the Kakinuma model is given by

 \phi=-\rho_{1}\Phi_{1}^{app}|_{z=\zeta}+\rho_{2}\Phi_{2}^{app}|_{z=\zeta}

 =- \rho_{1}\sum_{i=0}^{N}H_{1}^{2i}\phi_{1i}+\rho_{2}\sum_{i=0}^{N^{*}}H_{2}
^{p_{i}}\phi_{2i} , (27)

where  H_{1} and  H_{2} are mean thicknesses of the upper and the lower layers given by (13).
The following proposition states that once we are given the initial data for the canonical

variables  (\zeta, \phi) and the bottom topography  b satisfying the positivity of the thicknesses

of the upper and the lower layers, the necessary conditions (26) and the relation (27)
determine uniquely the initial data for the Kakinuma model.

Proposition 2 Let  \rho_{1},  \rho_{2},  h_{1},  h_{2},  c_{0},  M be positive constants and  m an integer such that

 m> \frac{n}{2}+1 . There exists a positive constant  C such that if  \zeta and  b satisfy

 \{\begin{array}{ll}
\Vert\zeta\Vert_{H^{m}}+\Vert b\Vert_{W^{m,\infty}}\leq M,   
H_{1}(x)=h_{1}-\zeta(x)\geq c_{0} ,   H_{2}(x)=h_{2}+\zeta(x)-b(x)\geq c_{0} for
x\in R^{n},
\end{array}
then for any  \phi satisfying  \nabla\phi\in H^{m-1} there exists a solution  (\phi_{1}, \phi_{2}) to (26)‐(27) satis‐
fying

 \Vert(\phi_{1}', \phi_{2}')\Vert_{H^{m}}+\Vert(\nabla\phi_{10}, \nabla\phi_{20}
)\Vert_{H^{m-1}}\leq C\Vert\nabla\phi\Vert_{H^{m-1}}.

Moreover, the solution is unique up to an additive constant of the form  (C\rho_{2}, C\rho_{1}) to

 (\phi_{10}, \phi_{20}) .
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7 Conserved quantities

As in the case of the basic equations for internal gravity waves, the Kakinuma model

has conserved quantities: mass and energy, which are given by

Mass  = \int_{R^{n}}\zeta dx,

Energy  = \int_{\Omega_{1}(t)}\frac{1}{2}\rho_{1}|\nabla_{X}\Phi_{1}^{app}|^{2}dX+\int_
{\Omega_{2}(t)}\frac{1}{2}\rho_{2}|\nabla_{X}\Phi_{2}^{app}|^{2}dX
 + \int_{R^{n}}  ( \int_{0}^{\zeta}\rho_{1}(-g)zdz+\int_{0}^{\zeta}\rho_{2}gzdz  ) dx,

where the approximate velocity potentials  \Phi_{1}^{app} and  \Phi_{2}^{app} are given by (1). Moreover,
if the bottom is flat, then we have another conserved quantity, that is, the horizontal

components of the momentum, which is given by

Momentum  = \int_{\Omega_{1}(t)}\rho_{1}\nabla\Phi_{1}^{app}dX+\int_{\Omega_{2}(t)}
\rho_{2}\nabla\Phi_{2}^{app}dX
 = \int_{R^{n}}\zeta\nabla\phi dx,

where  \phi is the canonical variable given by (27).

The details in this article will be published elsewhere.
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