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1 Introduction

Reversible investment or capacity choice have been studied extensively as singular control or

impulse control problems. Especially, capacity choice is one of the biggest interest of compa‐

nies and to optimize their decision makings about capacity choice based on product prices or

something that affect their production planning brings economic profits into them. However,

capacity choice is usually represented by impulse control problem with outside jumps and any

effective methods that give solutions of the problem have not been found yet. If those methods

are found, more general and complicated capacity choice problems can be solved explicitly and

the theory of capacity choice or even stochastic control as a whole dramatically makes progress.

One of the most epoch‐making study of capacity choice in these days is Guo and Tomecek

(2008). In Guo and Tomecek (2008), the theoretical connection between singular control and
optimal switching control in two‐regime case that was discussed in Vath and Pham (2007)
was established and they were successful in solving a multidimensional capacity choice problem

which is defined as a singular control by applying the connection. It means that they obtained

solutions of singular control problem by solving corresponding optimal switching problem and at

the same time, the conversion from the outside control in singular control to the inside control

in optimal switching control is observed. Moreover, they expanded their theory in Guo (2009).
This approach is more informative than other previous approaches because it does not require

any special forms of utility functions which are required by previous researches and, furthermore,

it allows non‐smooth utility functions. However, many capacity choice problems include not only

proportional cost but also fixed cost, so impulse control is more suitable for representing those

kind of problems. And it is difficult to solve the problems through usual approaches as reported

in Goto et al. (2006).
In this thesis, we consider a novel approach that gives solutions of impulse control prob‐

lem with outside jumps and that is inspired by Guo and Tomecek (2008). If we can connect
impulse control with optimal switching control, we can solve the problems through converting

outside jumps of impulse control into inside jumps of optimal switching control. In our case,

controls are accompanied by impulse, so we should change the form of optimal switching control

to make it correspond to impulse control and we call the changed optimal switching control

transformed switching control. For solving the problem, we have to clear three things. First, it
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is necessary that the theoretical connection between impulse control and transformed switching

exists. The transformed switching that we now consider is not derived from the impulse control

mathematically but assumed for convenience, so it might be possible that there is no connection

between them in practice. Second, we need to reveal whether transformed switching has math‐

ematical explicit solutions or not. It means that the transformed switching has to meet HJB

equation but we currently do not know wether it meets the equation. Third, we have to verify

that transformed switching can be solved practically and analyze the parameters’ effects on the

solutions. However, sophisticated mathematical discussion is unavoidable to prove the first and

second problems, so we establish that the purpose of present study is to obtain the solutions of

transformed switching and give examples of them under some different parameters.

2 Hypothesis for Correspondence between Impulse Control with

Transformed Switching Control

2.1 Problem

Let  (\Omega, F, F, P) be a filtered probability space, and assume a given bounded interval  [a, b]\in
 (-\infty, \infty) . Consider the following problem.

 V(x, y)= \sup_{\omega\ni W}J(x, y, \xi_{i}) , (1)

with

 J(x, y,  \xi_{\dot{i}}) :=E[\int_{0}^{\infty}e^{-\rho t}H(Y_{t})X_{t}^{x}dt-
\sum_{i=1}^{\infty}e^{-\rho\tau_{i}}C(\xi_{\dot{i}})] , (2)

 C(\xi)=\{\begin{array}{ll}
K_{1}+E_{1}\xi,   \xi>0,
0,   \xi=0, C(0)=K_{1},
K_{0}+E_{0}\xi,   \xi<0,
\end{array} (3)

subject to

 dX_{t}^{x}=\mu X_{t}dt+\sigma X_{t}dW_{t}, X_{0}=x>0,

 \omega=(\tau_{1}, \tau_{2}, \ldots;\xi_{1}, \xi_{2}, \ldots) ,

 N(t)= \sup[i\geq 0 : \tau_{i}\leq t],

 Yt:=y+ \sum_{\dot{i}=1}^{N(t)}\xi_{i}, y\in[a, b],
 H:[a, b], H(y)=H(a)+ \int_{a}^{y}h(z)dz,
 K_{1}, K_{0}, E_{1}>0.

where the market price  X is modeled by a geometric Brownian motion; an impulse control  \omega is

represented by stopping time  \tau and impulse  \xi ; the last stopping time  N(t) is defined by terminal

time  t ; the capacity level  Y is controlled process represented by  \xi_{i} ; the resource extraction rate
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is modeled by a function  H(Y);K_{1}>0 is the fixed cost per investment and  K_{0}>0 is the fixed

cost per disinvestment;  E_{1}>0 is the cost of capacity increase and  E_{0} is the cost of capacity

reduction. The aim of the firm is to maximize  J by controlling  Y.

2.2 Preliminary

Throughout the thesis, we define  m<0<1<n to be the roots of  \sigma^{2}x^{2}+(\mu-\sigma^{2})x-\rho=0,
so that

 m, n= \frac{-(\mu-\sigma^{2})\pm\sqrt{(\mu-\sigma^{2})^{2}+4\sigma^{2}\rho}}
{2\sigma^{2}} . (4)

We also observe the identity  \rho=-\sigma^{2} mn and define the useful quantity  \eta>0 :

  \eta:=\frac{1}{\rho-\mu}=\frac{-mn}{(n-1)(1-m)\rho}=\frac{1}{\sigma^{2}(n-1)(1
-m)} . (5)

Next, let  R(x, y)  :=J(x, y, 0) be the no‐action expected payoff. Then,

 R(x, y) := E[\int_{0}^{\infty}e^{-\rho t}H(y)X_{t}^{x}dt]=\eta H(y)x , (6)

 r(x, y) :=R_{y}(x, y)= E[\int_{0}^{\infty}e^{-\rho t}h(y)X_{t}^{x}dt]=\eta h(y)
x . (7)

2.3 Corresponding transformed switching and the value function

Optimal switching control corresponding with singular control in Guo and Tomecek (2008)
is as follows.

 v_{k}(x, z) := \kappa_{0}=k\sup_{\alpha\in B}E[\int_{0}^{\infty}e^{-\rho t}
[h(z)X_{t}^{x}]I_{t}dt-\sum_{n=1}^{\infty}e^{-\rho\tau_{n}}K_{\kappa_{n}}] , (8)

where  \alpha=(\tau_{i}, \kappa_{n})_{n\geq 0} is an admissible switching control,  B is the subset of admissible switching

controls  \alpha=(\tau_{i}, \kappa_{n})_{n\geq 0} such that   E[\sum_{n=1}^{\infty}e^{-\rho\tau_{n}}]<0 , and  I_{t} is the regime indicator function
defined as follows.

 I_{t}:= \sum_{n=0}^{\infty}\kappa_{n}1_{\{\tau_{n}<t\leq\tau_{n+1}\}}, I_{0}=
\kappa_{0} . (9)

Here, we consider the two‐regime switching between the stoping status and the operating status,

 k\in[0,1] . Finally, we have the value function represented by the payoff of optimal switching
control:

 V(x, y)= \eta H(a)x+\int_{a}^{y}v_{1}(x, z)dz+\int_{y}^{b}v_{0}(x, z)dz . (10)

According to the theoretical connection between singular control and optimal switching control

established in Guo and Tomecek (2008), the value function represents that of singular control
problem.

As for impulse control with outside jumps, we assume that the representation of the value

function of impulse control is same as that of singular control. However, we define transformed

switching may corresponds with impulse control as follows.

 v_{k}(x, z) := \kappa_{0}=k\sup_{\alpha\in B}E[\int_{0}^{\infty}e^{-\rho t}
[h(z)X_{t}^{x}]I_{t}dt-\sum_{n=1}^{\infty}e^{-\rho\tau_{n}}(K_{\kappa_{n}}+
E_{\kappa_{n}}\xi_{n})] (11)
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Transformed switching deals with the switching cost of capacity increase or reduction in addition

to the fixed switching cost. Moreover, we consider that the two‐regime switching between two

different operating statuses in this case. Therefore, we know the value function of impulse control

problem is (10) and the payoff  \nu_{0} and  \nu_{1} are the solutions of transformed switching problem
(11) are as follows:

 v_{0}(x, z)= \kappa_{0}=0\sup_{\alpha\in B}E[\int_{0}^{\infty}e^{-\rho t}h(z)X_
{t}^{x}I_{t}dt-\sum_{n=1}^{\infty}e^{-\rho\tau_{n}}(K_{1}+E_{1}\xi_{n})] , (12)

 v_{1}(x, z)= \kappa_{0}=1\sup_{\alpha\in B}E[\int_{0}^{\infty}e^{-\rho t}(-h(z)
X_{t}^{x})(1-I_{t})dt-\sum_{n=1}^{\infty}e^{-\rho\tau_{n}}(K_{0}+E_{0}\xi_{n})] . (13)

3 Solutions of Transformed Switching Control

We assume that  \nu_{0} and  \nu_{1} are the unique solutions with linear growth condition to the

following system of variational inequalities.

  \min\{-\mathcal{L}v_{0}(x, z)-h(z)x, v_{0}(x, z)-v_{1}(x, z+\xi)+K_{1}+E_{1}
\xi\}=0 , (14)

  \min\{-\mathcal{L}v_{1}(x, z)-h(z)x, v_{1}(x, z)-v_{0}(x, z+\xi)+K_{0}+E_{0}
\xi\}=0 , (15)

where  \mathcal{L} is the generator of the diffusion  X^{x} , killed at rate  \rho , given by  \mathcal{L}u(x, z)=\sigma^{2}u_{xx}(x, z)+
 \mu u_{x}(x, z)-pu(x, z) . Based on Vath and Pham (2007), we solve  \nu_{0} and  \nu_{1} in the following two
cases.

3.1 Case 1:  E_{0}\geq 0

For each  z\in(a, b) , we describe the switching regions as  d(z) and  u(z) which take values

 (0, \infty].
Firstly, for each  z\in(a, b) such that  h(z)=0 , it is never optimal to switch since   E_{0}\geq

 0,  E_{1}>0,  K_{0}>0,  K_{1}>0,  \xi_{n}>0 in  \nu_{0} and  \xi_{n}<0 in  \nu_{1} , and so we have  d(z)=\infty=u(z) . For

this case,  v_{0}(x, z)=0=v_{1}(x, z) .

Secondly, for each  z\in(a, b) such that  h(z)>0 , it is optimal to switch from regime  0 to

regime 1 when   X_{t}^{x}\in[u(z), \infty ), and to switch from regime 1 to regime  0 when  X_{t}^{x}\in(0, d(z) ],
where   0<d(z)<u(z)<\infty . Furthermore, we have

 v_{0}(x, z)=\{\begin{array}{ll}
A(z)x^{n}+\eta h(z)x,   x<u(z) ,
B(z)x^{m}+\eta h(z+\xi_{1})x-K_{1}-E_{1}\xi_{1},   x\geq u(z) ,
\end{array} (16)

 v_{1}(x, z)=\{\begin{array}{ll}
A(z)x^{n}+\eta h(z+\xi_{0})x-K_{0}-E_{0}\xi_{0},   x<d(z) ,
B(z)x^{m}+\eta h(z)x,   x\geq d(z) .
\end{array} (17)

where  \xi_{1}\geq 0 is accompanied by investment and  \xi_{0}<0 is accompanied by disinvestment. The

value matching condition, the smooth pasting condition and the condition of a differentiation
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with respect to an impulse lead to the following boundary conditions:

 \{\begin{array}{l}
A(z)u^{n}(z)+\eta h(z)u(z)=B(z)u^{m}(z)+\eta h(z+\xi)u(z)-K_{1}-E_{1}\xi_{1},
nA(z)u^{n-1}(z)+\eta h(z)=mB(z)u^{m-1}(z)+\eta h(z+\xi_{1}) ,
\eta\frac{\partial h(z+\xi_{1})}{\partial\xi_{1}}u(z)-E_{1}=0,
\end{array} (18)

 \{\begin{array}{l}
A(z)d^{n}(z)+\eta h(z+\xi_{0})d(z)-K_{0}-E_{0}\xi_{0}=B(z)d^{m}(z)+\eta h(z)d(z)
,
nA(z)d^{n-1}(z)+\eta h(z+\xi_{0})=mB(z)d^{m-1}(z)+\eta h(z) ,
\eta\frac{\partial h(z+\xi_{0})}{\partial\xi_{0}}d(z)-E_{0}=0.
\end{array} (19)

Here, we assume  h(z)=z^{\gamma} (  \gamma is an arbitrary constant value), so given  d(z),  u(z),  A(z),  B(z),  \xi_{0}

and  \xi_{1} are solved from (16),

 \{\begin{array}{l}
A(z)=\frac{\eta(1-\frac{1}{m})(h(z+\xi_{1})-h(z))u(z)-K_{1}-E_{1}\xi_{1}}{u^{n}
(z)(1-\frac{n}{m})}
=\frac{\eta(1-\frac{1}{m})(h(z+\xi 0)-h(z))d(z)-K_{0}-E_{0}\xi_{0}}{d^{n}(z)
(\frac{n}{m}-1)},
B(z)=\frac{\eta(1-\frac{1}{n})(h(z+\xi_{1})-h(z))u(z)-K_{1}-E_{1}\xi_{1}}{u^{m}
(z)(\frac{m}{n}-1)}
=\frac{\eta(1-\frac{1}{n})(h(z+\xi_{0})-h(z))d(z)-K_{0}-E_{0}\xi_{0}}{d^{m}(z)(1
-\frac{m}{n})},
(K_{1}+E_{1}\xi_{1})u^{-n}(z)+(K_{0}+E_{0}\xi_{0})d^{-n}(z)
=\eta(1-\frac{1}{m})(h(z+\xi_{1})u^{1-n}(z)+h(z+\xi_{0})d^{1-n}(z)-h(z)(u^{1-n}
(z)+d^{1-n}(z))) ,
(K_{1}+E_{1}\xi_{1})u^{-m}(z)+(K_{0}+E_{0}\xi_{0})d^{-m}(z)
=\eta(1-\frac{1}{n})(h(z+\xi_{1})u^{1-m}(z)+h(z+\xi_{0})d^{1-m}(z)-h(z)(u^{1-m}
(z)+d^{1-m}(z))) ,
0=\eta\gamma(z+\xi_{1})^{\gamma-1}u(z)-E_{1},
0=\eta\gamma(z+\xi_{0})^{\gamma-1}d(z)-E_{0}.
\end{array}
(20)

Lastly, for each  z\in(a, b) such that  h(z)<0 , it is optimal to switch from regime 1 to

regime  0 when  X_{t}^{x}\in(0, d(z) ] and it is never optimal to switch from regime  0 to regime 1, so we
have   d(z)<\infty and   u(z)=\infty . Moreover,  y_{0} and  \nu_{1} are given by

 v_{0}(x, z)=\eta h(z)x , (21)

 v_{1}(x, z)=\{\begin{array}{ll}
\eta h(z+\xi)x-K_{0}-E_{0}\xi,   x\leq d(z) ,
B(z)x^{m}+\eta h(z)x,   x>d(z) ,
\end{array} (22)

where  \xi<0 . We obtain the boundary condition as follows.

 \{\begin{array}{l}
B(z)d(z)^{m}+\eta h(z)d(z)=\eta h(z+\xi)d(z)-K_{0}-E_{0}\xi,
mB(z)d^{m-1}(z)+\eta h(z)=\eta h(z+\xi) ,
\eta\frac{\partial h(z+\xi)}{\partial\xi}d(z)-E_{0}=0.
\end{array} (23)
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Therefore, assuming   h(z)=z^{\gamma}-\alpha (  \gamma is an arbitrary constant value and  \alpha is a positive number)
for the existence of  z\in(a, b) such that  h<(0),  B(z),  d(z) and  \xi are given by

 \{\begin{array}{l}
B(z)=\frac{\eta[(z+\xi)^{\gamma}-z^{\gamma}]d(z)-K_{0}-E_{0}\xi}{d(z)^{m}},
d(z)=\frac{m}{m-1}\frac{K_{0}+E_{0}\xi}{\eta[(z+\xi)^{\gamma}-z^{\gamma}]},
0=\gamma(z+\xi)^{\gamma-1}\frac{K_{0}/E_{0}+\xi}{(z+\xi)^{\gamma}-z^{\gamma}}-
\frac{m-1}{m}.
\end{array} (24)

3.2 Case 2:  E_{0}<0

First, for each  z\in(a, b) such that  h(z)=0 , it is never optimal to switch since  E_{0}<0.

Therefore,  d(z)=\infty=u(z) and  v_{0}(x, z)=0=v_{1}(x, z) in this case.

Then, for each  z\in(a, b) such that  h(z)>0 , it is optimal to switch from regime  0 to regime

1 when   X_{t}^{x}\in[u(z), \infty ) and it is never optimal to switch from regime 1 to regime  0 . That is,

  d(z)=\infty and   u(z)<\infty and we have

 v_{0}(x, z)=\{\begin{array}{ll}
A(z)x^{n}+\eta h(z)x,   x<u(z) ,
h(z+\xi)x-K_{1}-E_{1}\xi,   x\geq u(z) ,
\end{array} (25)

 v_{1}(x, z)=\eta h(z)x . (26)

According to the conditions, the boundary condition is as follows.

 \{\begin{array}{l}
A(z)u(z)^{n}+\eta h(z)u(z)=\eta h(z+\xi)u(z)-K_{1}-E_{1}\xi,
nA(z)u^{n-1}(z)+\eta h(z)=\eta h(z+\xi) ,
\eta\frac{\partial h(z+\xi)}{\partial\xi}u(z)-E_{1}=0.
\end{array} (27)

Here,  h(z)=z^{\gamma} (  \gamma is an arbitrary constant value) is assumed. That is,

 \{\begin{array}{l}
A(z)=\frac{\eta[(z+\xi)^{\gamma}-z^{\gamma}]u(z)-K_{1}-E_{1}\xi}{u(z)^{n}},
u(z)=\frac{n}{n-1}\frac{K_{1}+E_{1}\xi}{\eta[(z+\xi)^{\gamma}-z^{\gamma}]},
0=\gamma(z+\xi)^{\gamma-1}\frac{K_{1}/E_{1}+\xi}{(z+\xi)^{\gamma}-z^{\gamma}}-
\frac{n-1}{n}.
\end{array} (28)

Finally, for each  z\in(a, b) such that  h(z)>0 , it is optimal to switch from regime 1 to

regime  0 when  X_{t}^{x}\in(0, d(z) ] and it is never optimal to switch from regime  0 to regime 1, so
we have   d(z)<\infty and   u(z)=\infty . Therefore, we obtain clearly same conclusion as Case 1 with
each  z\in(a, b) such that  h(z)<0 in this case.

In short, we have 4 patterns of transformed switching, no switching, downside switching

(only to switch from regime 1 to regime  0 ), upside switching(only to switch from regime  0 to
regime 1), bilateral switching (to switch between regime  0 and regime 1). They are summarized
as follows.

1. No switching:  h(z)=0

 v_{0}(x, z)=v_{1}(x, z)=0, d(z)=u(z)=\infty.
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2. Downside switching:  h(z)=z^{\gamma}-\alpha<0,  \xi<0

 \{
 v_{0}(x, z)=\eta h(z)x

 \{
 B(z)= \frac{\eta[(z+\xi)^{\gamma}-z^{\gamma}]d(z)-K_{0}-E_{0}\xi}{d(z)^{m}},
 v_{1}(x, z)=\{\begin{array}{l}
\eta h(z+\xi)x-K_{0}-E_{0}\xi,x\leq d(z)
B(z)x^{m}+\eta h(z)x,x>d(z)
\end{array}
 d(z)= \frac{m}{m-1}\frac{K_{0}+E_{0}\xi}{\eta[(z+\xi)^{\gamma}-z^{\gamma}]},
 0= \gamma(z+\xi)_{(z+\xi)^{\gamma}-z^{\gamma}}^{\gamma-1^{K_{0}/E_{0}+\xi}}-
\frac{m-1}{m}.

3. Upside switching:  h(z)=z^{\gamma}>0,  \xi>0,  E_{0}<0

 \{\begin{array}{l}
v_{0}(x, z)=[Case]
v_{1}(x, z)=\eta h(z)x.
\end{array}
 \{\begin{array}{l}
A(z)=\frac{\eta[(z+\xi)^{\gamma}-z^{\gamma}]u(z)-K_{1}-E_{1}\xi}{u(z)^{n}},
u(z)=\frac{n}{n-1}\frac{K_{1}+E_{1}\xi}{[(z+\xi)^{\gamma}-z^{\gamma}]},
0=\gamma(z+\xi)_{(z+\xi)^{\gamma}-z^{\gamma}}^{\gamma-1^{K_{1}/E_{1}+\xi}}-\frac
{n-1}{n}.
\end{array}

4. Bilateral switching:  h(z)=z^{\gamma}>0,  \xi_{1}>0,  \xi_{0}<0,  E_{0}\geq 0

 \{_{v_{1}(x,z)=}^{v_{0}(x,z)=}\{

 \{\begin{array}{l}
A(z)=\frac{n(1-\frac{1}{m})(h(z+\xi_{1})-h(z))u(z)-K_{1}-E_{1}\xi_{1}}{u^{n}(z)
(1-\frac{n}{m})}
=\frac{\eta(1-\frac{1}{m})(h(z+\xi_{0})-h(z))d(z)-K_{0}-E_{0}\xi_{0}}{d^{n}(z)
(\frac{n}{m}-1)},
B(z)=\frac{\eta(1-\frac{1}{n})(h(z+\xi_{1})-h(z))u(z)-K_{1}-E_{1}\xi_{1}}{u^{m}
(z)(\frac{m}{n}-1)}
=\frac{\eta(1-\frac{1}{n})(h(z+\xi_{0})-h(z))d(z)-K_{0}-E_{0}\xi_{0}}{d^{m}(z)(1
-\frac{m}{n})},
\end{array}
 A(z)x^{n}+\eta h(z)x,  x<u(z) ,

 B(z)x^{m}+\eta h(z+\xi_{1})x-K_{1}-E_{1}\xi_{1},  x\geq u(z) ,

 A(z)x^{n}+\eta h(z+\xi_{0})x-K_{0}-E_{0}\xi_{0},  x<d(z) ,

 B(z)x^{m}+\eta h(z)x,  x\geq d(z) ,

 (K_{1}+E_{1}\xi_{1})u^{-n}(z)+(K_{0}+E_{0}\xi_{0})d^{-n}(z)

 = \eta(1-\frac{1}{m})(h(z+\xi_{1})u^{1-n}(z)+h(z+\xi_{0})d^{1-n}(z)-h(z)(u^{1-
n}(z)+d^{1-n}(z))) ,

 (K_{1}+E_{1}\xi_{1})u^{-m}(z)+(K_{0}+E_{0}\xi_{0})d^{-m}(z)

 = \eta(1-\frac{1}{n})(h(z+\xi_{1})u^{1-m}(z)+h(z+\xi_{0})d^{1-m}(z)-h(z)(u^{1-
m}(z)+d^{1-m}(z))) ,

 0=\eta\gamma(z+\xi_{1})^{\gamma-1}u(z)-E_{1},

 0=\eta\gamma(z+\xi_{0})^{\gamma-1}d(z)-E_{0}.
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4 Illustrations of Solutions

4.1 Constraint for calculation

In all cases, it is clear that  A(z)>0 and  B(z)>0 since  A(z) and  B(z) represent the

option values for waiting to switch from current regime to another regime. We also clearly have

 d(z)>0 and  u(z)>0 because  X_{t}^{x}\in(0, \infty) . In addition,  \xi>0 in upside switching,  \xi<0 in

downside switching,  \xi_{1}>0 and  \xi_{0}<0 in bilateral switching.

As for  \gamma , first,  0<\gamma<(n-1)/n for the convergence in upside switching since  E_{1}>0

requires  \gamma>0 and taking the limit of (28) proves  \gamma<(n-1)/n . Then, in downside switching,
it is possible that  \gamma\geq 0 and  \gamma<0 since  E_{0}<0 requires  \gamma<0 and  E_{0}\geq 0 requires  \gamma\geq 0.

Lastly,  \gamma>0 because  E_{1}>0 requires  \gamma>0.

4.2 Examples of numerical calculations

4.2.1 Downside switching

In this thesis, we use  R programming codes to solve the problem. First of all, we set the

parameter values such that  \rho=0.1,  \mu=0.01,  \sigma=0.2,  \gamma=0.3,  K_{0}=1 and  E_{0}=1 . Next,

we calculate  B(z),  d(z) and  \xi with those parameters by the Newton method. Consequently, we

obtain the graph as in Fig. 1.  D^{-1}(z)=z+\xi>0 is the new  z level after we add an impulse

 \xi to the current  z level. This graph illustrates the switching region  (0, d(z) ] and the continuous
region  (d(z), \infty) , and when  X_{t}^{x} reaches the switching region, the current capacity level jumps to

the new level  D^{-1}(z) . As for the option values,  B(z)>0 for each  z\geq 2 (we start to calculate
from  z=2 ) as in Fig. 2. So downside switching is satisfied with the all constraints under these
settings.

Moreover, we also calculate a  E_{0}<0 and  \gamma<0 case and obtain the graphs as in Fig. 3

(we set  E_{0}=-1 and  \gamma=-0.3 in this case). However, in this case, we have  B(z)<0 for each
 z\geq 2 as in Fig. 4. It proves that  E_{0}<0 and  \gamma<0 don’t match downside switching.

4.2.2 Upside switching

Firstly, we set the parameter values such that  \rho=0.1,  \mu=0.01,  \sigma=0.2,  \gamma=0.3,  K_{1}=1

and  E_{1}=1 . Secondly, we determine  A(z),  u(z) and  \xi based on the parameters. Finally, we have

the graph as in Fig. 5.  U^{-1}(z)=z+\xi>0 is the new  z level after we add an impulse  \xi to

the current  z level. In this figure, the switching region and the continuous region are described

as  [u(z), \infty) and  [0, u(z) ), respectively, and when  X_{t}^{x} reaches the switching region, the current
capacity level jumps to the new level  U^{-1}(z) . Furthermore,  A(z)>0 for each  z\geq 0 (calculation
starts from  z=0 ) as in Fig. 6. So upside switching is satisfied with the all constraints under
these settings.

4.2.3 Bilateral switching

First, we set the parameter values such that  \rho=0.1,  \mu=0.01,  \sigma=0.2,  \gamma=0.3,  K_{1}=

 1,  K_{0}=1,  E_{1}=2 and  E_{0}=1 . Then, we calculate  A(z),  B(z),  u(z),  d(z),  \xi_{1} and  \xi_{0} . Lastly,
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the graph as in Fig. 7 is given below. We have the switching region  [0, d(z) ) and  [u(z), \infty )
and the continuous region  (d(z), u(z)) in bilateral switching, so when  X_{t}^{x} reaches the downside

and upside switching regions, the current capacity level jumps to the new level  D^{-1}(z) and

 U^{-1}(z) , respectively. Moreover, for each  z\geq 5 (we start to calculate from  z=5 ),  A(z)>0 and
 B(z)>0 as in Figs. 8 and 9. So bilateral switching is satisfied with the all constraints under

these settings.

In bilateral switching, it is a critical problem that the calculation occasionally diverge at

higher  z level. For the problem, we find rather high value of  \sigma or  \rho suppress the divergence of
the calculation.

4.3 Sensitivity analysis

4.3.1 Downside switching

We analyze the parameters’ effects to the solutions. Firstly, as for downside switching,
we establish the standard condition such that  \rho=0.1,  \mu=0.01,  \sigma=0.2,  \gamma=0.3,  K_{0}=1 and

 E_{0}=1 and the solutions under the condition are as in Fig. 10. Next, we see the following

cases under the different parameters. Fig. 11 is given by  \gamma=0.4 , and the downside threshold

 d(z) and the jumping destinations  D(z) decrease at the same capacity level compared with the

standard condition. Fig. 12 is given by  \sigma=0.3 , and  d(z) decrease and  D(z) is scarcely affected

at the same capacity level. Fig. 13 is given by  \rho=0.2 , and  d(z) and  D(z) increase at the same

capacity level. Fig. 14 is given by  \mu=0.04 , and  d(z) and  D(z) increase at the same capacity

level. We summarize the above findings from Figs. 11‐14 as follows: the increase of  \gamma,  \sigma,  \mu and

the reduction of  \rho reduce the downside threshold  d(z) at the same capacity level; the increase

of  \gamma,  \mu and the reduction of  \rho reduce the jumping destinations  D(z) and the values of  \sigma scarcely
effect  D(z) .

Fig. 15 is given by the downside fixed cost  K_{0}=2.4 , and we recognize that  K_{0} that is

over around 2.4 leads to a reversal between  d(z) and  D(z) . Moreover, the bigger  K_{0} becomes,

the more expanded the reversal is as in Fig. 16, which is given by  K_{0}=100 , so it is supposed

that the reversal is not dissolved at any  z level in this case. However, it is not revealed why the

threshold of the reversal is around 2.4 and what affects it. Fig. 17 is given by  E_{0}=10 , and it

proves that the downside proportional cost  E_{0} becomes bigger,  d(z) and  D(z) increase with the

same magnification of  E_{0} at the same capacity level.

4.3.2 Upside switching

First, we set the standard condition such that  \rho=0.1,  \mu=0.01,  \sigma=0.2,  \gamma=0.3,  K_{1}=1

and  E_{1}=1 and the solutions under the condition are as in Fig. 18. Next, we see the following

cases under the different parameters and  \gamma=0.4,  \sigma=0.3,  \rho=0.2,  \mu=0.04,  K_{1}=1000 and

 E_{1}=10 . Fig. 19 is given by  \gamma=0.4 , and the upside threshold  u(z) and thejumping destinations

 U(z) decrease at the same capacity level compared with the standard condition. Fig. 20 is given

by  \sigma=0.3 , and  u(z) increase and  U(z) is scarcely affected at the same capacity level. Fig. 21

is given by  \rho=0.2 , and  u(z) and  U(z) increase at the same capacity level. Fig. 22 is given by
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 \mu=0.04 , and  u(z) increase and  U(z) decrease at the same capacity level. We summarize the

above findings from Figs. 19‐22 as follows: the increase of  \gamma,  \mu and the reduction of  \sigma,  \rho reduce

the upside threshold  u(z) at the same capacity level; the increase of  \gamma and the reduction of  \rho,  \mu

reduce the jumping destinations  U(z) and the values of  \sigma scarcely effect  U(z) .

Fig. 23 is given by the upside fixed cost  K_{1}=1000 , and threshold  u(z) and the amount of

impulse  \xi also increase at the same capacity level. Fig. 24 is given by the upside proportional

cost  E_{1}=10 , and it proves that  u(z) and  U(z) increase with the same magnification of  E_{1} at

the same capacity level.

5 Conclusion

The main contribution of this thesis is giving a note on a new method to solve impulse

control with outside jumps. It is required to clear three things in order to solve the impulse

control problem with outside jumps in terms of transformed switching that we consider in this

thesis. Firstly, we have to prove that the theoretical connection between impulse control and

transformed switching really exists. Secondly, we need to reveal that transformed switching

meets HJB equation. Finally, it is necessary to verify that transformed switching can be solved

practically and how the parameters effect on the solutions. In this thesis, we only study the

third problem due to some mathematical difficulties of the first and second problems.

We assume transformed switching that is considered to corresponds to impulse control

problem and solve it. We are successful in obtaining the solutions, but the solutions of impulse

 \xi are not given as analytical solutions in all cases and neither are the solutions of the thresholds

 d(z) and  u(z) in bilateral switching. So we calculate the solutions with some different parameters

and get the examples of the solutions using  R programing. Consequently, although something

to be revealed still remain such as the convergence condition of the calculation, it is shown that

we can solve transformed switching by numerical calculations under some conditions and how

the effects are brought into the solutions by each parameter.

However, we also find the problems of the solutions of transformed switching. First, it is

not allowed to set  \gamma<0 in all cases. It means that we have to consider that the utility function
 H is convex and it may contradicts usual diminishing utilities. In Guo (2009), the authors say
that  H is concave, so the problem may be our original. Second, we can not consider the bigger

 K_{0} in downside switching. This method can not deal with the problem with the bigger downside

proportional cost. Third, the bigger  K_{0} is not allowed unless we consider the higher capacity

level in bilateral switching. Only in the  z range in which the reversal between  d(z) and  D(z)
is dissolved the solutions are valid. Lastly, especially in bilateral switching, strict parameter

setting is required to converge the calculation because the divergence of the calculation is easily

observed. Due to these problems, it is possible that the solutions are useless. In addition, as the

above statement, we still leave the two more essential steps to complete our method. If these

assumptions are not valid, this method may be useless for solving impulse control problem with

outside jumps. Thus, there are a lot of things to be studied in order to prove our method’s

effectiveness, but our attempt must give some useful knowledge to the theory of capacity choice.
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Figure 1: The downside thresholds and the jumping destinations from the current  z level  (E_{0}\geq
 0) .
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Figure 2: The option values in downside switching  (E_{0}\geq 0) .
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Figure 3: The downside thresholds and the jumping destinations from the current  z level  (E_{0}<
 0) .
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Figure 4: The option values in downside switching  (E_{0}<0) .
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Figure 5: The upside thresholds and the jumping destinations from the current  z level.
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Figure 6: The option values in upside switching.
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Figure 7: The bilateral thresholds and the jumping destinations from the current  z level.
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Figure 8: The upside option values in bilateral switching.
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Figure 9: The downside option values in bilateral switching.
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Figure 10: The downside solutions under the standard condition.
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Figure 11: The downside solutions under  \gamma=0.4.

 N

 0 2 4 6  s 10 12 14

 X_{t}^{X}

Figure 12: The downside solutions under  \sigma=0.3.
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Figure 13: The downside solutions under  \rho=0.2.
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Figure 14: The downside solutions under  \mu=0.04.
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Figure 15: The downside solutions under  K_{0}=2.4.

 N

 0 2 4 6  s 10 12 14

 X_{t}^{X}

Figure 16: The downside solutions under  K_{0}=100.
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Figure 17: The downside solutions under  E_{0}=10.
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Figure 18: The upside solutions under the standard condition.
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Figure 19: The upside solutions under  \gamma=0.4.
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Figure 20: The upside solutions under  \sigma=0.3.
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Figure 21: The upside solutions under  \rho=0.2.
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Figure 22: The upside solutions under  \mu=0.04.
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Figure 23: The downside solutions under  K_{1}=1000.
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Figure 24: The downside solutions under  E_{1}=10.
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