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NOTES ON G_{\kappa}‐SUBSETS OF COMPACT‐LIKE SPACES

TOSHIMICHI USUBA

In 1980 Gryzlov ([3], see also Hodel [4]) proved that every compact  T_{1} space has
cardinality  \leq 2^{\psi(x)} , where  \psi(X) is the pseudo‐character of  X , and later Stephenson
generalized Gryzlov’s result as follows:

Theorem 1 (Stephenson [5]). Let  X be a  2^{\kappa} ‐total  T_{1} space with  \psi(X)\leq\kappa . Then
 |X|\leq 2^{\kappa} and  X is compact.

A topological space  X is  \kappa ‐total if for every subset  H of  X with  |H|\leq\kappa , every
filter base on  H has an adherent point in  X.

On the other hand, Gryzlov obtained a similar result for  H‐closed spaces. Recall
that, a Hausdorff space  X is  H‐closed if  X is closed in every Hausdorff space
containing  X as a subspace. A subset  H\subseteq X is a  H‐set if for every family  \mathcal{V} of open
sets which covers  H , there are finitely many  V_{0} , . . . ,  V_{n}\in \mathcal{V} with  H\subseteq\overline{V_{0}}\cup\cdots\cup\overline{V_{n}}.
It is known that a Hausdorff space  X is  H‐closed if and only if  X is an  H‐set in  X.

For a space  X,  \psi_{c}(X) denotes the closed pseudo‐character of  X , that is,  \psi_{c}(X) is
the minimum infinite cardinal  \kappa such that for every  x\in X there is a family  \mathcal{V} of
open neighborhood of  x with  |\mathcal{V}|\leq\kappa and  \{x\}=\cap\{\overline{V}|V\in \mathcal{V}\} . Note that closed
pseduo‐character can be defined only for Hausdorff spaces.

Theorem 2 (Gryzlov [3]). Let  X be an  H ‐closed set with  \psi_{c}(X)=\omega , then  |X|\leq
 2^{\omega}

Dow and Porter [2] extended this result as that  |X|\leq 2^{\psi_{C}(X)} for every  H‐closed
space  X.

In this note we prove slightly general and strong results in term of  G_{\kappa}|‐subsets.
Recall that, for a topological space  X and an infinite cardinal  \kappa, a  G_{\kappa} ‐subset is the
intersection of  \leq\kappa many open subsets in  X.

Proposition 3. Let  \kappa be an infinite cardinal. Let  X be a 2’‐total space (no sepa‐
ration axiom of assumed), and  \mathcal{G} a cover of  X by  G_{\kappa} ‐subsets. If for every  x\in X,
the set  \{G\in \mathcal{G}|x\in G\} has cardinality  \leq 2^{\kappa} , then  \mathcal{G} has a subcover of  size\leq 2^{\kappa}.

Proof. Suppose to the contrary that  \mathcal{G} has no subcover of size  \leq 2^{\kappa} . Let  \lambda=|\mathcal{G}|,
and  \{G_{\alpha}|\alpha<\lambda\} be an enumeration of  \mathcal{G} . Let  [\kappa]^{<\omega} denote the set of all finite
subsets of  \kappa . For  \alpha<\lambda , we can take open sets  W_{a}^{\alpha}(a\in[\kappa]^{<\omega}) such that  G_{\alpha}=

  \bigcap_{a\in[\kappa]^{<\omega}}W_{a}^{\alpha} and whenever  b\supseteq a we have  W_{b}^{\alpha}\subseteq W_{a}^{\alpha}.
Take a sufficiently large regular cardinal  \chi , and take  M\prec H(\chi) containing all

relevant objects such that  |M|=2^{\kappa}\subseteq M and  [M]^{\kappa}\subseteq M . Since  |M\cap\lambda|=2^{\kappa},
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we have  X \neq\bigcup_{\alpha\in M\cap\lambda}G_{\alpha} . Fix  x^{*} \in X\backslash \bigcup_{\alpha\in M\cap\lambda}G_{\alpha} . For  \alpha\in M\cap\lambda , there is
 a_{\alpha}\in[\kappa]^{<\omega} with  x^{*}\not\in W_{a_{\alpha}}^{\alpha}.

Now we claim that there are finitely many  \alpha_{0} , . . . ,  \alpha_{k}\in M\cap\lambda such that   M\cap X\subseteq

  \bigcup_{i\leq k}W_{a_{\alpha_{i}}}^{\alpha_{\iota'}} We can derive a contradiction by this claim; If  M \cap X\subseteq\bigcup_{i\leq k}W_{a_{\alpha_{\dot{i}}}}^{\alpha_{i}} , by
the elementarity of  M we have that  \{W_{a_{\alpha_{i}}^{l}}^{\alpha\prime}|i\leq k\} is a cover of  X . Hence there is
 i\leq k with  x^{*}\in W_{a_{\alpha_{\dot{i}}}}^{\alpha_{i}} , this is a contradiction.

Suppose that  M \cap X\not\subset\bigcup_{i\leq k}W_{a_{\alpha_{i}}}^{\alpha_{i}} for every finitely many  \alpha_{0} , . . . ,  \alpha_{k}\in M\cap\lambda.

Let  \mathcal{F}=\{(M\cap X)\backslash W_{a_{\alpha}}^{\alpha}|\alpha\in 
M\cap\lambda\} . By the assumption,  \mathcal{F} has the finite
intersection property. In addition if  x\in\cap\{\overline{F}|F\in \mathcal{F}\} then  x\not\in W_{a_{\alpha}}^{\alpha} for every
 \alpha\in M\cap\lambda . Take a family  \mathcal{F}'\subseteq \mathcal{P}(M\cap X) such that:

(1)  \mathcal{F}\subseteq \mathcal{F}' and every element of  \mathcal{F}' is closed in  M\cap X.

(2)  \mathcal{F}' is a filter on  M\cap X , hence has the finite intersection property.
(3)  \mathcal{F}' is a maximal family satisfying (1) and (2).

Since  X is  2^{\kappa}‐total and  |M\cap X|\leq 2^{\kappa} , we can fix  y\in\cap\{\overline{F}|F\in \mathcal{F}'\} , and take
 \beta<\lambda with  y\in G_{\beta} . Then we have  \beta\not\in M\cap\lambda.

For every  a\in[\kappa]^{<\omega} , we know that the family  \{(M\cap X)\backslash W_{a}^{\beta}\}\cup \mathcal{F}' cannot
have the finite intersection property; Otherwise, by the maximality of  \mathcal{F}' , we have
 (M\cap X)\backslash W_{a}^{\beta}\in \mathcal{F}' . This contradicts to the choice of  y . Hence there is  C_{a}\in \mathcal{F}'
with  C_{a}\subseteq W_{a}^{\beta} . We may assume  C_{b}\subseteq C_{a} for every  b\supseteq a . Fix  z_{a}\in C_{a} for each
 a\in[\kappa]^{<\omega}.

Let  H=\{z_{a}|a\in[\kappa]^{<\omega}\} . Then  H\subseteq M\cap X with  |H|\leq\kappa , so  H\in M . Put
 B_{a}=\{z_{b}|b\supseteq a\} for  a\in[\kappa]^{<\omega} . We know that  \{B_{a}|a\in[\kappa]^{<\omega}\} is a filter base on

 H . By the  2^{\kappa}‐totality of  X , we can pick  z \in\bigcap_{a\in[\kappa]^{<\omega}}\overline{B_{a}} . Since  H\in M , we may
assume  z\in M\cap X . Then we have  z \in\bigcap_{a\in[\kappa]^{<\omega}}C_{a} ; If  z\not\in C_{a} for some  a , since  C_{a}

is closed in  M\cap X , pick an open neighborhood  O of  z with   O\cap C_{a}=\emptyset . Because
 z\in\overline{B_{a}} , there is  b\supseteq a with  z_{b}\in O . However  z_{b}\in C_{b}\subseteq C_{a} , this is a contradiction.

We have known  z \in\bigcap_{a\in[\kappa]^{<\omega}}C_{a}\subseteq\bigcap_{a\in[\kappa]
^{<\omega}}W_{a}^{\beta}=G_{\beta} . The set  \{\alpha<\lambda|z\in G_{\alpha}\}
is definable in  M and has cardinality  \leq 2^{\kappa} , hence  \beta\in\{\alpha<\lambda|z\in G_{\alpha}\}\subseteq M\cap\lambda
and  \beta\in M\cap\lambda . This is a contradiction.  \square 

For a topological space  X and an infinite cardinal  \kappa , let  X_{\kappa} be the space  X with
topology generated by all  G_{\kappa}‐subsets. Let  L(X) denote the Lindelöf degree of  X.

Corollary 4. Let  \kappa be an infinite cardinal, and  X a 2’‐total space. Then the
following are equivalent:

(1)  L(X_{\kappa})\leq 2^{\kappa}.
(2) For every cover  \mathcal{G} of  X by  G_{\kappa} ‐subsets, there is a subcover  \mathcal{G}' of  \mathcal{G} such that

 |\{G\in \mathcal{G}'|x\in G\}|\leq 2^{\kappa} for every  x\in X.

(3) For every cover  \mathcal{G} of  X by  G_{\kappa} ‐subsets, there is a refinement cover  \mathcal{G}' of  \mathcal{G}

by  G_{\kappa} ‐subsets such that  |\{G\in \mathcal{G}'|x\in G\}|\leq 2^{\kappa} for every  x\in X.
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Note that there is a compact  T_{2} space  X such that  L(X_{\omega}) is much greater than
 2^{\omega} , e.g., see Usuba [6].

Corollary 5. If  X is a  2^{\kappa} ‐total space and  \mathcal{G} is a partition of  X by  G_{\kappa}1‐subsets,
then  |\mathcal{G}|\leq 2^{\kappa}.

Note 6.  Arhange1' ski_{1}^{\cup} [1] proved that if  X is a compact Hausdorff space, then
 X cannot be partitioned into more than  2^{\omega} ‐many closed  G_{\delta}|‐subsets. The above
corollary is a generalization of this result.

Now Stephenson’s theorem is immediate from this corollary.

Corollary 7. If  X is a  2^{\psi(X)} ‐total  T_{1} space, then  |X|\leq 2^{\psi(X)} and  X is compact.

For  H‐closed spaces, we use the following easy observation:

Lemma 8. For a Hausdorff space  X , the following are equivalent:

(1)  X is  H‐closed.
(2) For every upward directed set  D=\{D,  \leq\rangle and net  \{x_{a}|a\in D\}\subseteq X , there

is  x\in X such that for every open neighborhood  V of  x and every  a\in D,
there is  b\geq a with  x_{b}\in\overline{V}.

For a space  X and  A\subseteq X , the  0 ‐closure of  A,  \overline{A}^{\theta} , is the set  \{x\in X|A\cap\overline{V}\neq\emptyset
for every open neighborhood  V of  x }. A subset  A\subseteq X is  \theta ‐closed if  \overline{A}^{\theta}=A . Note
that the following:

(1) For every  A\subseteq X,  \overline{A}^{\theta} is  e‐closed.
(2) Every  \theta‐closed set is closed in  X , and if  X is regular then the converse

holds.

(3) If  O\subseteq X is open, then  \overline{O} is  \theta‐closed.
(4) Even if  X is  H‐closed, every closed subset of  X needs not be an  H‐set, but

every  \theta‐closed subset of  X is an  H‐set.

Proposition 9. Let  \kappa be an infinite cardinal. Let  X be an  H ‐closed space, and  \mathcal{G}

a cover of  X by  G_{\kappa} ‐sets such that for every  G\in \mathcal{G} , there is a family  \{W_{\xi}|\xi<\kappa\}
of open sets with  G= \bigcap_{\xi<\kappa}W_{\xi}=\bigcap_{\xi<\kappa}\overline{W_{\xi}} . If for every  x\in X , the set  \{G\in \mathcal{G}|
 x\in G\} has cardinality  \leq 2^{\kappa} , then  \mathcal{G} has a subcover of  size\leq 2^{\kappa}.

Proof. Suppose to the contrary that  \mathcal{G} has no such a subcover, and let  \{G_{\alpha}|\alpha<
 \lambda\} be an enumeration of  \mathcal{G} . For  \alpha<\lambda , take open sets  \{W_{\xi}^{\alpha} \xi<\kappa\} with

 G_{\alpha}= \bigcap_{\xi<\kappa}W_{\xi}^{\alpha}=\bigcap_{\xi<\kappa}
\overline{W_{\xi}^{\alpha}}.
Take a sufficiently large regular cardinal  \chi , and take  M\prec H(\chi) containing

all relevant objects such that  |M|=2^{\kappa}\subseteq M and  [M]^{\kappa}\subseteq M . We have   X\neq
  \bigcup_{\alpha\in M\cap\lambda}G_{\alpha} . Fix  x^{*} \in X\backslash \bigcup_{\alpha\in M\cap\lambda}G_{\alpha} . For  \alpha\in M\cap\lambda , fix  \xi_{\alpha}<\kappa with  x^{*}\not\in\overline{W_{\xi_{\alpha}}^{\alpha}}.

Now we claim that there are finitely many  \alpha_{0} , . . . ,  \alpha_{k}\in M\cap\lambda such that   M\cap X\subseteq

  \bigcup_{i\leq n}\overline{W_{\xi_{\alpha_{i}}}^{\alpha_{i}}} As before, however, this is impossible.
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Suppose that  M \cap X\not\leqq\bigcup_{i\leq k}\overline{W_{\xi_{\alpha_{i}}}^{\alpha_{i}}} for every finitely many  \alpha_{0} , . . . ,  \alpha_{k}\in M\cap\lambda.

Let  \mathcal{F}=\{(M\cap X)\backslash \overline{W_{\xi_{\alpha}}^{\alpha}}
|\alpha\in M\cap\lambda\} . By the assumption,  \mathcal{F} has the finite
intersection property. Take a family  \mathcal{F}'\subseteq \mathcal{P}(M\cap X) such that:

(1)  \mathcal{F}\subseteq \mathcal{F}'.

(2)  \mathcal{F}' is a filter over  M\cap X , hence has the finite intersection property.
(3)  \mathcal{F}' is a maximal family satisfying (1) and (2).

For  C\in \mathcal{F}' , take  y_{C}\in C . Let  D=\{\mathcal{F}',  \supseteq\rangle , this is an upward directed set. Hence
by Lemma 8, we can find  y\in X such that for every open neighborhood  V of  y and
 C\in \mathcal{F} , there is  C'\in \mathcal{F} with  C'\subseteq C and  y_{C'}\in\overline{V}.

Choose  \beta<\lambda with  y\in G_{\beta} . As before, we have  \beta\not\in M\cap\lambda ; If  \beta\in M\cap\lambda,

then  (M\cap X)\backslash \overline{W_{\xi_{\beta}}^{\beta}}\in \mathcal{F}' , but  y\in W_{\xi_{\beta}}^{\beta} and  \overline{W_{\xi_{\beta}}^{\beta}}\cap((M\cap X)\backslash 
\overline{W_{\xi_{\beta}}^{\beta}})=\emptyset . This is
impossible.

For  \xi<\kappa , we have that  \{(M\cap X)\backslash \overline{W_{\xi}^{\beta}}\}\cup \mathcal{F}' cannot have the finite intersection

property; If so, then  (M\cap X)\backslash \overline{W_{\xi}^{\beta}}\in \mathcal{F}' by the maximiality of  \mathcal{F}' . Put  C=

 (M\cap X)\backslash \overline{W_{\xi}^{\beta}} . By the choice of  y , we can find  C'\in \mathcal{F} with  z\v{c}\in C'\subseteq C and

 z_{C'}\in\overline{W_{\xi}^{\beta}} , this is impossible. Hence there is  C_{\xi}\in \mathcal{F}' with  C_{\xi}\subseteq\overline{W_{\xi}^{\beta}} . For  a\in[\kappa]^{<\omega},
let  C_{a}= \bigcap_{\xi\in a}C_{\xi}\in \mathcal{F}' . We have that  C_{b}\subseteq C_{a} for every  b\supseteq a . Fix  z_{a}\in O_{a} for
each  a\in[\kappa]^{<\omega}.

Let  H=\{z_{a}|a\in[\kappa]^{<\omega}\} . We have  H\in M . Then  H is a net associated with

the directed set  [\kappa]^{<\omega} , hence we can find  z such that for every open neighborhood
 V of  z and  a\in[\kappa]^{<\omega} , there is  b\supseteq a with  z_{b}\in\overline{V} . Since  H\in M , we may assume

that  z\in M\cap X . Then we have  z \in\bigcap_{\underline{\xi<}\kappa}\overline{W_{\xi}^{\beta}}=G_{\beta} ; Suppose  z\not\in\overline{W_{\xi}^{\beta}} for some

 \xi<\kappa . Since  W_{\xi}^{\beta} is open, we have that  W_{\xi}^{\beta} is  \theta‐closed. Hence we can pick an open

neighborhood  V of  z with  \overline{V}\cap\overline{W_{\xi}^{\beta}}=\emptyset . On the other hand we can choose  b\supseteq\{\xi\}

with  z_{b}\in\overline{V}.  z_{b}\in O_{b}\subseteq\overline{W_{\xi}^{\beta}} , this is impossible.
The set  \{\alpha<\lambda|z\in G_{\alpha}\} is definable in  M and has cardinality  \leq 2^{\kappa} , hence

 \beta\in\{\alpha<\lambda|z\in G_{\alpha}\}\subseteq M\cap\lambda and  \beta\in M\cap\lambda . This is a contradiction.  \square 

For a  \theta‐closed set  G\subseteq X , let  \psi_{c}(G, X) denote the minimum infinite cardinal  \kappa

such that there is an open sets  \{V_{\alpha}|\alpha<\kappa\} with  G= \bigcap_{\alpha<\kappa}V_{\alpha}=\bigcap_{\alpha<\kappa}
\overline{V_{\alpha}} . It is
clear that  \psi_{c}(G, X)\leq\chi(G, X) .

Corollary 10. Let  X be an  H‐closed space, and  \kappa an infinite cardinal.

(1) For every partition  \mathcal{G} of  X by  0 ‐closed sets, Of  \psi_{c}(G, X)\leq\kappa for every  G\in \mathcal{G}
then  |\mathcal{G}|\leq 2^{\kappa}.

(2) (Gryzlov [3], Dow‐Porter [2]) Let  X be an  H ‐closed space. Then  |X|\leq
 2^{\psi_{c}(X)}.
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