NOTES ON κ-SUBSETS OF COMPACT-LIKE SPACES

TOSHIMICHI USUBA

In 1980 Gryzlov ([3], see also Hodel [4]) proved that every compact T_1 space has cardinality $\leq 2^{\psi(x)}$, where $\psi(X)$ is the pseudo-character of X, and later Stephenson generalized Gryzlov's result as follows:

Theorem 1 (Stephenson [5]). Let X be a 2^κ-total T_1 space with $\psi(X) \leq \kappa$. Then $|X| \leq 2^\kappa$ and X is compact.

A topological space X is κ-total if for every subset H of X with $|H| \leq \kappa$, every filter base on H has an adherent point in X.

On the other hand, Gryzlov obtained a similar result for H-closed spaces. Recall that, a Hausdorff space X is H-closed if X is closed in every Hausdorff space containing X as a subspace. A subset $H \subseteq X$ is an H-set if for every family \mathcal{V} of open sets which covers H, there are finitely many $V_0, \ldots, V_n \in \mathcal{V}$ with $H \subseteq \overline{V_0} \cup \cdots \cup \overline{V_n}$. It is known that a Hausdorff space X is H-closed if and only if X is an H-set in X.

For a space X, $\psi_c(X)$ denotes the closed pseudo-character of X, that is, $\psi_c(X)$ is the minimum infinite cardinal κ such that for every $x \in X$ there is a family \mathcal{V} of open neighborhood of x with $|\mathcal{V}| \leq \kappa$ and $\{x\} = \cap \{\overline{V} | V \in \mathcal{V}\}$. Note that closed pseudo-character can be defined only for Hausdorff spaces.

Theorem 2 (Gryzlov [3]). Let X be an H-closed set with $\psi_c(X) = \omega$, then $|X| \leq 2^\omega$.

Dow and Porter [2] extended this result as that $|X| \leq 2^{\psi_c(X)}$ for every H-closed space X.

In this note we prove slightly general and strong results in term of G_κ-subsets. Recall that, for a topological space X and an infinite cardinal κ, a G_κ-subset is the intersection of $\leq \kappa$ many open subsets in X.

Proposition 3. Let κ be an infinite cardinal. Let X be a 2^κ-total space (no separation axiom of assumed), and \mathcal{G} a cover of X by G_κ-subsets. If for every $x \in X$, the set $\{G \in \mathcal{G} | x \in G\}$ has cardinality $\leq 2^\kappa$, then \mathcal{G} has a subcover of size $\leq 2^\kappa$.

Proof. Suppose to the contrary that \mathcal{G} has no subcover of size $\leq 2^\kappa$. Let $\lambda = |\mathcal{G}|$, and $\{G_\alpha | \alpha < \lambda\}$ be an enumeration of \mathcal{G}. Let $[\kappa]^{<\omega}$ denote the set of all finite subsets of κ. For $\alpha < \lambda$, we can take open sets $W_\alpha^a (a \in [\kappa]^{<\omega})$ such that $G_\alpha = \bigcap_{a \in [\kappa]^{<\omega}} W_\alpha^a$ and whenever $b \supseteq a$ we have $W_b^a \subseteq W_\alpha^a$.

Take a sufficiently large regular cardinal χ, and take $M < H(\chi)$ containing all relevant objects such that $|M| = 2^\kappa \subseteq M$ and $[M]^\kappa \subseteq M$. Since $|M \cap \lambda| = 2^\kappa$,
we have \(\exists \alpha \in [\kappa]^{<\omega} \) with \(x^* \notin W_{a_{\alpha}}^\beta \).

Now we claim that there are finitely many \(\alpha_0, \ldots, \alpha_k \in M \cap \lambda \) such that \(M \cap X \subseteq \bigcup_{\alpha \leq \alpha_k} W_{a_{\alpha}}^\beta \). We can derive a contradiction by this claim; If \(M \cap X \subseteq \bigcup_{\alpha \leq \alpha_k} W_{a_{\alpha}}^\beta \), by the elementarity of \(M \) we have that \(\{W_{a_{\alpha}}^\alpha | \alpha \leq \alpha_k\} \) is a cover of \(X \). Hence there is \(\alpha \in M \cap \lambda \) with \(x^* \notin W_{a_{\alpha}}^\beta \), this is a contradiction.

Suppose that \(M \cap X \nsubseteq \bigcap_{\alpha \in M \cap \lambda} W_{a_{\alpha}}^\beta \) for every finitely many \(\alpha_{0}, \ldots, \alpha_k \in N \cap \lambda \).

Let \(\mathcal{F} = \{ \bigcap_{\alpha \leq \alpha_k} W_{a_{\alpha}}^\beta | \alpha \in [\kappa]^{<\omega} \} \). By the assumption, \(\mathcal{F} \) has the finite intersection property. In addition if \(x \in \bigcap_{F \in \mathcal{F}} \overline{F} \) then \(x \notin W_{a_{\alpha}}^\beta \) for every \(\alpha \in M \cap \lambda \).

Let \(\mathcal{F}' \subseteq \mathcal{P}(M \cap X) \) such that:

1. \(\mathcal{F} \subseteq \mathcal{F}' \) and every element of \(\mathcal{F}' \) is closed in \(M \cap X \).
2. \(\mathcal{F}' \) is a filter on \(M \cap X \), hence has the finite intersection property.
3. \(\mathcal{F}' \) is a maximal family satisfying (1) and (2).

Since \(X \) is \(2^\kappa \)-total and \(|M \cap X| \leq 2^\kappa \), we can fix \(y \in \bigcap_{F \in \mathcal{F}'} \overline{F} \) and take \(\beta < \lambda \) with \(y \in G_{\beta} \). Then we have \(\beta \notin M \cap \lambda \).

For every \(a \in [\kappa]^{<\omega} \), we know that the family \(\{W_{a_{\alpha}}^\beta | \alpha \in [\kappa]^{<\omega} \} \) cannot have the finite intersection property; Otherwise, by the maximality of \(\mathcal{F}' \), we have \((M \cap X) \setminus W_{a_{\alpha}}^\beta \in \mathcal{F}' \). This contradicts to the choice of \(y \). Hence there is \(C_{\alpha} \subseteq W_{a_{\alpha}}^\beta \). We may assume \(C_{\alpha} \subseteq C_{\alpha_0} \) for every \(\alpha \supseteq \alpha_0 \). Fix \(z_{a} \in C_{a} \) for each \(a \in [\kappa]^{<\omega} \).

Let \(H = \{ z_{a} | a \in [\kappa]^{<\omega} \} \). Then \(H \subseteq M \cap X \) with \(|H| \leq \kappa \), so \(H \in M \). Put \(B_{a} = \{ z_{b} | b \supseteq a \} \) for \(a \in [\kappa]^{<\omega} \). We know that \(\{B_{a} | \alpha \in [\kappa]^{<\omega} \} \) is a filter base on \(H \). By the \(2^\kappa \)-totality of \(X \), we can pick \(z \in \bigcap_{a \in [\kappa]^{<\omega}} B_{a} \). Since \(H \in M \), we may assume \(z \in M \cap X \). Then we have \(z \in \bigcap_{a \in [\kappa]^{<\omega}} C_{a} \); If \(z \notin C_{a} \) for some \(a \), since \(C_{a} \) is closed in \(M \cap X \), pick an open neighborhood \(O \) of \(z \) with \(O \cap C_{a} = \emptyset \). Because \(z \in B_{a} \), there is \(b \supseteq a \) with \(z_{b} \in O \). However \(z_{b} \in C_{b} \subseteq C_{a} \), this is a contradiction.

We have known \(z \in \bigcap_{a \in [\kappa]^{<\omega}} C_{a} \subseteq \bigcap_{a \in [\kappa]^{<\omega}} W_{a_{\alpha}}^\beta = G_{\beta} \). The set \(\{ \alpha < \lambda | z \in G_{\alpha} \} \) is definable in \(M \) and has cardinality \(\leq 2^\kappa \), hence \(\beta \in \{ \alpha < \lambda | z \in G_{\alpha} \} \subseteq M \cap \lambda \) and \(\beta \in M \cap \lambda \). This is a contradiction. \(\square \)

For a topological space \(X \) and an infinite cardinal \(\kappa \), let \(X_{\kappa} \) be the space \(X \) with topology generated by all \(G_{\kappa} \)-subsets. Let \(L(X) \) denote the Lindelöf degree of \(X \).

Corollary 4. Let \(\kappa \) be an infinite cardinal, and \(X \) a \(2^\kappa \)-total space. Then the following are equivalent:

1. \(L(X_{\kappa}) \leq 2^\kappa \).
2. For every cover \(\mathcal{G} \) of \(X \) by \(G_{\kappa} \)-subsets, there is a subcover \(\mathcal{G}' \) of \(\mathcal{G} \) such that \(|\{G \in \mathcal{G}' | x \in G\}| \leq 2^\kappa \) for every \(x \in X \).
3. For every cover \(\mathcal{G} \) of \(X \) by \(G_{\kappa} \)-subsets, there is a refinement cover \(\mathcal{G}' \) of \(\mathcal{G} \) by \(G_{\kappa} \)-subsets such that \(|\{G \in \mathcal{G}' | x \in G\}| \leq 2^\kappa \) for every \(x \in X \).
Note that there is a compact \(T_2 \) space \(X \) such that \(L(X_\omega) \) is much greater than \(2^\omega \), e.g., see Usuba [6].

Corollary 5. If \(X \) is a \(2^\kappa \)-total space and \(\mathcal{G} \) is a partition of \(X \) by \(G_\kappa \)-subsets, then \(|\mathcal{G}| \leq 2^\kappa \).

Note 6. Arhangel'skii [1] proved that if \(X \) is a compact Hausdorff space, then \(X \) cannot be partitioned into more than \(2^\omega \)-many closed \(G_\delta \)-subsets. The above corollary is a generalization of this result.

Now Stephenson’s theorem is immediate from this corollary.

Corollary 7. If \(X \) is a \(2^{\psi(X)} \)-total \(T_1 \) space, then \(|X| \leq 2^{\psi(X)} \) and \(X \) is compact.

For \(H \)-closed spaces, we use the following easy observation:

Lemma 8. For a Hausdorff space \(X \), the following are equivalent:

1. \(X \) is \(H \)-closed.
2. For every upward directed set \(D = \langle D, \leq \rangle \) and net \(\{ x_a \mid a \in D \} \subseteq X \), there is \(x \in X \) such that for every open neighborhood \(V \) of \(x \) and every \(a \in D \), there is \(b \geq a \) with \(x_b \in \overline{V} \).

For a space \(X \) and \(A \subseteq X \), the \(\theta \)-closure of \(A \), \(\overline{A}^\theta \), is the set \(\{ x \in X \mid A \cap \overline{V} \neq \emptyset \} \) for every open neighborhood \(V \) of \(x \). A subset \(A \subseteq X \) is \(\theta \)-closed if \(\overline{A}^\theta = A \). Note that the following:

1. For every \(A \subseteq X \), \(\overline{A}^\theta \) is \(\theta \)-closed.
2. Every \(\theta \)-closed set is closed in \(X \), and if \(X \) is regular then the converse holds.
3. If \(O \subseteq X \) is open, then \(\overline{O}^\theta \) is \(\theta \)-closed.
4. Even if \(X \) is \(H \)-closed, every closed subset of \(X \) needs not be an \(H \)-set, but every \(\theta \)-closed subset of \(X \) is an \(H \)-set.

Proposition 9. Let \(\kappa \) be an infinite cardinal. Let \(X \) be an \(H \)-closed space, and \(\mathcal{G} \) a cover of \(X \) by \(G_\kappa \)-sets such that for every \(G \in \mathcal{G} \), there is a family \(\{ W_\xi \mid \xi < \kappa \} \) of open sets with \(G = \bigcap_{\xi < \kappa} W_\xi = \bigcap_{\xi < \kappa} \overline{W_\xi} \). If for every \(x \in X \), the set \(\{ G \in \mathcal{G} \mid x \in G \} \) has cardinality \(\leq 2^\kappa \), then \(\mathcal{G} \) has a subcover of size \(\leq 2^\kappa \).

Proof. Suppose to the contrary that \(\mathcal{G} \) has no such a subcover, and let \(\{ G_\alpha \mid \alpha < \lambda \} \) be an enumeration of \(\mathcal{G} \). For \(\alpha < \lambda \), take open sets \(\{ W_\xi^\alpha \mid \xi < \kappa \} \) with \(G_\alpha = \bigcap_{\xi < \kappa} W_\xi^\alpha = \bigcap_{\xi < \kappa} \overline{W_\xi^\alpha} \).

Take a sufficiently large regular cardinal \(\chi \), and take \(M \prec H(\chi) \) containing all relevant objects such that \(|M| = 2^\kappa \subseteq M \) and \(|M|^\kappa \subseteq M \). We have \(X \neq \bigcup_{\alpha \in M \cap \lambda} G_\alpha \). Fix \(x^* \in X \setminus \bigcup_{\alpha \in M \cap \lambda} G_\alpha \). For \(\alpha \in M \cap \lambda \), fix \(\xi_\alpha < \kappa \) with \(x^* \notin \overline{W_{\xi_\alpha}^\alpha} \).

Now we claim that there are finitely many \(\alpha_0, \ldots, \alpha_k \in M \cap \lambda \) such that \(M \cap X \subseteq \bigcup_{i \leq k} \overline{W_{\xi_{\alpha_i}}^{\alpha_i}} \). As before, however, this is impossible.
Suppose that \(M \cap X \not\subseteq \bigcup_{i \leq k} \overline{W_{\xi_{\alpha_i}}^{\alpha_i}} \) for every finitely many \(\alpha_0, \ldots, \alpha_k \in M \cap \lambda \). Let \(\mathcal{F} = \{(M \cap X) \setminus \overline{W_{\xi_{\alpha}^{\alpha}}}, \alpha \in M \cap \lambda \} \). By the assumption, \(\mathcal{F} \) has the finite intersection property. Take a family \(\mathcal{F}' \subseteq \mathcal{P}(M \cap X) \) such that:

1. \(\mathcal{F} \subseteq \mathcal{F}' \).
2. \(\mathcal{F}' \) is a filter over \(M \cap X \), hence has the finite intersection property.
3. \(\mathcal{F}' \) is a maximal family satisfying (1) and (2).

For \(C \in \mathcal{F}' \), take \(y_C \in C \). Let \(D = \{\mathcal{F}' \supseteq \langle \rangle \} \), this is an upward directed set. Hence by Lemma 8, we can find \(y \in X \) such that for every open neighborhood \(V \) of \(y \) and \(C \in \mathcal{F} \), there is \(C' \in \mathcal{F} \) with \(C' \subseteq C \) and \(y_C \in \overline{V} \).

Choose \(\beta < \lambda \) with \(y \in G_{\beta} \). As before, we have \(\beta \notin M \cap \lambda \); If \(\beta \in M \cap \lambda \), then \((M \cap X) \setminus \overline{W_{\xi_{\beta}}^{\beta}} \in \mathcal{F}' \), but \(y \in W_{\xi_{\beta}}^{\beta} \) and \(\overline{W_{\xi_{\beta}}^{\beta}} \cap ((M \cap X) \setminus \overline{W_{\xi_{\beta}}^{\beta}}) = \emptyset \). This is impossible.

For \(\xi < \kappa \), we have that \(\{(M \cap X) \setminus \overline{W_{\xi}^{\beta}}\} \cup \mathcal{F}' \) cannot have the finite intersection property; If so, then \((M \cap X) \setminus \overline{W_{\xi}^{\beta}} \in \mathcal{F}' \) by the maximality of \(\mathcal{F}' \). Put \(C = (M \cap X) \setminus \overline{W_{\xi}^{\beta}} \). By the choice of \(y \), we can find \(C' \in \mathcal{F} \) with \(z_C' \in C' \subseteq C \) and \(z_{C'} \in \overline{W_{\xi}^{\beta}} \), this is impossible. Hence there is \(C_{\xi} \in \mathcal{F}' \) with \(C_{\xi} \subseteq \overline{W_{\xi}^{\beta}} \). For \(a \in [\kappa]^{<\omega} \), let \(C_a = \bigcap_{\xi \in a} C_{\xi} \in \mathcal{F}' \). We have that \(C_b \subseteq C_a \) for every \(b \supseteq a \). Fix \(z_a \in O_a \) for each \(a \in [\kappa]^{<\omega} \).

Let \(H = \{z_a \mid a \in [\kappa]^{<\omega}\} \). We have \(H \in M \). Then \(H \) is a net associated with the directed set \([\kappa]^{<\omega} \), hence we can find \(z \) such that for every open neighborhood \(V \) of \(z \) and \(a \in [\kappa]^{<\omega} \), there is \(b \supseteq a \) with \(z_b \in \overline{V} \). Since \(H \in M \), we may assume that \(z \in M \cap X \). Then we have \(z \in \bigcap_{\xi < \kappa} \overline{W_{\xi}^{\beta}} = G_{\beta} \); Suppose \(z \notin \overline{W_{\xi}^{\beta}} \) for some \(\xi < \kappa \). Since \(W_{\xi}^{\beta} \) is open, we have that \(\overline{W_{\xi}^{\beta}} \) is \(\theta \)-closed. Hence we can pick an open neighborhood \(V \) of \(z \) with \(\overline{V} \cap \overline{W_{\xi}^{\beta}} = \emptyset \). On the other hand we can choose \(b \supseteq \{\xi\} \) with \(z_b \in \overline{V} \). \(z_b \in O_b \subseteq \overline{W_{\xi}^{\beta}} \), this is impossible.

The set \(\{\alpha < \lambda \mid z \in G_{\alpha}\} \) is definable in \(M \) and has cardinality \(\leq 2^\kappa \), hence \(\beta \in \{\alpha < \lambda \mid z \in G_{\alpha}\} \subseteq M \cap \lambda \) and \(\beta \in M \cap \lambda \). This is a contradiction. \(\Box \)

For a \(\theta \)-closed set \(G \subseteq X \), let \(\psi_{c}(G, X) \) denote the minimum infinite cardinal \(\kappa \) such that there is an open sets \(\{V_\alpha \mid \alpha < \kappa\} \) with \(G = \bigcap_{\alpha < \kappa} V_\alpha = \bigcap_{\alpha < \kappa} \overline{V_\alpha} \). It is clear that \(\psi_{c}(G, X) \leq \chi(G, X) \).

Corollary 10. Let \(X \) be an \(H \)-closed space, and \(\kappa \) an infinite cardinal.

1. For every partition \(G \) of \(X \) by \(\theta \)-closed sets, if \(\psi_{c}(G, X) \leq \kappa \) for every \(G \in \mathcal{G} \) then \(|\mathcal{G}| \leq 2^\kappa \).
2. (Gryzlov [3], Dow-Porter [2]) Let \(X \) be an \(H \)-closed space. Then \(|X| \leq 2^{\psi_{c}(X)} \).
Acknowledgement. This research was supported by JSPS KAKENHI Grant Nos. 18K03403 and 18K03404.

REFERENCES

(T. Usuba) FACULTY OF FUNDAMENTAL SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO 3-4-1, SHINJYUKU, TOKYO, 169-8555 JAPAN
Email address: usuba@waseda.jp