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1 Introduction

In recent years, there has been concern about the default of Tesla, and one of the main drivers

of the concern is the production lags of Model 3, an electric vehicle targeted toward the mass

market. Despite huge investment including in highly automated assembly lines, production is

far behind schedule, and many financial analysts predict that Tesla might go bankrupt before it

recoups its investment. As shown in this case, it often takes time to profit from investment, and

sometimes the lags can be so significant that they threaten the survival of the business. In this

study, we examine how time‐to‐build with uncertainty affects a firm’s investment, financing, and
default decisions.

First, we show that a firm that makes an optimal financing decision delays investment because

of time‐to‐build, whereas a highly levered firm rather hastens such investment despite the lags.

The former is natural because the project becomes less profitable when it takes time to yield

revenue, in line with Weeds (2002) and Alvarez and Keppo (2002). Given the excessive amount
of debt, however, equity holders make more aggressive investment decisions at the expense of

debt holders. Bar‐Ilan and Strange (1996) also showed that investment lags might lead to earlier
investment, addressing that time‐to‐build lowers the value of waiting to invest. Their model,

however, was limited to the analysis of all‐equity firms, lacking discussions on the effects of

time‐to‐build on financing decisions, and their result rested on the assumption of certainty in

the lags. By contrast, we incorporate the firm’s use of debt financing, showing that conflicts of

interest between equity and debt holders can accelerate the investment despite uncertainty in
time‐to‐build.

Regarding the firm’s financing decision, our model shows that its optimal leverage ratio is

inverted U‐shaped with respect to the size of the investment lags. As expected time‐to‐build

increases, equity holders want to utilize more debt to cover the running costs incurred during

the project. After the lags become significant, however, they are more concerned about the firm’s

default before the project’s completion and start to reduce the amount of debt. Agliardi and

Koussis (2013) studied the effects of time‐to‐build with a dynamic debt structure and showed
that the initial leverage ratio is inverted  U‐shaped with respect to the size of the lags. Their

model, however, presumed that the investment timing is exogenously given, lacking discussions

on how time‐to‐build affects the investment timing decision. In our model, the firm’s investment

timing and financing decisions with time‐to‐build are endogenously determined.

1This note is an abbreviated version of Jeon (2018), and was supported by the JSPS KAKENHI (grant number
 17K13728) and the Ishii Memorial Securities Research Promotion Foundation.
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Because of the investment lags and running costs, the firm can choose to default even before

the project is completed. However, we show that the probability of default in the presence of

time‐to‐build is lower than that without time‐to‐build in most cases. The probability of default

before the project’s completion increases in the size of the lags, while that after the completion

decreases with time‐to‐build, and the sum of them remains lower than that without time‐to‐build
unless it takes an extreme amount of time. This is because the firm makes more conservative

investment and financing decisions as the project takes more time‐to‐build. We also show that

the default probability before the project’s completion increases with the project’s profitability.

This is because equity holders take more risks for more profitable projects, and Tesla’s recent

crisis can be read from this perspective. It made aggressive investment to preempt the mass

market of electric cars, but the production lags were much longer than it expected, resulting in

a higher probability of default before any net profits could be made.

The remainder of this paper is organized as follows. We describe the setup of the model in
Section 2.1 and solve the case of an unlevered firm as a benchmark in Section 2.2. The levered

firm’s choices of investment and financing are investigated in Section 2.3. Section 3 presents and

discusses the results of the comparative statics. Section 4 summarizes the main arguments of

the paper and discusses future works.

2 Models and solutions

2.1 Setup

Suppose that a firm makes the revenue flow  Q_{0}X_{t} with a constant  Q_{0} and a demand shock  X_{t}

given by a geometric Brownian motion:

 dX_{t}=\mu X_{t}dt+\sigma X_{t}dW_{t} , (2.1)

where  \mu and  \sigma are positive constants and  (W_{t})_{t\geq 0} is a standard Brownian motion on a filtered

space  (\Omega, \mathcal{F}, \mathbb{F} :=(\mathcal{F}_{t})_{t\geq 0}, \mathbb{P}) . The risk‐free rate is given by a constant  r(>\mu) . The firm can

invest in a project to raise the revenue flow to  Q_{1}X_{t} , where  Q_{1}>Q_{0} , but it takes exponential

time with a parameter  \lambda to finish the project and raise extra revenue from it. For simplicity,

we assume that the lags are independent of the demand shock. The investment incurs not only

lump‐sum costs  I at the outset of the project but also running costs  i while the project is in

progress. The firm can issue debt to finance the investment costs and the tax rate is given by

 \tau\in[0,1] . For simplicity, we assume a consol bond with a coupon  c . Shareholders can choose to

default before or after the project is completed, and the firm loses the proportion  \alpha\in[0,1] of

its value when liquidated.

2.2 Unlevered flrm

As a benchmark, we first examine the case of an unlevered firm. Suppose that the firm has

invested in the project and it has been completed. The firm makes the revenue flow  Q_{1}X_{t} , and
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the firm value after the completion of the project,  V_{1}^{u}(x) , is evaluated as follows:

  \Pi_{1}(x) :=E_{t}^{x}[\int_{t}^{\infty}e^{-r(s-t)}(1-\tau)Q_{1}X_{s}ds]=\frac
{(1-\tau)Q_{1}x}{r-\mu} . (2.2)

Now, let us suppose that the project has not yet finished. Despite the lump‐sum costs  I

incurred at the outset of the project, the firm makes the revenue flow  Q_{0}X_{t} until the project is

completed, and running costs  i are incurred while the project is in progress. Because of these

running costs, shareholders can choose to abandon the ongoing project before its completion.

Denoting the timing of the project’s completion and that of abandonment by  T and  T_{a}^{u} , respec‐

tively, the unlevered firm’s value waiting for the completion of the project is

 V_{0}^{u}(x)= \sup_{T_{\alpha}^{u}}E_{t}^{x}[1_{\{T_{a}^{u}<T\}}\int_{t}^{T_{a}
^{u}}e^{-r(s-t)}\{(1-\tau)Q_{0}X_{s}-i\}ds
 +1_{\{T\leq T_{a}^{u}\}} \{\int_{t}^{T}e^{-r(s-t)}\{(1-\tau)Q_{0}X_{s}-i\}ds+e^
{-r(T-t)}V_{1}^{u}(X_{T})\}] . (2.3)

Before the investment, the firm makes the revenue flow  Q_{0}X_{t} and has the option to invest in

the project. Shareholders choose the timing of investment  T_{i}^{u} to maximize the firm value, and

the firm’s pre‐investment value is

 V_{pre}^{u}(x)= \sup_{T_{i}^{u}}E_{t}^{x}[\int_{t}^{T_{i}^{u}}e^{-r(s-t)}(1-
\tau)Q_{0}X_{s}ds+e^{-r(T_{\dot{i}}^{u}-t)}\{V_{0}^{u}(X_{T_{i}^{u}})-I\}] . (2.4)

From the standard argument of real options theory, the unlevered firm’s optimal investment
and abandonment decisions are obtained as follows.

Proposition 1 (Unlevered firm) The optimal investment and abandonment decisions of an
all‐equity firm that has an option to invest in a project with time‐to‐build are characterized by

the threshold strategies  T_{i}^{u*}  := \inf\{t>0|X_{t}\geq X_{i}^{u}\} and  T_{a}^{u*}  := \inf\{t\in[T_{i}^{u*}, T]|X_{t}\leq X_{a}^{u}\},
where the abandonment threshold is

 X^{u}= \frac{\gamma_{\lambda}(r+\lambda-\mu)i}{(\gamma_{\lambda}-1)(1-\tau)
(Q_{0}+\frac{\lambda}{r-\mu}Q_{1})(r+\lambda)} (2.5)

and the investment threshold is implicitly obtained from

  \frac{(\beta-1)(1-\tau)(Q_{1}-Q_{0})\lambda X_{i}^{u}}{(r-\mu)(r+\lambda-\mu)}
=\frac{(\beta-\gamma_{\lambda})i}{(\gamma_{\lambda}-1)(r+\lambda)}(\frac{X_{i}
^{u}}{X_{a}^{u}})^{\gamma_{\lambda}}+\beta(\frac{i}{r+\lambda}+I) (2.6)

with

  \beta=\frac{1}{2}-\frac{\mu}{\sigma^{2}}+\sqrt{(\frac{1}{2}-\frac{\mu}{\sigma^
{2}})^{2}+\frac{2r}{\sigma^{2}}}>1,   \gamma_{\lambda}=\frac{1}{2}-\frac{\mu}{\sigma^{2}}-\sqrt{(\frac{1}{2}-
\frac{\mu}{\sigma^{2}})^{2}+\frac{2(r+\lambda)}{\sigma^{2}}}<0 . (2.7)

PROOF See Jeon (2018).

Given the results in Proposition 1, the unlevered firm’s post‐investment value in (2.3) can
be evaluated as follows:

 V_{0}^{u}(x)=\Pi_{0}(x)-\Pi_{0}(X_{a}^{u})\Phi_{u}(x) , (2.8)
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where

  \Pi_{0}(x):=(1-\tau)(\frac{Q_{1}}{r-\mu}-\frac{Q_{1}-Q_{0}}{r+\lambda-\mu})x-
\frac{\dot{i}}{r+\lambda} (2.9)

is the expected after‐tax revenue before the project’s completion in the absence of default and

  \Phi_{u}(x) :=(\frac{x}{X_{a}^{u}})^{\gamma_{\lambda}} (2.10)

denotes the state price of the unlevered firm’s abandonment of the project. The derivation of

(2.8) is given in Jeon (2018).
Likewise, the unlevered firm’s pre‐investment value in (2.4) can be expressed as follows:

 V_{pre}^{u}(x)= \frac{(1-\tau)Q_{0^{X}}}{r-\mu}+\{V_{0}^{u}(X_{i}^{u})-\frac{(1
-\tau)Q_{0}X_{i}^{u}}{r-\mu}-I\}(\frac{x}{X_{i}^{u}})^{\beta} (2.11)

2.3 Levered firm

We now proceed to the case of a levered firm. The firm can issue debt to finance the investment

costs  I and  i , and there is a trade‐off between the tax shields and liquidation costs given the
default.

Suppose that the levered firm’s project has been completed (i.e.,  t\geq T). Equity holders
choose the timing of default  T_{d1} to maximize the equity value:

 E_{1}(x)= \sup_{T_{d1}}E_{t}^{x}[\int_{t}^{T_{d1}}e^{-r(s-t)}(1-\tau)(Q_{1}
X_{s}-c)ds] . (2.12)

Given the default decision, the debt value after the project’s completion is

 D_{1}(x)= \mathbb{E}_{t}^{x}[\int_{t}^{T_{d1}}e^{-r(s-t)}cds+e^{-r(T_{d1}-t)}(1
-\alpha)V_{1}^{u}(X_{T_{d1}})] . (2.13)

The firm value after the completion of the project,  V_{1}(x) , is the sum of (2.12) and (2.13).
Now, let us suppose that the firm has invested in the project but it has not been finished

yet (i.e.,  t<T). Equity holders choose the default timing  T_{d0} to maximize the equity value:

 E_{0}(x)= \sup_{T_{d0}}E_{t}^{x}[1_{\{T_{d0}<T\}}\int_{t}^{T_{d0}}e^{-r(s-t)}\{
(1-\tau)(Q_{0}X_{s}-c)-i\}ds
 +1_{\{T\leq T_{d0}\}}[ \int_{t}^{T}e^{-r(s-t)}\{(1-\tau)(Q_{0}X_{s}-c)-i\}ds+e^
{-r(T-t)}E_{1}(X_{T})]] . (2.14)

The first row of (2.14) corresponds to the expected profits from the case in which the firm
defaults before the project is finished (i.e.,  T_{d0} ), while the second row represents the expected
profits from the case in which the firm defaults after the project is completed (i.e.,  T_{d1} ). Given
these default decisions, the debt value before the project’s completion is

 D_{0}(x)= E_{t}^{x}[1_{\{T_{d0}<T\}}\{\int_{t}^{T_{d0}}e^{-r(s-t)}cds+e^{-
r(T_{d0}-t)}(1-\alpha)V_{0}^{u}(X_{T_{d0}})\}+1_{\{T\leq T_{d0}\}}D_{1}(x)] . (2.15)

The value of the levered firm waiting for the completion of the project,  V_{0}(x) , is the sum of

(2.14) and (2.15).
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Shareholders choose the timing of investment  T_{i} and amount of debt financing  c to maximize

the pre‐investment firm value:

 V_{pre}(x)= \sup_{T_{\dot{i}},c}E_{t}^{x}[\int_{t}^{T_{i}}e^{-r(s-t)}(1-\tau)Q_
{0}X_{s}ds+e^{-r(T_{i}-t)}\{V_{0}(X_{T_{i}})-I\}] . (2.16)

Given these arguments, we can derive the levered firm’s optimal investment, default, and

financing decisions as follows.

Proposition 2 (Levered firm) The optimal investment, default, and financing decisions of a
firm that has an option to invest in a project with debt financing in the presence of time‐to‐

build are characterized by the thresholds strategies  T_{i}^{*}  := \inf\{t>0|X_{t}\geq X_{i}\},  T_{d0}^{*}  := \inf\{t\in

 [T_{i}^{*}, T]|X_{t}\leq X_{d0}\} , and  T_{d1}^{*}  := \inf\{t>T|X_{t}\leq X_{d1}\} , where the thresholds of investment and

default and the coupon payment are obtained as the solutions of the following system of equations:

 X_{i}= \frac{(r+\lambda-\mu)(r-\mu)}{(\beta-1)(1-\tau)(Q_{1}-Q_{0})\lambda}
[\{\alpha\Pi_{0}(X_{d0})+(1-\alpha)\Pi_{0}(X_{a}^{u})+\frac{\tau c}{r}\}(\beta-
\gamma_{\lambda})\Phi_{0}(X_{i})
 + \{\alpha\Pi_{1}(X_{d1})+\frac{\tau c}{r}\}\{(\beta-\gamma_{\lambda})\Phi_{1}
(X_{i})+(\gamma_{\lambda}-\gamma)(\frac{X_{i}}{X_{d1}})^{\gamma}\}+
\beta(\frac{i}{r+\lambda}-\frac{\tau c}{r}+I)],

(2.17)

 X_{d0}= \frac{r+\lambda-\mu}{(1-\gamma_{\lambda})(Q_{0}+\frac{\lambda}{r-\mu}Q_
{1})}[\frac{(\gamma_{\lambda}-\gamma)c}{(1-\gamma)r}(\frac{X_{d0}}{X_{d1}})
^{\gamma}-\gamma_{\lambda}(\frac{c}{r}+\frac{i}{(1-\tau)(r+\lambda)})] , (2.18)

 X_{d1}= \frac{\gamma(r-\mu)c}{(\gamma-1)rQ_{1}} , (2.19)

 c= \frac{rX_{d0}}{\gamma_{\lambda}-\frac{\gamma_{\lambda}-\gamma}{1-\gamma}
(h\frac{X_{d0}}{X_{d1}})^{\gamma}}[\frac{\alpha(1-\tau)(1-\gamma_{\lambda})
(Q_{0}+\frac{\lambda}{r-\mu}Q_{1})}{(r+\lambda-\mu)\tau}+
\frac{\alpha\gamma_{\lambda^{\dot{i}}}}{(r+\lambda)\tau X_{d0}}-\frac{1-\Phi_{0}
(X_{i})-h^{\gamma}\Phi_{1}(X_{i})}{r\psi\Phi_{0}(X_{i})}]
(2.20)

with

  \gamma=\frac{1}{2}-\frac{\mu}{\sigma^{2}}-\sqrt{(\frac{1}{2}-\frac{\mu}
{\sigma^{2}})^{2}+\frac{2r}{\sigma^{2}}}<0 , (2.21)

  \psi=\frac{r-\mu}{r}[\frac{\gamma_{\lambda}+(\gamma-\gamma_{\lambda})(\frac{X_
{d0}}{X_{d1}})^{\gamma}}{\frac{\gamma_{\lambda}-1}{r+\lambda-\mu}\{(r-\mu)Q_{0}+
\lambda Q_{1}\}+(\gamma-\gamma_{\lambda})Q_{1}(\frac{X_{d0}}{X_{d1}})^{\gamma-1}
}] , (2.22)

 h=(1- \gamma-\frac{\alpha(1-\tau)\gamma}{\tau})^{-\frac{1}{\gamma}} (2.23)

PROOF See Jeon (2018).

Given the results in Proposition 2, the equity and debt values in (2.14) and (2.15) can be
expressed as follows:

 E_{0}(x)= \Pi_{0}(x)-\frac{(1-\tau)c}{r}-\{\Pi_{0}(X_{d0})-\frac{(1-\tau)c}{r}
\}\Phi_{0}(x)-\{\Pi_{1}(X_{d1})-\frac{(1-\tau)c}{r}\}\Phi_{1}(x) ,

(2.24)

 D_{0}(x)= \frac{c}{r}-\{\frac{c}{r}-(1-\alpha)V_{0}^{u}(X_{d0})\}\Phi_{0}(x)-\{
\frac{c}{r}-(1-\alpha)V_{1}^{u}(X_{d1})\}\Phi_{1}(x) , (2.25)
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where

  \Phi_{0}(x)=(\frac{x}{X_{d0}})^{\gamma_{\lambda}} \Phi_{1}(x)=(\frac{x}{X_{d1}
})^{\gamma}-(\frac{x}{X_{d0}})^{\gamma_{\lambda}}(\frac{X_{d0}}{X_{d1}})
^{\gamma} (2.26)

denote the state prices of the levered firm’s default before and after the completion of the project,

respectively. The firm value is the sum of equity and debt values:

 V_{0}(x)= \Pi_{0}(x)+\frac{\tau c}{r}-\{\alpha\Pi_{0}(X_{d0})+(1-\alpha)\Pi_{0}
(X_{a}^{u})(\frac{X_{d0}}{X_{a}^{u}})^{\gamma_{\lambda}}+\frac{\tau c}{r}\}\Phi_
{0}(x)-\{\alpha\Pi_{1}(X_{d1})+\frac{\tau c}{r}\}\Phi_{1}(x) .

(2.27)
It is straightforward that the equity, debt, and firm values after the project’s completion are

evaluated as follows:

 E_{1}(x)= \Pi_{1}(x)-\frac{(1-\tau)c}{r}-\{\Pi_{1}(X_{d1})-\frac{(1-\tau)c}{r}
\}(\frac{x}{X_{d1}})^{\gamma} (2.28)

 D_{1}(x)= \frac{c}{r}-\{\frac{c}{r}-(1-\alpha)\Pi_{1}(X_{d1})\}(\frac{x}{X_{d1}
})^{\gamma} (2.29)

 V_{1}(x)= \Pi_{1}(x)+\frac{\tau c}{r}-\{\alpha\Pi_{1}(X_{d1})+\frac{\tau c}{r}
\}(\frac{x}{X_{d1}})^{\gamma} (2.30)

Lastly, the levered firm’s pre‐investment value in (2.16) can be rewritten as follows:

 V_{pre}(x)= \frac{(1-\tau)Q_{0^{X}}}{r-\mu}+\{V_{0}(X_{i})-\frac{(1-\tau)Q_{0}
X_{i}}{r-\mu}-I\}(\frac{x}{X_{\dot{i}}})^{\beta} (2.31)

3 Comparative statics and discussion

To allow a comparison, we use a benchmark model without time‐to‐build (e.g., Sundaresan et al.

(2015)). To denote the values associated with the benchmark model, we use a bar on the top of
each value. For the numerical calculation, we use the following parameters:

 \overline{\overline{r0.06Risk-freerate}}
Notation V a1ueDescr\dot{{\imath}}ption

 \mu 0.02 Expected growth rate of demand shock
 \sigma 0.2 Volatility of the demand shock

 Q_{0}  [0,0.8] Revenue flows per unit before the completion of the project

 Q_{1} [1, 2] Revenue flows per unit after the completion of the project
  1/\lambda [0.01, 10] Expected time‐to‐build
I 3 Lump‐sum costs at the outset of the project
 i  [0,3] Running costs during the project
 \tau 0.35 Corporate tax
 \alpha 0.5 Liquidation costs given default

Table 1: Parameters for the numerical calculation
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(e) State prices of default/abandonment (f) State prices of default

Figure 1: Comparative statics with respect to the expected time‐to‐build

Figure 1 presents the results of the comparative statics with regard to expected time‐to‐

build (i.e.,   1/\lambda ). Figure la shows that the investment is delayed when it requires time‐to‐build,

irrespective of its financing method (i.e.,  X_{i}>\overline{X}_{i} and  X_{i}^{u}>\overline{X}_{i}^{u} ) and that the delay becomes
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significant as expected time‐to‐build becomes longer. This is a natural result because the project

becomes less profitable as it takes more time to yield revenue, in line with Weeds (2002) and
Alvarez and Keppo (2002). The former study examined firms’ R&D competition with an un‐
certain discovery time and showed that such investment can be delayed despite the presence of

preemption incentives. The latter elaborated on uncertainty in the lags by assuming that they

depend on the underlying revenue process and showed that the investment is delayed signifi‐

cantly. These works, however, were limited to the analysis of unlevered firms, lacking discussions

of financing decisions.

Figure lb shows that the default thresholds in the presence of time‐to‐build are higher than

those in the absence of time‐to‐build (i.e.,  X_{d0},  X_{d1}>\overline{X}_{d} ) and that they strictly increase in
the size of investment lags. This, however, does not imply that the default probability is an

increasing function of time‐to‐build, as discussed shortly. We can also see that the threshold of

default before the project’s completion is higher than that after completion (i.e.,  X_{d0}>X_{d1} ).
This is a natural result because the firm incurs running costs and raises less revenue before the

project is completed.

Regarding the amount of debt financing, Figure lc shows that the coupon payment optimally

chosen by equity holders is higher when the project requires time‐to‐build (i.e.,  c>\overline{c}) and that
it strictly increases as the expected lags become longer. This is because the firm expects more

running costs as the lags increase, which makes it depend more on debt to finance the investment
costs.

The leverage ratio, however, is not monotone with respect to the size of investment lags.

Figure ld shows that the optimal leverage ratio is inverted  U‐shaped with respect to   1/\lambda . When

expected time‐to‐build is not significant, the firm raises the leverage ratio as it takes more

time to complete the project. After the lags exceed a certain level (approximately two years
with the benchmark parameters), it starts to lower the leverage ratio as time‐to‐build increases
because of the concern about default before the project’s completion. This inverted  U‐shaped

leverage ratio is consistent with the findings of Agliardi and Koussis (2013), who studied the
impact of time‐to‐build with a dynamic debt structure. Their model, however, postulated that

the investment timing is exogenously given and that there is no uncertainty in time‐to‐build,

whereas the investment timing is endogenously determined with uncertainty in time‐to‐build in

our model. Despite the inverted  U‐shape, the leverage ratio with time‐to‐build is found to be

higher than that without time‐to‐build.

These results, however, do not imply that the presence of time‐to‐build always raises the

probability of default. Figure le presents the state price of default before and after the project’s

completion at the timing of investment, which is directly linked to the default probability. As the

investment lags become longer, the probability of default before the project’s completion strictly

increases, whereas that after the project’s completion strictly decreases. The sum of them is given

in Figure lf, which shows that the default probability in the presence of time‐to‐build is  U‐shaped

and lower than that without lags unless it takes an extreme amount of time (more than seven
years with the benchmark parameters). This finding implies that the firm makes conservative
investment and financing decisions when the investment involves uncertain time‐to‐build. Note
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that the investment trigger strictly increases in the size of lags and the leverage ratio does not

monotonically increase in the expected time‐to‐build in spite of increasing expected running
costs.
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(c) Optimal investment thresholds when  c=7 (d) Optimal investment thresholds when  c=9

Figure 2: Comparative statics with respect to the expected time‐to‐build given exogenous coupon

payment

The results in Figures la showed that the timing of investment is delayed under time‐to‐

build (i.e.,  X_{i}>\overline{X}_{i} ). These results are based on the optimal capital structure that maximizes
the firm value, given in Proposition 2, and they do not hold when the firm is not optimally

levered. Figure 2 shows that when the firm is highly levered, the investment triggers are concave

with respect to expected time‐to‐build and can be even lower than that without investment lags.

In other words, equity holders have an incentive to accelerate the investment at the expense of
debt holders.

Bar‐Ilan and Strange (1996) also showed that a firm can hasten the investment in the presence
of lags, suggesting that the lags lower the value of option to wait. Their model, however, assumed

no uncertainty in the lags and did not consider debt financing, leaving the question of how time‐

to‐build affects the financing decision unanswered. To be more specific, their work studied an
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all‐equity firm’s investment with fixed lags and there is no running cost while the project is

in progress. Since the abandonment of the ongoing project incurs nonnegative costs, the firm

always waits until the project is finished. By contrast, our model incorporates debt financing and

uncertainty in the lags with running costs, and the equity holders can choose to default before

the project is completed. In this framework, we show that the conflicts of interest between equity

and debt holders can accelerate the investment despite uncertainty in time‐to‐build. To our best

knowledge, our study is the first to investigate the risk‐shifting in the presence of time‐to‐build.

Sarkar and Zhang (2015) studied two‐stage investment with implementation lags and debt
financing, showing that the investment triggers are inverted  U‐shaped when the firm is highly

levered. In their model, however, the triggers are decreasing functions of the lag when the firm’s

debt level is low or it is optimally levered. The difference comes from the description of the

investment lags. They described the lag by the lumpiness of the investment, assuming that the

trigger of second‐stage investment is proportional to that of the first‐stage one, whereas we

directly model time‐to‐build with uncertainty.

4 Conclusion

In this study, we derived a firm’s optimal investment, financing, and default choices in the

presence of time‐to‐build. We showed that a firm that makes an optimal financing decision

delays investment because of these investment lags, whereas a highly levered firm rather hastens

such investment. Because of the running costs incurred during the lags, the firm can choose to

default before the project is completed. Nonetheless, the probability of default with time‐to‐build

is lower than that without time‐to‐build in most cases. The optimal leverage ratio is found to be

inverted  U‐shaped with respect to the size of the lags. As the project becomes more profitable,

the firm invests more aggressively, which leads to an increase in the default probability before

completion.

A range of problems remain to be tackled. For instance, we analyzed a representative firm’s

investment and financing decisions in the presence of time‐to‐build; however, market competition

might dramatically change the results. Owing to the incentive to preempt the market, even an

optimally levered firm might choose to accelerate the investment despite uncertainty in time‐to‐

build. Furthermore, asymmetric information between competitors regarding each other’s time‐

to‐build might yield strategic interactions between them. For the extension of financing methods,

one can consider external financing constraints, which are likely to be imposed on the firm with

a project that requires time‐to‐build. The effects of debt restructuring in the presence of time‐

to‐build remain to be studied as well. It is to be hoped that our study will serve as a platform
to research these issues further.
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