ANALYSIS OF DYNAMICAL SYSTEMS USING LOW SEPARATION AXIOMS

TOMOO YOKOYAMA

ABSTRACT. In this paper, we analyze dynamical systems using low separation axioms. In particular, we characterize the T_2 separation axiom for dynamical systems and describe " T_2 " dynamical systems. We also characterize recurrence of orbits.

1. INTRODUCTION

In 1927, Birkhoff introduced the concepts of non-wandering points and recurrent points [3]. Using these concepts, we can describe and capture sustained or stationary dynamical behaviors and conservative dynamics. In [2] and [7], it is showed that the following properties are equivalent for an group-action of a finitely generated group G on either a compact zero-dimensional space or a graph X: 1) the groupaction is pointwise recurrent; 2) the group-action is pointwise almost periodic; 3) the group-action is R-closed. Since each dynamical system whose orbit class space is T_1 consists of minimal sets, the orbit class spaces of dynamical systems is not T_1 in general. Because the orbit class space of a dynamical system is the T_0 -tification of the orbit space, the separation axioms between T_0 and T_1 are important to describe and analyze dynamical systems in detail. Note that higher separation axiom cannot be characterized by the specialization partial order, because the T_1 separation axiom is characterized as an antichain (i.e. a poset where any two distinct elements are incomparable) by the specialization partial order.

2. Prelininaires

2.1. **Topological notions.** Define the class \hat{x} of a point x of a topological space (X, τ) by $\hat{x} := \{y \in X \mid \overline{x} = \overline{y}\}$, where \overline{x} is the closure of the singleton $\{x\}$. The quotient space of X by the classes is denoted by \hat{X} (i.e. $\hat{X} := \{\hat{x} \mid x \in X\}$) and called the class space of X. The quotient topology is denoted by $\hat{\tau}$. In other words, the class space \hat{X} of X is the quotient space X/\sim defined by the following relation: $x \sim y$ if $\overline{x} = \overline{y}$.

2.2. Separation axioms for points. Let (X, τ) be a topological space. A point $x \in X$ is T_0 if for any point $y \in X - \{x\}$, there is an open subset U of such that $\{x, y\} \cap U$ is a singleton. A point x is T_1 if the singleton $\{x\}$ is closed. For any σ , a point x in X is S_{σ} if the point \hat{x} in \hat{X} is T_{σ} . For instance, a point $x \in X$ is S_1 if and only if \hat{x} is a closed point in \hat{X} .

Date: December 3, 2018.

The author is partially supported by the JST PRESTO Grant Number JPMJPR16ED at Department of Mathematics, Kyoto University of Education.

2.3. Decompositions of topological spaces. By a decomposition, we mean a family \mathcal{F} of pairwise disjoint nonempty subsets of a set M such that $M = \bigsqcup \mathcal{F}$, where \bigsqcup is a disjoint union symbol). A decomposition \mathcal{F} can be identified with a quotient space of M, denoted by M/\mathcal{F} and called the decomposition space of M. A subset of a set is \mathcal{F} -invariant (or \mathcal{F} -saturated) if it is a union of elements of a decomposition

Let \mathcal{F} be a decomposition of a topological space (M, τ) . The quotient topology of a decomposition space M/\mathcal{F} is denoted by $\tau_{M/\mathcal{F}}$. The topology $\{\bigsqcup U \mid U \in \tau_{M/\mathcal{F}}\}$ on M is denoted by $\tau_{\mathcal{F}}$ and called the saturated topology on M of \mathcal{F} . The union of the class of $L \in \mathcal{F}$ is denoted by \hat{L} and called the class element of L. The decomposition $\{\hat{L} \mid L \in \mathcal{F}\}$ of M is denoted by $\hat{\mathcal{F}}$ and called the class decomposition. The class space of a decomposition space M/\mathcal{F} is denoted by $M/\hat{\mathcal{F}}$ and called the class decomposition space. Then the class decomposition $\hat{\mathcal{F}}$ also can be identified with the class decomposition space $M/\hat{\mathcal{F}}$. Note that the set of saturations of open subsets is a basis of the saturated topology. In the case that a decomposition is either a foliation or the set of orbits of a group-action, the set of saturations of open subsets is the saturated topology [11].

3. S_2 (Resp. T_2) separation axiom for dynamical systems

3.1. Separation axiom for flows. Define the specialization pre-order \leq_{τ} of a topological space (X, τ) as follows: $x \leq_{\tau} y$ if $x \in \overline{y}$. By a flow, we mean an \mathbb{R} -action on a topological space. Note that the set of orbits of a flow v on a topological space M is a decomposition, denoted by \mathcal{F}_v , and the decomposition space is called the orbit space of v and denoted by M/v. Moreover the class decomposition space is called the orbit class space and denoted by M/\hat{v} . Let v be a flow on a compact Hausdorff space M. The specialization preorder of v is the specialization pre-order $\leq_{\tau_{M/v}}$ on the orbit space M/v. By definitions, we obtain the following observations.

Remark 1. The following statements hold.

- 1) $M/v: T_0 \iff$ the specialization preorder of v is a partial order.
- 2) $M/v: T_1 \iff v$ is pointwise periodic.
- 3) $M/v: S_1 \iff M/\hat{v}: T_1 \iff v$ is pointwise almost periodic.
- 4) $M/v: S_0 \iff M/\hat{v}: T_0 \iff$ There are no conditions.

We consider the following complementary questions.

Question 1.

- 1) $M/v: T_2 \iff ?$
- 2) $M/v: S_2 \iff M/\hat{v}: T_2 \iff ?$

3.2. Characterization of S_2 (resp. T_2) separation axiom. A decomposition \mathcal{F} is upper semicontinuous (usc) if each element of \mathcal{F} is both closed and compact and for any $L \in \mathcal{F}$ and for any open neighbourhood U of L there is a \mathcal{F} -saturated neighbourhood of L contained in U, pointwise almost periodic if each class element of it is closed, and R-closed if the subset $R = \{(x, y) \in M \times M \mid y \in \mathcal{F}(x)\}$ is a closed subset, where $\mathcal{F}(x)$ is the element of \mathcal{F} containing $x \in M$. Recall a point x in X is said to be of characteristic 0 [8] if $\hat{\mathcal{F}}(x) = D(x)$ for any $x \in X$, where $\hat{\mathcal{F}}(x)$ is the element of $\hat{\mathcal{F}}$ containing $x \in M$ and D(x) is its (bilateral) prolongation defined as follows: $D(x) = \{y \in X \mid y_\alpha \in \mathcal{F}(x_\alpha), y_\alpha \to y, \text{ and } x_\alpha \to x \text{ for some nets } (y_\alpha), (x_\alpha) \subseteq X\}$. The decomposition is said to be of characteristic

0 if so is each point of it. An pointwise almost periodic decomposition \mathcal{F} is weakly almost periodic in the sense of Gottschalk W. H. if the saturation $\cup_{x \in A} \overline{L_x}$ of closures of elements for any closed subset A of X is closed. Notice that if \mathcal{F} is pointwise almost periodic then $\hat{\mathcal{F}}$ corresponds to the decomposition of closures of elements of \mathcal{F} . Weakly almost periodicity in the sense of Gottschalk implies pointwise almost periodicity by definitions. The S_2 -separation axiom for orbit spaces is characterized as follows.

Theorem 3.1. [5, 10] Let v be a pointwise almost periodic flow of a compact Hausdorff space M. The following are equivalent:

- 1) The orbit class space M/\hat{v} is T_2 (i.e. M/v is S_2).
- 2) The orbit class decomposition $\hat{\mathcal{F}}_v$ is usc.
- 3) The flow v is R-closed.
- 4) The flow v is weakly almost periodic.
- 5) The flow v is of characteristic 0.

6) For any open neighbourhood U of each element $\hat{L} \in \hat{\mathcal{F}}_v$, there is an open $\hat{\mathcal{F}}_v$ -saturated neighbourhood of \hat{L} contained in U.

This implies the following characterization of the Hausdorff separation axiom.

Corollary 3.2. Let v be a pointwise periodic flow of a compact Hausdorff space M. The following are equivalent:

- 1) The orbit space M/v is T_2 .
- 2) The orbit decomposition \mathcal{F}_v is usc.
- 3) The flow v is R-closed.
- 4) The flow v is weakly almost periodic.
- 5) The flow v is of characteristic 0.

The previous theorem is followed from the key lemma.

Lemma 3.3. [5, 10] Let \mathcal{F} be a pointwise almost periodic decomposition of a compact Hausdorff space X which consists of connected elements. The following are equivalent:

- 1) The decomposition \mathcal{F} is R-closed.
- 2) The decomposition \mathcal{F} is weakly almost periodic.
- 3) The decomposition \mathcal{F} is of characteristic 0.
- 4) The class decomposition $\hat{\mathcal{F}}$ is T_2 (i.e. \mathcal{F} is S_2).
- 5) The class decomposition $\hat{\mathcal{F}}$ is usc.

6) For any open neighbourhood U of each element $\hat{L} \in \hat{\mathcal{F}}$, there is an open $\hat{\mathcal{F}}$ -saturated neighbourhood of \hat{L} contained in U.

3.3. T_2 separation axiom for flows on compact 3-manifolds. Recall that a point x of S is singular if $x = v_t(x)$ for any $t \in \mathbb{R}$, is regular if x is not singular, and is periodic if there is a positive number T > 0 such that $x = v_T(x)$ and $x \neq v_t(x)$ for any $t \in (0, T)$. Denote by $\operatorname{Sing}(v)$ the set of singular points and by $\operatorname{Per}(v)$ the union of periodic orbits. By a continuum we mean a compact connected metrizable space. A continuum $A \subset X$ is said to be annular if it has a neighborhood $U \subset X$ homeomorphic to an open annulus such that U - A has exactly two components, both homeomorphic to annuli. A subset $C \subset X$ is a circloid if it is an annular continuum and does not contain any strictly smaller annular continuum as a subset. We state the following trichotomy that an R-closed flow on a connected compact

3-manifold is either "almost three dimensional", "almost two dimensional", "almost one dimensional", "almost zero dimensional", or with "complicated" minimal sets.

Theorem 3.4. [10] Let v be an R-closed flow on a connected compact 3-manifold M. Then one of the following holds:

1) the flow v is identical.

2) the flow v is minimal.

3) The orbit class space M/\hat{v} of M is a closed interval or a circle and each interior point of the orbit class is two dimensional.

4) $\operatorname{Per}(v)$ is open dense and $M = \operatorname{Sing}(v) \sqcup \operatorname{Per}(v)$.

5) There is a two dimensional minimal set which is not a suspension of a circloid.

3.4. T_2 separation axiom for "Codimensionone (resp. two) like" groupactions. By a group-action, we mean a continuous action of a topological group on a topological space. For a non-negative integer k, a group-action G is said to be codimension-k-like if all but finitely many orbit closures of \mathcal{F}_G are codimension kconnected submanifolds without boundaries and the finite exceptions is connected subsets each of whose codimension is more than k, where \mathcal{F}_G is the set of orbits of G. We have the following results.

Theorem 3.5. [10] The orbit class space of an R-closed group-action on a compact connected manifold one of whose finite index subgroups is codimension-one-like is either a closed interval or a circle.

Theorem 3.6. [10] The orbit class space of an R-closed group-action on a compact connected manifold one of whose finite index subgroups is codimension-two-like is a surface with corners.

4. TOPOLOGICAL CHARACTERIZATION OF RECURRENCE BY SEPARATION AXIOMS

4.1. T_1 (resp. S_1) separation axiom and Minimality for decompositions. For a decomposition \mathcal{F} on a set M, a nonempty closed \mathcal{F} -invariant subset of a topological space is a \mathcal{F} -minimal set (or \mathcal{F} -minimal) if it there are no nonempty closed \mathcal{F} -invariant proper subset of it. A point x of a topological space is C_R [9] if the derived set $\overline{x} - \{x\}$ contains no nonempty closed subsets. We have following observations.

Lemma 4.1. [12] The following statements are equivalent for an element O of a decomposition \mathcal{F} on a topological space:

1) O is T_1 .

2) O is \mathcal{F} -minimal.

3) O is minimal in M/\mathcal{F} with respect to the specialization preorder (i.e. $O \in \min M/\mathcal{F}$) and $O = \hat{O}$.

Lemma 4.2. [12] The following statements are equivalent for an element O of a decomposition \mathcal{F} on a topological space:

1) O is S_1 .

2) O is C_R .

- 3) \overline{O} is \mathcal{F} -minimal.
- 4) $\overline{O} = \hat{O}$.

5) \hat{O} is minimal in $M/\hat{\mathcal{F}}$ with respect to the specialization preorder (i.e. $\hat{O} \in \min M/\hat{\mathcal{F}}$).

Note that the condition "O is C_R " means that the derived set $\overline{O} - O$ contains no nonempty \mathcal{F} -invariant closed subsets.

4.2. Propeness for topological spaces. A point x of a topological space X is proper if there is its neighborhood U in which x is closed (i.e. $\overline{x} \cap U = \{x\}$). A point $x \in X$ is T_D [1] if the derived set $\overline{x} - \{x\}$ is a closed subset. Obviously we have the following equivalence.

Lemma 4.3. [12] A point of a topological space is proper if and only if it is T_D .

For orbits of flows on manifolds, properness corresponds to T_0 separation axiom. Precisely, the following statement is follows from Cherry's technique essentially[4].

Lemma 4.4. [12] The following statements are equivalent for an orbit O of a flow on a paracompact manifold:

- 1) O is proper.
- 2) O is T_D .
- 3) O is T_0 (i.e. $O = \hat{O}$).

In [9], a point $x \in X$ is C_D if the derived set $\overline{x} - \{x\}$ of x is either empty or non-closed, and it is C_0 if the derived set $\overline{x} - \{x\}$ is not a union of nonempty closed subsets. These axioms satisfies the following relations [9]: $S_1 \Rightarrow C_0 \Rightarrow C_D$. We have the following characterization of C_0 and C_D by using pre-order.

Lemma 4.5. [11] Let x be a point of a topological space X. The following statement holds:

1) $x \text{ is } C_0 \iff x \in \min X \text{ or } |\hat{x}| > 1.$ 2) $x \text{ is } C_D \iff x \in \min X \text{ or } x \in \overline{x} - \{x\}.$

We can summarize the following topological characterization of recurrence.

Theorem 4.6. [11] Let v be a flow on a compact metrizable space M and O an orbit of v. The following statements are equivalent for the orbit space M/v:

1) O is recurrent

- 2) O is either T_1 or non- T_D (i.e. O is closed or non-proper).
- 3) O is either S_1 or non- T_D (i.e. O is minimal or non-proper).
- 4) O is either C_R or non- T_D .
- 5) O is C_D .

Moreover, if M is a manifold, then the following conditions are equivalent to any of above conditions:

- 6) O is either T_1 or non- T_0 .
- 7) O is either S_1 or non- T_0 .
- 8) O is either C_R or non- T_0 .
- 9) O is C_0 .

References

- [1] C. E. Aull, W. J. Thron, Separation axioms between T_0 and T_1 , Indag. Math. 24 (1962) 26–37.
- [2] Auslander, J.; Glasner, E.; Weiss, B., On recurrence in zero dimensional flows Forum Math. 19 (2007), no. 1, 107–114.
- [3] G. D. Birkhoff, *Dynamical systems*, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966.
- [4] T. M. Cherry, Topological properties of solutions of ordinary differential equations, Amer. J. Math. 59, 957–982 (1937).

- [5] S. Elaydi, On some stability notions in topological dynamics J. Differential Equations, 47 (1983), 24–34.
- [6] R. Ellis and M. Nerurkar, Weakly almost periodic flows, Trans. AMS, 313 (1989), 103–119.
- [7] Hattab, H., Pointwise recurrent one-dimensional flows Dyn. Syst. 26 (2011), no. 1, 77–83.
- [8] Ronald A. Knight, Prolongationally stable transformation groups, Math. Zeits., 161 (1978), 189–194.
- Warner, M. W., Some separation axioms weaker than T₁ Bull. Malaysian Math. Soc. 6 (1975), no. 3, 28–34.
- [10] T. Yokoyama, On codimension two R-closed foliations and group-actions, arXiv:1703.05242, preprint.
- [11] T. Yokoyama, Preorder characterizations of lower separation axioms and their applications to foliations and flows, arXiv:1708.06626, preprint.
- [12] T. Yokoyama, Properness of foliations, preprint.

Department of Mathematics, Kyoto University of Education / Japan Science and Technology Agency Presto

Email address: tomoo@kyokyo-u.ac.jp