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Abstract

This paper provides a concise approximation for the early exercise boundary (EEB)
of an American option written on dividend‐paying assets. Although a vast majority of

traded options are of American‐style optimally exercised before maturity, there are no explicit

formulas for their prices as well as EEBs even in the standard model called vanilla. A

closed‐form EEB approximation is especially important in decision‐making on optimal early

exercise. Following a simple but indefinite idea of Carr et al. (1992) based on van Moerbeke
(1976), we focus on a class of interpolation approximations with a square‐root exponential
weight. The unsettled problem there was how to determine the exponential decay rate.

Applying the Laplace‐Carson transform approach to this problem, we derive an explicit

decay rate of the exponential weight to develop a pair of new EEB approximations for

vanilla  put/call options, both of which are consistent with the principal boundary features.

1 Introduction

European‐style options, which can only be exercised at its maturity, have closed‐form formulas

for their values in the standard model pioneered by Black and Scholes (1973) and Merton
(1973). Although a vast majority of traded options are of American‐style optimally exercised
before maturity, there are no closed‐form formulas for their values even in the standard model

called vanilla. The principal difficulty in analyzing American options may be the absence of an

explicit expression for the early exercise boundary (EEB), which is an optimal level of critical
asset value where early exercise occurs. Due to the lack of closed‐form formulas for American

option values, many approximate and/or numerical solutions have been developed so far.
The approximations previously established are summarized as follows:

 \bullet interpolation approximations:

Johnson (1983); Blomeyer (1986); Broadie and Detemple (1996); Chen and Yeh (2002);
Chung and Chang (2007); Li (2010b)

 e compound‐options approximations:

Geske and Johnson (1984); Bunch and Johnson (1992); Ho et al. (1994)

 e quadratic approximations:

MacMillan (1986); Barone‐Adesi and Whaley (1987); Barone‐Adesi and Elliot (1991);
Allegretto et al. (1995); Ju and Zhong (1999); Wong and Xu (2001); Andrikopoulos (2007);
Li (2010a)

 *

This is an early draft of my paper Kimura (2019) in preparation. All of the proofs and computational results
are omitted here.
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 e approximations based on the integral representation:

Kim (1990); Ju (1998); Bunch and Johnson (2000); Little et al. (2000); AitSahlia and Lai
(2001); Zhu and He (2007)

 \bullet barrier‐options approximations:

Bjerksund and Stensland (1993, 2002); Omberg (1987); Ingersoll (1998); Nunes (2007);

Kimura (2018)

 e approximations based on the Laplace transform:

Carr  (199S) ; Zhu (2006, 2011); Kimura (2012, 2014)

The first three class of these approximations are frequently called analytical approximations,

where the word analytical has been locally used among researchers in finance. They have inter‐

preted “analytical approximations” typically as solutions where a few standard numerical tools

such as a root‐finding algorithm (e.g., Newton‐Raphson) or a simple one‐dimensional numerical
integration are required for just one or two times. However, solutions in which a Newton‐

Raphson algorithm is called repeatedly are excluded. There is no clear distinction between

“analytical approximations” and “numerical methods which means that the word “analytical”

is insignificant.

From the viewpoint of option holders, our focus is on the EEB approximation, because a

simple and accurate approximation is useful in their quick decision‐making. The purpose of

this paper is to provide new interpolation approximations for vanilla American  put/call options

written on a dividend‐paying asset.

2 Preliminaries

2.1 Formulation

Assume that the capital market is well‐defined and follows the efficient market hypothesis. Let

 (S_{t})_{t\geq 0} be the asset price process,  \delta\geq 0 the continuous dividend rate,  \sigma>0 the volatility of

the asset returns, and  r>0 the risk‐free interest rate. Assume that the asset price  (S_{t})_{t\geq 0} is a

lognormal process

  \frac{dS_{t}}{S_{t}}=(r-\delta)dt+\sigma dW_{t}, t\geq 0 , (1)

where  (W_{t})_{t\geq 0} is a standard Wiener process on a filtered probability space  (\Omega, (\mathcal{F}_{t})_{t\geq 0}, \mathcal{F}, \mathbb{P}) .

 (\mathcal{F}_{t})_{t\geq 0} is the natural filtration corresponding to  W and the probability measure  \mathbb{P} is chosen

risk‐neutrally so that the asset has mean rate of return  r.

We consider an American put option written on the asset price, which has a maturity  T>0

and strike price  K>0 . Let

 P\equiv P(t, S_{t})=P(t, S_{t};K, r, \delta) , 0\leq t\leq T

denote the value of the American put option at time  t . Similarly, let

 C\equiv C(t, S_{t})=C(t, S_{t};K, r, \delta) , 0\leq t\leq T
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denote the value of the associated American call option with the same parameters as those in

the put option. McDonald and Schroder (1998) proved that a symmetric relation holds between
the American put and call values, i.e.,

 C(t, S_{t};K, r, \delta)=P(t, K;S_{t}, \delta, r) . (2)

See Carr and Chesney (1997) for another symmetric relation in more general settings.
From the theory of arbitrage pricing, the fair value of the American put option at time  t is

given by solving an optimal stopping problem

 P(t, S_{t})= ess\sup_{\tau_{e}\in[t,T]}E[e^{-r(\tau_{e}-t)}(K-S_{\tau_{e}})^{+}
|\mathcal{F}_{t}] , 0\leq t\leq T , (3)

where  \tau_{e} is a stopping time of the filtration  (\mathcal{F}_{t})_{t\geq 0} and the conditional expectation is calculated

under the risk‐neutral probability measure  \mathbb{P} . Solving the optimal stopping problem (3) is
equivalent to find the points  (t, S_{t}) for which early exercise is optimal. Let  S and  C denote the

stopping region and continuation region, respectively. The stopping region  S is defined by

 \mathcal{S}=\{(t, S)\in[0, T]\cross \mathbb{R}_{+}|P(t, S)=(K-S)^{+}\}.

Of course, the continuation region  C is the complement of  S in  [0, T]\cross \mathbb{R}+\cdot The boundary that

separates  S from  C is the EEB, which is defined by

 B_{p}(t)= \sup\{S\in \mathbb{R}_{+}|P(t, S)=(K-S)^{+}\} , 0\leq t\leq T.

Similarly, define the EEB for the associated American call option by

 B_{c}(t)= \inf\{S\in \mathbb{R}_{+}|C(t, S)=(S-K)^{+}\} , 0\leq t\leq T.

Between these two boundaries  B_{p}(t)\equiv B_{p}(t;r, \delta) and  B_{c}(t)\equiv B_{c}(t;r, \delta) , Carr and Chesney

(1997) derived a simple symmetric relation such that

 B_{c}(t;r, \delta)B_{p}(t;\delta, r)=K^{2}, 0\leq t\leq T . (4)

McKean (1965) showed that the American put value and the early exercise boundary can be
obtained by jointly solving a free boundary problem, which is specified by the so‐called Black‐

Scholes‐Merton partial differential equation (PDE)

  \frac{\partial P}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}P}
{\partial S^{2}}+(r-\delta)S\frac{\partial P}{\partial S}-rP=0, S>B_{p}(t) , (5)

together with the boundary conditions

  \lim_{S\uparrow\infty}P(t, S)=0
  \lim P(t, S)=K-B_{p}(t)

 S\downarrow B_{p}(t) (6)

  \lim \underline{\partial P}=-1,
 S\downarrow B_{p}(t)\partial S

and the terminal condition

 P(T, S)=(K-S)^{+} . (7)

The second condition in (6) is often called the value‐matching condition, while the third condition
is called the smooth‐pasting or high‐contact condition.

14



15

2.2 Laplace‐Carson transforms

It is sometimes convenient to work with the equations where the current time  t is replaced by

the time to expiry  \tau\equiv T-t . For the sake of notational convenience, we write

 \overline{S}_{\tau}\equiv S_{T-\tau}=S_{t}

 \overline{B}_{p}(\tau)\equiv B_{p}(T-\tau)=B_{p}(t)
 \overline{B}_{c}(\tau)\equiv B_{c}(T-\tau)=B_{c}(t) ,

and we refer to  (\overline{S}_{\tau})_{\tau\geq 0} as the backward running process of  (S_{t})_{t\geq 0}.
The put price for the backward running process  \overline{P}(\tau,\overline{S}_{\tau}) satisfies the PDE

‐   \frac{\partial\overline{P}}{\partial\tau}+\frac{1}{2}\sigma^{2}S^{2}
\frac{\partial^{2}\overline{P}}{\partial S^{2}}+(r-\delta)
S\frac{\partial\overline{P}}{\partial S}-r\overline{P}=0,  S>\overline{B}_{p}(\tau) , (8)

with the boundary conditions

  \lim_{S\uparrow\infty}\overline{P}(\tau, S)=0
  \lim \overline{P}(\tau, S)=K-\overline{B}_{p}(\tau)

 S\downarrow\overline{B}_{p}(\tau) (9)

  \lim \underline{0\overline{P}}_{=-1},
 S\downarrow\overline{B}_{p}(\tau)\partial S

and the initial condition

 \overline{P}(0, S)=(K-S)^{+} . (10)

In order to value American vanilla options, Carr (1998) developed a fast and accurate method,
which is called the randomization approach. The name “randomization”’ originates in its initial

step of randomizing the maturity date  T by an exponentially distributed random variable with

mean  \lambda^{-1}=T . Mathematically, the randomization approach is closely related to the Laplace‐

Carson transform (LCT): Let  f(\tau) be a function of exponential order, i.e., there exist some
constants  M and  \lambda_{0}\geq 0 , for which  |f(\tau)|\leq Me^{\lambda_{0}\tau} for all  \tau\geq 0 . Then, the LCT  f^{*}(\lambda) of a

function  f(\tau) is defined by

 f^{*}( \lambda)\equiv \mathcal{L}C[f(\tau)](\lambda)=\int_{0}^{\infty}\lambda 
e^{-\lambda\tau}f(\tau)d\tau,
where  \lambda is a complex number with  {\rm Re}(A)>\lambda_{0}.

Since the time‐reversed quantities  \overline{P}(\tau, S) and  \overline{B}_{p}(\tau) are bounded functions of  \tau\in \mathbb{R}+ , we

can define the LCTs of these functions for  {\rm Re}(A)>0 . The randomization approach can be

interpreted to mean that the LCT  P^{*}(\lambda, S)=\mathcal{L}C[\overline{P}(\tau, S)](\lambda) is an exponentially weighted sum

(integral) of the time‐reversed value  \overline{P}(\tau, S) for (infinitely many) different values of the maturity
 T=\lambda^{-1}\in \mathbb{R}_{+} , which makes  \overline{P}(\tau, S) and  P^{*}(\lambda, S) well defined for  \tau\geq 0 and  \lambda>0 , respectively.

From (8) -(10) , the LCT  P^{*}(\lambda, S) satisfies the ODE

  \frac{1}{2}\sigma^{2}S^{2}\frac{d^{2}P^{*}}{dS^{2}}+(r-\delta)S\frac{dP^{*}}
{dS}-(\lambda+r)P^{*}+\lambda(K-S)^{+}=0, S>B_{p}^{*} , (11)
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together with the boundary conditions

 s\uparrow\infty 1\dot{{\imath}}mP^{*}(\lambda, S)=0

 S\downarrow B_{p}^{*}1\dot{{\imath}}mP^{*}(\lambda, S)=K-B_{p}^{*} (12)

  \lim_{S\downarrow B_{p}^{*}}\frac{dP^{*}}{dS}=-1,
where  B_{p}^{*}\equiv B_{p}^{*}(\lambda)=\mathcal{L}C[\overline{B}_{p}(\tau)]
(\lambda) . Solving this boundary‐value problem and the corresponding

problem for the call case, we have

Proposition 1 (Kimura (2010, 2014)). The LCTs  B_{p}^{*}(\lambda) and  B_{c}^{*}(\lambda) are given by unique positive
solutions of the functional equations

  \lambda(\frac{B_{p}^{*}}{K})^{\theta_{1}}+\delta\theta_{1}\frac{B_{p}^{*}}{K}+
r(1-\theta_{1})=0,
and

  \lambda(\frac{B_{c}^{*}}{K})^{\theta_{2}}+\delta\theta_{2}\frac{B_{c}^{*}}{K}+
r(1-\theta_{2})=0,
respectively, where the parameters  \theta_{i}\equiv\theta_{i}(\lambda)(i=1,2, \theta_{1}>1, \theta_{2}<0) are two roots of the

quadratic equation

  \frac{1}{2}\sigma^{2}\theta^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\theta-
(\lambda+r)=0,
i. e., for  i=1,2,

  \theta_{i}(\lambda)=\frac{1}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})-(-
1)^{i}\sqrt{(r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+r)}\} . (13)

Proposition 1 enables us to prove some known asymptotic properties of the time‐reverse EEB

as  \tauarrow 0 (Kim, 1990) and  \tauarrow\infty (McKean, 1965; Merton, 1973):

Proposition 2.

  \overline{B}_{p}(0)\equiv\lim_{\tauarrow 0}\overline{B}_{p}(\tau)=\min(1, 
\frac{r}{\delta})K,
and

  \overline{B}_{c}(0)\equiv\tauarrow 01\dot{{\imath}}m\overline{B}_{c}(\tau)=
\max(1, \frac{r}{\delta})K.
Proposition 3.

  \overline{B}_{p}(\infty)\equiv\lim_{\tauarrow\infty}\overline{B}_{p}(\tau)=
\frac{r}{\delta}\frac{\theta_{1}^{\circ}-1}{\theta_{\mathring{1}}}K=
\frac{\theta_{2}^{\circ}}{\theta_{\mathring{2}}-1}K,
and

  \overline{B}_{c}(\infty)\equiv\tauarrow\infty 1\dot{{\imath}}m\overline{B}_{c}
(\tau)=\frac{r}{\delta}\frac{\theta_{\mathring{2}}-1}{\theta_{2}^{\circ}}K=\frac
{\theta_{\mathring{1}}}{\theta_{1}^{\circ}-1}K,
where  \theta_{i}^{\circ}\equiv\theta_{i}(0)(i=1,2) .
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Proposition 4 (Kimura (2012)). For sufficiently large  \tau>0,

  \frac{\overline{B}_{p}(\tau)}{\overline{B}_{p}(\infty)}\sim\{\begin{array}{ll}
1+\frac{1}{\theta_{1}^{\circ}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{1}^{\circ}
(\theta_{1}^{\circ}-\theta_{2}^{\circ})\tau\},   r<\delta
 1-\frac{1}{\theta_{2}^{\circ}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{\circ}
)(\theta_{1}^{\circ}-\theta_{2}^{\circ})\tau\},   r\geq\delta,
\end{array}
and

  \frac{\overline{B}_{c}(\tau)}{\overline{B}_{c}(\infty)}\sim\{\begin{array}{ll}
1+\frac{1}{\theta_{2}^{\circ}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{2}^{\circ}
(\theta_{2}^{\circ}-\theta_{1}^{\circ})\tau\},   r>\delta
 1-\frac{1}{\theta_{\mathring{1}}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{1}
^{\circ})(\theta_{2}^{\circ}-\theta_{1}^{\circ})\tau\},   r\leq\delta.
\end{array}
3 A Square‐root Exponential Approximation

Carr et al. (1992) proposed an approximation form of  \overline{B}(\tau) for  \delta=0 that is an exponentially
weighted average of the strike price  K and the perpetual boundary, i.e., for  \alpha>0

 \overline{B}_{p}(\tau)\approx Ke^{-\alpha\sqrt{\tau}}+\overline{B}_{p}(\infty)
(1-e^{-\alpha\sqrt{\tau}}) , \tau>0.
However, they have not mentioned any specific definition of the decay rate  \alpha . Also, for  \delta>0,
it should have the form

 \overline{B}_{p}(\tau)\approx\overline{B}_{p}(0)e^{-\alpha\sqrt{\tau}}+
\overline{B}_{p}(\infty)(1-e^{-\alpha\sqrt{\tau}})
 =\overline{B}_{p}(\infty)+(\overline{B}_{p}(0)-\overline{B}_{p}(\infty))e^{-
\alpha\sqrt{\tau}} . (14)

In order to determine  \alpha definitely, we need one more extra condition on  \overline{B}_{p}(\tau) other than its

asymptotic properties.

For such a condition on  \overline{B}_{p}(\tau) , we choose the value  \overline{B}_{p}(T)=B_{p}(0) at  \tau=T(t=0) , which

can be approximated by

 \overline{B}_{p}(T)\approx B_{p}^{*}(T^{-1}) ,

due to the randomization approach principle. If we set  \tau=T in the square‐root exponential

approximation (14), then we have

 \overline{B}_{p}(T)\approx\overline{B}_{p}(\infty)+(\overline{B}_{p}(0)-
\overline{B}_{p}(\infty))e^{-\alpha\sqrt{T}},
from which we obtain

 - \alpha\approx\frac{1}{\sqrt{T}}\log(\frac{\overline{B}_{p}(T)-\overline{B}
_{p}(\infty)}{\overline{B}_{p}(0)-\overline{B}_{p}(\infty)}) .

Hence,

  e^{-\alpha\sqrt{\tau}}\approx(\frac{\overline{B}_{p}(T)-\overline{B}_{p}
(\infty)}{\overline{B}_{p}(0)-\overline{B}_{p}(\infty)})^{\sqrt{\frac{\tau}{T}}}
\approx(\frac{B_{p}^{*}(T^{-1})-\overline{B}_{p}(\infty)}{\overline{B}_{p}(0)-
\overline{B}_{p}(\infty)})^{\sqrt{\frac{\tau}{T}}}
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so that we obtain for  \tau>0

  \overline{B}_{p}(\tau)\approx\overline{B}_{p}(\infty)+(\overline{B}_{p}(0)-
\overline{B}_{p}(\infty))(\frac{B_{p}^{*}(T^{-1})-\overline{B}_{p}(\infty)}
{\overline{B}_{p}(0)-\overline{B}_{p}(\infty)})^{\sqrt{\frac{\tau}{T}}} (15)

Applying the same argument as above to the call case, we have the main theorem:

Theorem 1.

  \frac{\overline{B}_{p}(\tau)}{\overline{B}_{p}(\infty)}\approx\{\begin{array}
{ll}
1+\frac{1}{\theta_{\mathring{1}}-1}[(\theta_{1}^{\circ}-1)\{\frac{\beta_{1}}
{\overline{B}_{p}(\infty)}-1\}]^{\sqrt{\frac{\tau}{T}}}   r<\delta
 1-\frac{1}{\theta_{\mathring{2}}}[-\theta_{2}^{\circ}\{\frac{\beta_{1}}
{\overline{B}_{p}(\infty)}-1\}]^{\sqrt{\frac{\tau}{T}}}   r\geq\delta,
\end{array} (16)

and

  \frac{\overline{B}_{c}(\tau)}{\overline{B}_{c}(\infty)}\approx\{\begin{array}
{ll}
1+\frac{1}{\theta_{2}^{\circ}-1}[(\theta_{2}^{\circ}-1)\{\frac{\beta_{2}}
{\overline{B}_{c}(\infty)}-1\}]^{\sqrt{\frac{\tau}{T}}}   r>\delta
 1-\frac{1}{\theta_{1}^{\circ}}[-\theta_{1}^{\circ}\{\frac{\beta_{2}}
{\overline{B}_{c}(\infty)}-1\}]^{\sqrt{\frac{\tau}{T}}}   r\leq\delta,
\end{array} (17)

where the perpetual values  \overline{B}_{p}(\infty) and  \overline{B}_{C}(\infty) are given in Proposition 3, and  \beta_{i}(i=1,2) is a

unique positive solution of the functional equation

  \frac{1}{T}(\frac{\beta_{i}}{K})^{\theta_{i}^{\star}}+\delta\theta_{i}^{\star}
\frac{\beta_{i}}{K}+r(1-\theta_{i}^{\star})=0 , (18)

with  \theta_{i}^{\star}\equiv\theta_{i}(T^{-1})(i=1,2) .
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