
50

ANALYSIS OF DYNAMICAL SYSTEMS USING LOW

SEPARATION AXIOMS

TOMOO YOKOYAMA

ABSTRACT. In this paper, we analyze dynamical systems using low separation
axioms. In particular, we characterize the T_{2} separation axiom for dynamical
systems and describe  T_{2} ” dynamical systems. We also characterize recurrence
of orbits.

1. INTRODUCTION

In 1927, Birkhoff introduced the concepts of non‐wandering points and recurrent
points [3]. Using these concepts, we can describe and capture sustained or station‐
ary dynamical behaviors and conservative dynamics. In [2] and [7], it is showed that
the following properties are equivalent for an group‐action of a finitely generated
group  G on either a compact zero‐dimensional space or a graph  X : 1) the group‐
action is pointwise recurrent; 2) the group‐action is pointwise almost periodic; 3)
the group‐action is  R‐closed. Since each dynamical system whose orbit class space
is  T_{1} consists of minimal sets, the orbit class spaces of dynamical systems is not  T_{1}

in general. Because the orbit class space of a dynamical system is the  T_{0}|‐tification
of the orbit space, the separation axioms between  T_{0} and  T_{1} are important to de‐
scribe and analyze dynamical systems in detail. Note that higher separation axiom
cannot be characterized by the specialization partial order, because the  T_{1} sepa‐
ration axiom is characterized as an antichain (i.e. a poset where any two distinct
elements are incomparable) by the specialization partial order.

2. PRELININAIRES

2.1. Topological notions. Define the class  \hat{x} of a point  x of a topological space
 (X, \tau) by  \hat{x}  :=\{y\in X|\overline{x}=\overline{y}\} , where  \overline{x} is the closure of the singleton  \{x\} . The
quotient space of  X by the classes is denoted by  \hat{X} (i.e.  \hat{X}  :=\{\hat{x}|x\in X\} ) and
called the class space of  X . The quotient topology is denoted by  \hat{\tau} . In other words,
the class space  \hat{X} of  X is the quotient space   X/\sim defined by the following relation:
 x\sim y if  \overline{x}=\overline{y}.

2.2. Separation axioms for points. Let  (X, \tau) be a topological space. A point
 x\in X is  T_{0} if for any point  y\in X-\{x\} , there is an open subset  U of such that
 \{x, y\}\cap U is a singleton. A point  x is  T_{1} if the singleton  \{x\} is closed. For any  \sigma,

a point  x in  X is  S_{\sigma} if the point  \hat{x} in  \hat{X} is  T_{\sigma} . For instance, a point  x\in X is  S_{1} if
and only if  \hat{x} is a closed point in  \hat{X}.

Date: December 3, 2018.
The author is partially supported by the JST PRESTO Grant Number  JPMJPR16ED at

Department of Mathematics, Kyoto University of Education.

50



51

2.3. Decompositions of topological spaces. By a decomposition, we mean a
family  \mathcal{F} of pairwise disjoint nonempty subsets of a set  M such that  M=\sqcup \mathcal{F},
where  U is a disjoint union symbol). A decomposition  \mathcal{F} can be identified with a
quotient space of  M , denoted by  M/\mathcal{F} and called the decomposition space of  M.

A subset of a set is  \mathcal{F}‐invariant (or  \mathcal{F}‐saturated) if it is a union of elements of a
decomposition

Let  \mathcal{F} be a decomposition of a topological space  (M, \tau) . The quotient topology
of a decomposition space  M/\mathcal{F} is denoted by  \tau_{M/\mathcal{F}} . The topology  \{\sqcup U|U\in
 \tau_{M/\mathcal{F}}\} on  M is denoted by  \tau_{\mathcal{F}} and called the saturated topology on  M of  \mathcal{F}.

The union of the class of  L\in \mathcal{F} is denoted by  \hat{L} and called the class element of
 L . The decomposition  \{\hat{L}|L\in \mathcal{F}\} of  M is denoted by  \hat{\mathcal{F}} and called the class
decomposition. The class space of a decomposition space  M/\mathcal{F} is denoted by  M/\hat{\mathcal{F}}
and called the class decomposition space. Then the class decomposition  \hat{\mathcal{F}} also
can be identified with the class decomposition space  M/\hat{\mathcal{F}} . Note that the set of
saturations of open subsets is a basis of the saturated topology. In the case that a
decomposition is either a foliation or the set of orbits of a group‐action, the set of
saturations of open subsets is the saturated topology [11].

3.  S_{2} (RESP.  T_{2} ) SEPARATION AXIOM FOR DYNAMICAL SYSTEMS

3.1. Separation axiom for flows. Define the specialization pre‐order  \leq_{\tau} of a
topological space  (X, \tau) as follows:  x\leq_{\tau}y if  x\in\overline{y} . By a flow, we mean an R‐
action on a topological space. Note that the set of orbits of a flow  v on a topological
space  M is a decomposition, denoted by  \mathcal{F}_{v} , and the decomposition space is called
the orbit space of  v and denoted by  M/v . Moreover the class decomposition space
is called the orbit class space and denoted by  M/\hat{v} . Let  v be a flow on a compact
Hausdorff space  M . The specialization preorder of  v is the specialization pre‐order

 \leq_{\tau_{M/v}} on the orbit space  M/v . By definitions, we obtain the following observations.

Remark 1. The following statements hold.
1)  M/v :   T_{0}\Leftrightarrow the specialization preorder of  v is a partial order.
2)  M/v:T_{1}\Leftrightarrow v is pointwise periodic.
3)  M/v:S_{1}\Leftrightarrow M/\hat{v} :  T_{1}\Leftrightarrow v is pointwise almost periodic.
4)  M/v:S_{0}\Leftrightarrow M/\hat{v} :   T_{0}\Leftrightarrow There are no conditions.

We consider the following complementary questions.

Question 1.
1)   M/v:T_{2}\Leftrightarrow ?
2)  M/v :  S_{2}\Leftrightarrow M/\hat{v} :   T_{2}\Leftrightarrow ?

3.2. Characterization of  S_{2} (resp.  T_{2} ) separation axiom. A decomposition
 \mathcal{F} is upper semicontinuous (usc) if each element of  \mathcal{F} is both closed and compact
and for any  L\in \mathcal{F} and for any open neighbourhood  U of  L there is a  \mathcal{F}‐saturated
neighbourhood of  L contained in  U , pointwise almost periodic if each class element
of it is closed, and  R‐closed if the subset  R=\{(x, y)\in M\cross M|y\in \mathcal{F}(x)\}
is a closed subset, where  \mathcal{F}(x) is the element of  \mathcal{F} containing  x\in M . Recall a
point  x in  X is said to be of characteristic  0 [8] if  \hat{\mathcal{F}}(x)=D(x) for any  x\in X,

where  \hat{\mathcal{F}}(x) is the element of  \hat{\mathcal{F}} containing  x\in M and  D(x) is its (bilateral)
prolongation defined as follows:  D(x)=\{y\in X|y_{\alpha}\in \mathcal{F}(x_{\alpha}),  y_{\alpha}arrow y , and   x_{\alpha}arrow

 x for some nets  (y_{\alpha}),  (x_{\alpha})\subseteq X }. The decomposition is said to be of characteristic
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 0 if so is each point of it. An pointwise almost periodic decomposition  \mathcal{F} is weakly
almost periodic in the sense of Gottschalk W. H. if the saturation   \bigcup_{x\in}{}_{A}\overline{L_{x}} of closures
of elements for any closed subset  A of  X is closed. Notice that if  \mathcal{F} is pointwise
almost periodic then  \hat{\mathcal{F}} corresponds to the decomposition of closures of elements of
 \mathcal{F} . Weakly almost periodicity in the sense of Gottschalk implies pointwise almost
periodicity by definitions. The  S_{2}1‐separation axiom for orbit spaces is characterized
as follows.

Theorem 3.1. [5, 10] Let  v be a pointwise almost periodic flow of a compact
Hausdorff space M. The following are equivalent:

1) The orbit class space  M/\hat{v} is  T_{2} (i.e.  M/v is  S_{2} ).
2) The orbit class decomposition  \hat{\mathcal{F}}_{v} is usc.
3) The flow  v is  R‐closed.
4) The flow  v is weakly almost periodic.
5) The flow  v is of characteristic  0.

6) For any open neighbourhood  U of each element  \hat{L}\in\hat{\mathcal{F}}_{v} , there is an open
 \hat{\mathcal{F}}.‐saturated neighbourhood of  \hat{L} contained in  U.

This implies the following characterization of the Hausdorff separation axiom.

Corollary 3.2. Let  v be a pointwise periodic flow of a compact Hausdorff space
M. The following are equivalent:

1) The orbit space  M/v is  T_{2}.

2) The orbit decomposition  \mathcal{F}_{v} is usc.
3) The flow  v is  R‐closed.
4) The flow  v is weakly almost periodic.
5) The flow  v is of characteristic  0.

The previous theorem is followed from the key lemma.

Lemma 3.3. [5, 10] Let  \mathcal{F} be a pointwise almost periodic decomposition of a com‐
pact Hausdorff space  X which consists of connected elements. The following are
equivalent:

1) The decomposition  \mathcal{F} is  R‐closed.
2) The decomposition  \mathcal{F} is weakly almost periodic.
3) The decomposition  \mathcal{F} is of characteristic  0.

4) The class decomposition  \hat{\mathcal{F}} is  T_{2} (i.e.  \mathcal{F} is  S_{2} ).
5) The class decomposition  \hat{\mathcal{F}} is usc.
6) For any open neighbourhood  U of each element  \hat{L}\in\hat{\mathcal{F}} , there is an open

 \hat{\mathcal{F}}‐saturated neighbourhood of  \hat{L} contained in  U.

3.3.  T_{2} separation axiom for flows on compact 3‐manifolds. Recall that a
point  x of  S is singular if  x=v_{t}(x) for any  t\in \mathbb{R} , is regular if  x is not singular, and
is periodic if there is a positive number  T>0 such that  x=v_{T}(x) and  x\neq v_{t}(x)
for any  t\in(0, T) . Denote by Sing(v) the set of singular points and by Per(v) the
union of periodic orbits. By a continuum we mean a compact connected metrizable
space. A continuum  A\subset X is said to be annular if it has a neighborhood  U\subset X

homeomorphic to an open annulus such that  U-A has exactly two components,
both homeomorphic to annuli. A subset  C\subset X is a circloid if it is an annular
continuum and does not contain any strictly smaller annular continuum as a subset.
We state the following trichotomy that an  R‐closed flow on a connected compact
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3‐manifold is either “almost three dimensional “almost two dimensional “almost

one dimensional “almost zero dimensional or with “complicated” minimal sets.

Theorem 3.4. [10] Let  v be an  R‐closed flow on a connected compact 3‐manifold
M. Then one of the following holds:
1) the flow  v is identical.
2) the flow  v is minimal.
3) The orbit class space  M/\hat{v} of  M is a closed interval or a circle and each interior
point of the orbit class is two dimensional.
4) Per(v) is open dense and  M=Sing(v)\sqcup Per(v) .
5) There is a two dimensional minimal set which is not a suspension of a circloid.

3.4.  T_{2} separation axiom for “Codimensionone (resp. two) like”’ group‐
actions. By a group‐action, we mean a continuous action of a topological group
on a topological space. For a non‐negative integer  k , a group‐action  G is said to be
codimension‐k‐like if all but finitely many orbit closures of  \mathcal{F}_{G} are codimension  k

connected submanifolds without boundaries and the finite exceptions is connected
subsets each of whose codimension is more than  k , where  \mathcal{F}_{G} is the set of orbits of
 G . We have the following results.

Theorem 3.5. [10] The orbit class space of an  R‐closed group‐action on a compact
connected manifold one of whose finite index subgroups is codimension‐one‐like is
either a closed interval or a circle.

Theorem 3.6. [10] The orbit class space of an  R‐closed group‐action on a compact
connected manifold one of whose finite index subgroups is codimension‐two‐like is
a surface with corners.

4. TOPOLOGICAL CHARACTERIZATION OF RECURRENCE BY SEPARATION AXIOMS

4.1.  T_{1} (resp.  S_{1} ) separation axiom and Minimality for decompositions.
For a decomposition  \mathcal{F} on a set  M , a nonempty closed  \mathcal{F}‐invariant subset of a
topological space is a  \mathcal{F}‐minimal set (or  \mathcal{F}‐minimal) if it there are no nonempty
closed  \mathcal{F}‐invariant proper subset of it. A point  x of a topological space is  C_{R} [9]
if the derived set  \overline{x}-\{x\} contains no nonempty closed subsets. We have following
observations.

Lemma 4.1. [12] The following statements are equivalent for an element  O of a
decomposition  \mathcal{F} on a topological space:

1)  O is  T_{1}.

2)  O is  \mathcal{F}‐minimal.
3)  O is minimal in  M/\mathcal{F} with respect to the specialization preorder (i.e.   O\in

  \min M/\mathcal{F}) and O  = Ô.

Lemma 4.2. [12] The following statements are equivalent for an element  O of a
decomposition  \mathcal{F} on a topological space:

1)  O is  S_{1}.

 4)^{\frac{}{}}=\hat{O}3)^{\frac{O}{OO}}is\mathcal{F}-m2)isC_{R}inimal.

5) Ô is minimal in  M/\hat{\mathcal{F}} with respect to the specialization preorder (i.e.  \^{O}\in

  \min M/\hat{\mathcal{F}}) .
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Note that the condition  O is  C_{R} ” means that the derived set  \overline{O}-O contains

no nonempty  \mathcal{F}‐invariant closed subsets.

4.2. Propeness for topological spaces. A point  x of a topological space  X is
proper if there is its neighborhood  U in which  x is closed (i.e.  \overline{x}\cap U=\{x\} ) .  A

point  x\in X is  T_{D} [1] if the derived set  \overline{x}-\{x\} is a closed subset. Obviously we
have the following equivalence.

Lemma 4.3. [12] A point of a topological space is proper if and only if it is  T_{D}.

For orbits of flows on manifolds, properness corresponds to  T_{0} separation axiom.
Precisely, the following statement is follows from Cherry’s technique essentially[4].

Lemma 4.4. [12] The following statements are equivalent for an orbit  O of a flow
on a paracompact manifold:

1)  O is proper.
2)  O is  T_{D}.

3)  OisT_{0} (i.e. O  = Ô).
In [9], a point  x\in X is  C_{D} if the derived set  \overline{x}-\{x\} of  x is either empty or

non‐closed, and it is  C_{0} if the derived set  \overline{x}-\{x\} is not a union of nonempty closed
subsets. These axioms satisfies the following relations [9]:  S_{1}\Rightarrow C_{0}\Rightarrow C_{D} . We
have the following characterization of  C_{0} and  C_{D} by using pre‐order.

Lemma 4.5. [11] Let  x be a point of a topological space X. The following statement
holds:

1)  x is  C_{0} \Leftrightarrow x\in\min X or  |\hat{x}|>1.
2)  x is  C_{D} \Leftrightarrow x\in\min X or  x\in\overline{\overline{x}-\{x\}}.
We can summarize the following topological characterization of recurrence.

Theorem 4.6. [11] Let  v be a flow on a compact metrizable space  M and  O an
orbit of  v . The following statements are equivalent for the orbit space  M/v :

1)  O is recurrent
2)  O is either  T_{1} or non‐TD (i.e.  O is closed or non‐proper).
3)  O is either  S_{1} or non‐TD (i.e.  O is minimal or non‐proper).
4)  O is either  C_{R} or non‐TD.
5)  O is  C_{D}.

Moreover, if  M is a manifold, then the following conditions are equivalent to any
of above conditions:

6)  O is either  T_{1} or  non-T_{0}.

7)  O is either  S_{1} or  non-T_{0}.

8)  O is either  C_{R} or  non-T_{0}.

9)  O is  C_{0}.
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