NOTES ON G_{κ} -SUBSETS OF COMPACT-LIKE SPACES

TOSHIMICHI USUBA

In 1980 Gryzlov ([3], see also Hodel [4]) proved that every compact T_1 space has cardinality $\leq 2^{\psi(x)}$, where $\psi(X)$ is the pseudo-character of X, and later Stephenson generalized Gryzlov's result as follows:

Theorem 1 (Stephenson [5]). Let X be a 2^{κ} -total T_1 space with $\psi(X) \leq \kappa$. Then $|X| \leq 2^{\kappa}$ and X is compact.

A topological space X is κ -total if for every subset H of X with $|H| \leq \kappa$, every filter base on H has an adherent point in X.

On the other hand, Gryzlov obtained a similar result for H-closed spaces. Recall that, a Hausdorff space X is *H*-closed if X is closed in every Hausdorff space containing X as a subspace. A subset $H \subseteq X$ is a *H*-set if for every family \mathcal{V} of open sets which covers H, there are finitely many $V_0, \ldots, V_n \in \mathcal{V}$ with $H \subseteq \overline{V_0} \cup \cdots \cup \overline{V_n}$. It is known that a Hausdorff space X is H-closed if and only if X is an *H*-set in X. For a space X, $\psi_c(X)$ denotes the closed pseudo-character of X, that is, $\psi_c(X)$ is the minimum infinite cardinal κ such that for every $x \in X$ there is a family \mathcal{V} of open neighborhood of x with $|\mathcal{V}| \leq \kappa$ and $\{x\} = \bigcap\{\overline{V} \mid V \in \mathcal{V}\}$. Note that closed pseudo-character can be defined only for Hausdorff spaces.

Theorem 2 (Gryzlov [3]). Let X be an H-closed set with $\psi_c(X) = \omega$, then $|X| \leq 2^{\omega}$.

Dow and Porter [2] extended this result as that $|X| \leq 2^{\psi_c(X)}$ for every *H*-closed space X.

In this note we prove slightly general and strong results in term of G_{κ} -subsets. Recall that, for a topological space X and an infinite cardinal κ , a G_{κ} -subset is the intersection of $\leq \kappa$ many open subsets in X.

Proposition 3. Let κ be an infinite cardinal. Let X be a 2^{κ} -total space (no separation axiom of assumed), and \mathcal{G} a cover of X by G_{κ} -subsets. If for every $x \in X$, the set $\{G \in \mathcal{G} \mid x \in G\}$ has cardinality $\leq 2^{\kappa}$, then \mathcal{G} has a subcover of size $\leq 2^{\kappa}$.

Proof. Suppose to the contrary that \mathcal{G} has no subcover of size $\leq 2^{\kappa}$. Let $\lambda = |\mathcal{G}|$, and $\{G_{\alpha} \mid \alpha < \lambda\}$ be an enumeration of \mathcal{G} . Let $[\kappa]^{<\omega}$ denote the set of all finite subsets of κ . For $\alpha < \lambda$, we can take open sets W_a^{α} $(a \in [\kappa]^{<\omega})$ such that $G_{\alpha} = \bigcap_{a \in [\kappa]^{<\omega}} W_a^{\alpha}$ and whenever $b \supseteq a$ we have $W_b^{\alpha} \subseteq W_a^{\alpha}$.

Take a sufficiently large regular cardinal χ , and take $M \prec H(\chi)$ containing all relevant objects such that $|M| = 2^{\kappa} \subseteq M$ and $[M]^{\kappa} \subseteq M$. Since $|M \cap \lambda| = 2^{\kappa}$,

we have $X \neq \bigcup_{\alpha \in M \cap \lambda} G_{\alpha}$. Fix $x^* \in X \setminus \bigcup_{\alpha \in M \cap \lambda} G_{\alpha}$. For $\alpha \in M \cap \lambda$, there is $a_{\alpha} \in [\kappa]^{<\omega}$ with $x^* \notin W_{a_{\alpha}}^{\alpha}$.

Now we claim that there are finitely many $\alpha_0, \ldots, \alpha_k \in M \cap \lambda$ such that $M \cap X \subseteq \bigcup_{i \leq k} W_{a_{\alpha_i}}^{\alpha_i}$. We can derive a contradiction by this claim; If $M \cap X \subseteq \bigcup_{i \leq k} W_{a_{\alpha_i}}^{\alpha_i}$, by the elementarity of M we have that $\{W_{a_{\alpha_i}}^{\alpha_i} \mid i \leq k\}$ is a cover of X. Hence there is $i \leq k$ with $x^* \in W_{a_{\alpha_i}}^{\alpha_i}$, this is a contradiction.

Suppose that $M \cap X \notin \bigcup_{i \leq k} W_{a_{\alpha_i}}^{\alpha_i}$ for every finitely many $\alpha_0, \ldots, \alpha_k \in M \cap \lambda$. Let $\mathcal{F} = \{(M \cap X) \setminus W_{a_\alpha}^{\alpha} \mid \alpha \in M \cap \lambda\}$. By the assumption, \mathcal{F} has the finite intersection property. In addition if $x \in \bigcap\{\overline{F} \mid F \in \mathcal{F}\}$ then $x \notin W_{a_\alpha}^{\alpha}$ for every $\alpha \in M \cap \lambda$. Take a family $\mathcal{F}' \subseteq \mathcal{P}(M \cap X)$ such that:

- (1) $\mathcal{F} \subseteq \mathcal{F}'$ and every element of \mathcal{F}' is closed in $M \cap X$.
- (2) \mathcal{F}' is a filter on $M \cap X$, hence has the finite intersection property.
- (3) \mathcal{F}' is a maximal family satisfying (1) and (2).

Since X is 2^{κ} -total and $|M \cap X| \leq 2^{\kappa}$, we can fix $y \in \bigcap \{\overline{F} \mid F \in \mathcal{F}'\}$, and take $\beta < \lambda$ with $y \in G_{\beta}$. Then we have $\beta \notin M \cap \lambda$.

For every $a \in [\kappa]^{<\omega}$, we know that the family $\{(M \cap X) \setminus W_a^\beta\} \cup \mathcal{F}'$ cannot have the finite intersection property; Otherwise, by the maximality of \mathcal{F}' , we have $(M \cap X) \setminus W_a^\beta \in \mathcal{F}'$. This contradicts to the choice of y. Hence there is $C_a \in \mathcal{F}'$ with $C_a \subseteq W_a^\beta$. We may assume $C_b \subseteq C_a$ for every $b \supseteq a$. Fix $z_a \in C_a$ for each $a \in [\kappa]^{<\omega}$.

Let $H = \{z_a \mid a \in [\kappa]^{<\omega}\}$. Then $H \subseteq M \cap X$ with $|H| \leq \kappa$, so $H \in M$. Put $B_a = \{z_b \mid b \supseteq a\}$ for $a \in [\kappa]^{<\omega}$. We know that $\{B_a \mid a \in [\kappa]^{<\omega}\}$ is a filter base on H. By the 2^{κ} -totality of X, we can pick $z \in \bigcap_{a \in [\kappa]^{<\omega}} \overline{B_a}$. Since $H \in M$, we may assume $z \in M \cap X$. Then we have $z \in \bigcap_{a \in [\kappa]^{<\omega}} C_a$; If $z \notin C_a$ for some a, since C_a is closed in $M \cap X$, pick an open neighborhood O of z with $O \cap C_a = \emptyset$. Because $z \in \overline{B_a}$, there is $b \supseteq a$ with $z_b \in O$. However $z_b \in C_b \subseteq C_a$, this is a contradiction.

We have known $z \in \bigcap_{a \in [\kappa]^{<\omega}} C_a \subseteq \bigcap_{a \in [\kappa]^{<\omega}} W_a^{\beta} = G_{\beta}$. The set $\{\alpha < \lambda \mid z \in G_{\alpha}\}$ is definable in M and has cardinality $\leq 2^{\kappa}$, hence $\beta \in \{\alpha < \lambda \mid z \in G_{\alpha}\} \subseteq M \cap \lambda$ and $\beta \in M \cap \lambda$. This is a contradiction.

For a topological space X and an infinite cardinal κ , let X_{κ} be the space X with topology generated by all G_{κ} -subsets. Let L(X) denote the Lindelöf degree of X.

Corollary 4. Let κ be an infinite cardinal, and X a 2^{κ} -total space. Then the following are equivalent:

- (1) $L(X_{\kappa}) \leq 2^{\kappa}$.
- (2) For every cover \mathcal{G} of X by G_{κ} -subsets, there is a subcover \mathcal{G}' of \mathcal{G} such that $|\{G \in \mathcal{G}' \mid x \in G\}| \leq 2^{\kappa}$ for every $x \in X$.
- (3) For every cover \mathcal{G} of X by G_{κ} -subsets, there is a refinement cover \mathcal{G}' of \mathcal{G} by G_{κ} -subsets such that $|\{G \in \mathcal{G}' \mid x \in G\}| \leq 2^{\kappa}$ for every $x \in X$.

Note that there is a compact T_2 space X such that $L(X_{\omega})$ is much greater than 2^{ω} , e.g., see Usuba [6].

Corollary 5. If X is a 2^{κ} -total space and \mathcal{G} is a partition of X by G_{κ} -subsets, then $|\mathcal{G}| \leq 2^{\kappa}$.

Note 6. Arhangel'skiĭ [1] proved that if X is a compact Hausdorff space, then X cannot be partitioned into more than 2^{ω} -many closed G_{δ} -subsets. The above corollary is a generalization of this result.

Now Stephenson's theorem is immediate from this corollary.

Corollary 7. If X is a $2^{\psi(X)}$ -total T_1 space, then $|X| \leq 2^{\psi(X)}$ and X is compact.

For H-closed spaces, we use the following easy observation:

Lemma 8. For a Hausdorff space X, the following are equivalent:

- (1) X is H-closed.
- (2) For every upward directed set $D = \langle D, \leq \rangle$ and net $\{x_a \mid a \in D\} \subseteq X$, there is $x \in X$ such that for every open neighborhood V of x and every $a \in D$, there is $b \geq a$ with $x_b \in \overline{V}$.

For a space X and $A \subseteq X$, the θ -closure of A, \overline{A}^{θ} , is the set $\{x \in X \mid A \cap \overline{V} \neq \emptyset$ for every open neighborhood V of x}. A subset $A \subseteq X$ is θ -closed if $\overline{A}^{\theta} = A$. Note that the following:

- (1) For every $A \subseteq X$, \overline{A}^{θ} is θ -closed.
- (2) Every θ -closed set is closed in X, and if X is regular then the converse holds.
- (3) If $O \subseteq X$ is open, then \overline{O} is θ -closed.
- (4) Even if X is H-closed, every closed subset of X needs not be an H-set, but every θ -closed subset of X is an H-set.

Proposition 9. Let κ be an infinite cardinal. Let X be an H-closed space, and \mathcal{G} a cover of X by G_{κ} -sets such that for every $G \in \mathcal{G}$, there is a family $\{W_{\xi} \mid \xi < \kappa\}$ of open sets with $G = \bigcap_{\xi < \kappa} W_{\xi} = \bigcap_{\xi < \kappa} \overline{W_{\xi}}$. If for every $x \in X$, the set $\{G \in \mathcal{G} \mid x \in G\}$ has cardinality $\leq 2^{\kappa}$, then \mathcal{G} has a subcover of size $\leq 2^{\kappa}$.

Proof. Suppose to the contrary that \mathcal{G} has no such a subcover, and let $\{G_{\alpha} \mid \alpha < \lambda\}$ be an enumeration of \mathcal{G} . For $\alpha < \lambda$, take open sets $\{W_{\xi}^{\alpha} \mid \xi < \kappa\}$ with $G_{\alpha} = \bigcap_{\xi < \kappa} W_{\xi}^{\alpha} = \bigcap_{\xi < \kappa} \overline{W_{\xi}^{\alpha}}$.

Take a sufficiently large regular cardinal χ , and take $M \prec H(\chi)$ containing all relevant objects such that $|M| = 2^{\kappa} \subseteq M$ and $[M]^{\kappa} \subseteq M$. We have $X \neq \bigcup_{\alpha \in M \cap \lambda} G_{\alpha}$. Fix $x^* \in X \setminus \bigcup_{\alpha \in M \cap \lambda} G_{\alpha}$. For $\alpha \in M \cap \lambda$, fix $\xi_{\alpha} < \kappa$ with $x^* \notin \overline{W_{\xi_{\alpha}}^{\alpha}}$.

Now we claim that there are finitely many $\alpha_0, \ldots, \alpha_k \in M \cap \lambda$ such that $M \cap X \subseteq \bigcup_{i \leq n} \overline{W_{\xi_{\alpha_i}}^{\alpha_i}}$. As before, however, this is impossible.

Suppose that $M \cap X \nsubseteq \bigcup_{i \le k} \overline{W_{\xi_{\alpha_i}}^{\alpha_i}}$ for every finitely many $\alpha_0, \ldots, \alpha_k \in M \cap \lambda$. Let $\mathcal{F} = \{(M \cap X) \setminus \overline{W_{\xi_{\alpha}}^{\alpha}} \mid \alpha \in M \cap \lambda\}$. By the assumption, \mathcal{F} has the finite intersection property. Take a family $\mathcal{F}' \subseteq \mathcal{P}(M \cap X)$ such that:

- (1) $\mathcal{F} \subseteq \mathcal{F}'$.
- (2) \mathcal{F}' is a filter over $M \cap X$, hence has the finite intersection property.
- (3) \mathcal{F}' is a maximal family satisfying (1) and (2).

For $C \in \mathcal{F}'$, take $y_C \in C$. Let $D = \langle \mathcal{F}', \supseteq \rangle$, this is an upward directed set. Hence by Lemma 8, we can find $y \in X$ such that for every open neighborhood V of y and $C \in \mathcal{F}$, there is $C' \in \mathcal{F}$ with $C' \subseteq C$ and $y_{C'} \in \overline{V}$.

Choose $\beta < \lambda$ with $y \in G_{\beta}$. As before, we have $\beta \notin M \cap \lambda$; If $\beta \in M \cap \lambda$, then $(M \cap X) \setminus \overline{W_{\xi_{\beta}}^{\beta}} \in \mathcal{F}'$, but $y \in W_{\xi_{\beta}}^{\beta}$ and $\overline{W_{\xi_{\beta}}^{\beta}} \cap ((M \cap X) \setminus \overline{W_{\xi_{\beta}}^{\beta}}) = \emptyset$. This is impossible.

For $\xi < \kappa$, we have that $\{(M \cap X) \setminus \overline{W_{\xi}^{\beta}}\} \cup \mathcal{F}'$ cannot have the finite intersection property; If so, then $(M \cap X) \setminus \overline{W_{\xi}^{\beta}} \in \mathcal{F}'$ by the maximality of \mathcal{F}' . Put $C = (M \cap X) \setminus \overline{W_{\xi}^{\beta}}$. By the choice of y, we can find $C' \in \mathcal{F}$ with $z'_{C} \in C' \subseteq C$ and $z_{C'} \in \overline{W_{\xi}^{\beta}}$, this is impossible. Hence there is $C_{\xi} \in \mathcal{F}'$ with $C_{\xi} \subseteq \overline{W_{\xi}^{\beta}}$. For $a \in [\kappa]^{<\omega}$, let $C_{a} = \bigcap_{\xi \in a} C_{\xi} \in \mathcal{F}'$. We have that $C_{b} \subseteq C_{a}$ for every $b \supseteq a$. Fix $z_{a} \in O_{a}$ for each $a \in [\kappa]^{<\omega}$.

Let $H = \{z_a \mid a \in [\kappa]^{<\omega}\}$. We have $H \in M$. Then H is a net associated with the directed set $[\kappa]^{<\omega}$, hence we can find z such that for every open neighborhood V of z and $a \in [\kappa]^{<\omega}$, there is $b \supseteq a$ with $z_b \in \overline{V}$. Since $H \in M$, we may assume that $z \in M \cap X$. Then we have $z \in \bigcap_{\xi < \kappa} W_{\xi}^{\beta} = G_{\beta}$; Suppose $z \notin W_{\xi}^{\beta}$ for some $\xi < \kappa$. Since W_{ξ}^{β} is open, we have that W_{ξ}^{β} is θ -closed. Hence we can pick an open neighborhood V of z with $\overline{V} \cap W_{\xi}^{\beta} = \emptyset$. On the other hand we can choose $b \supseteq \{\xi\}$ with $z_b \in \overline{V}$. $z_b \in O_b \subseteq W_{\xi}^{\beta}$, this is impossible.

The set $\{\alpha < \lambda \mid z \in G_{\alpha}\}$ is definable in M and has cardinality $\leq 2^{\kappa}$, hence $\beta \in \{\alpha < \lambda \mid z \in G_{\alpha}\} \subseteq M \cap \lambda$ and $\beta \in M \cap \lambda$. This is a contradiction.

For a θ -closed set $G \subseteq X$, let $\psi_c(G, X)$ denote the minimum infinite cardinal κ such that there is an open sets $\{V_\alpha \mid \alpha < \kappa\}$ with $G = \bigcap_{\alpha < \kappa} V_\alpha = \bigcap_{\alpha < \kappa} \overline{V_\alpha}$. It is clear that $\psi_c(G, X) \leq \chi(G, X)$.

Corollary 10. Let X be an H-closed space, and κ an infinite cardinal.

- (1) For every partition \mathcal{G} of X by θ -closed sets, if $\psi_c(G, X) \leq \kappa$ for every $G \in \mathcal{G}$ then $|\mathcal{G}| \leq 2^{\kappa}$.
- (2) (Gryzlov [3], Dow-Porter [2]) Let X be an H-closed space. Then $|X| \leq 2^{\psi_c(X)}$.

Acknowledgement. This research was supported by JSPS KAKENHI Grant Nos. 18K03403 and 18K03404.

References

- A. V. Arhangel'skii, Theorems on the cardinality of family of sets in compact Hausdorff spaces, Soviet Math. Dokl. 17 (1976) 213–217.
- [2] A. Dow, J.Porter, Cardinalities of H-closed spaces, Topology Proc. 7 (1982), 27-50.
- [3] A. Gryzlov, Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21 (1980) 506-509.
- [4] R. E. Hodel, Arhangel'skii's solution to Alexandrorff's problem: A survey, Topology Appl. 153 (2006), no. 13, 2199–2217.
- [5] R. Stephenson, A theorem on the cardinality of κ-total spaces, Proc. Amer. Math. Soc. 89 (1983) 367–370.
- [6] T. Usuba, G_{δ} -topology and compact cardinals. To appear in Fund. Math.

(T. Usuba) Faculty of Fundamental Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555 Japan

Email address: usuba@waseda.jp