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Abstract

This paper examines the execution problem of large traders with generalized price impact

model. Constructing a model in a discrete‐time setting, we solve this problem by applying the

backward induction method of the dynamic programming. In this model, we formulate the

expected utility maximization problem of multiple large traders as a Markov game and derive

an equilibrium execution strategy at a Markov perfect equilibrium. This model enables us

to investigate how the execution strategies and trade performances of these large traders are

affected by the existence of other traders. Moreover, we find that these equilibrium execution

strategies become deterministic when the total execution volumes of non large traders are

deterministic. We also show, by some numerical examples, the comparative statics results

with respect to several problem parameters.

1 Introduction

In the security market analysis, there is a growing awareness among academic researchers or

practitioners that some kind of institutional traders called ‘large trader’ cause the ‘price impact’

through their own trades. A life insurance company, trust company, or a company who manages

pension fund exhibit the typical examples of such traders of great importance. Large traders

recognize these price impacts as ‘liquidity risk.’ They can reduce the liquidity risk by splitting

their order into small size over the course of the trading epoch. Conversely, submitting the

small pieces of order gradually may expose them to the price risk. Consequently, when large

traders allocate large orders into (small) pieces, they have to pay attention to two distinct facets;
the liquidity risk which arises owing to the large orders they submit and the price risk which

corresponds to the price fluctuations in the future.

Various ways to trade are available to a preponderance of a trading market since the structure

of trading systems diverges in different directions. As an example of a wide variety of electric
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trading platforms, ‘algorithmic trading’ has emerged in recent years and the so‐called high‐

frequency trading (HFT) with the computer system, which typifies the algorithmic trading,
significantly influences the financial market. The development of the trading system facilitates

an increasing number of studies encompassing a field such as market impact modeling, or optimal

execution problem.

In this paper, we investigate execution problems pertaining to the interaction among large

traders and non‐large traders from a theoretical point of view. [2] propel to the forefront in
investigations of this field, which address the optimization problem of minimizing the expected

execution cost in a discrete‐time framework via a dynamic programming approach. This anal‐

ysis identifies the optimal execution volume as equally divided volume throughout the trading

epochs. Notwithstanding a valuable insight into the execution problem, their model disregards

any attitudes toward risk. Accordingly, [1] derives an optimal execution strategy by considering
both the execution cost and the volatility risk, which entails the analysis with a mean‐variance

approach. As for [7] and [8], they construct models with the residual effect of the price impact,
i.e. the transient price impact which dissipates over the trading time window. These papers

solve an optimization problem of maximizing an expected utility payoff from the final wealth at

the maturity, deriving an optimal execution strategy.

As a trend of the previous papers including those mentioned above, discussions regarding the

behavior of an institutional trader have dominated research in recent years. These researches,

however, do not incorporate into their model the existence of traders other than large traders,

whom we call ‘trading crowd’ as [5]. Only a few existing researches concerned with execution
problems have thoroughly investigated the price impact model with trading crowd. As [13]
shows, small trades have statistically by far larger impacts on the price than that of large trades

in a relative sense. These results infer that one should take into account a price impact caused

by trading crowd when constructing a price impact model. The effect of the price impact caused

by trading crowd on the execution price features the generalized price impact in our model.

Moreover, a multitude of large traders ordinarily exist in a real market. Nevertheless, most

of the prior studies deal with the optimal execution problem of a single large trader model.

The following example underlines the above fact; consider a security market where multiple

institutional traders or brokers manage their trading execution ordered by their clients. The

clients can split their whole order into some blocks to submit their orders on different institutional

traders or brokers. Then, these institutional traders or brokers execute their orders in the same

market to make a profit. Each of their orders is so large that the submissions of the other

institutional traders or brokers can affect the execution price in comparison with the case that

only a single large trader exists in the market. This situation substantiates the interaction of

more than one large traders in the same security market.

Only a few papers delve into the interaction between more than one large traders; examples

are [15], [14], [10], to mention only a few related papers. [15] analyze the interaction of two

large traders on their execution strategies, which inspires the following two works. In [14], they
formulate what they call a market impact game model. Their study unearths some features of a

Nash equilibrium strategy, proving that a unique Nash equilibrium exists in a class of static and
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deterministic strategies in explicit form. They also prevail, via a rather direct method, that the

equilibrium is also a Nash equilibrium in a broader class of dynamic strategies. Subsequently,

[10] extends the above model to  n‐large trader model and constructs cost minimization problems
in terms of a mean‐variance and expected utility maximization problems of  n‐large traders. An

important result of their analysis is that a Nash equilibrium exists in each problem, which is also

in explicit form and is unique for the former problem. They also reveal that the Bachelier price

model renders the Nash equilibrium obtained from each problem identical, where the price is

composed of a Brownian motion as a term expressing the volatility of stock price. These studies

are noteworthy since they theoretically highlight the interaction of execution strategies among

multiple large traders. This kind of work is so novel in these research fields.

This paper explores an execution strategy in a multiple large trader Markov game model.

These large traders maximize their expected utility payoff from  his/her final wealth at the

maturity. The methods by which we derive these strategies are the backward induction procedure

of dynamic programming, which is equivalent to those introduced in [7] and [8]. Using a price
impact caused by trading crowd is embedded in the construction of a price impact model, leading

to a similar but different model of the previous research. Under appropriate model settings,

our investigation shows that there exist an equilibrium execution strategy at a Markov perfect

equilibrium in the second model. Our contribution to the field of the execution problem is that

in general, the equilibrium execution strategies are not necessarily static nor deterministic. The

execution strategies become deterministic when the execution volume of trading crowd are static
and deterministic.

This paper proceeds as follows. In Section 2, we consider the maximization problem of

the expected utility of multiple risk‐averse large traders with Constant Absolute Risk Aversion

(CARA) type utility (or negative exponential utility) from the wealth at the maturity. Then, we
construct a Markov game model of multiple large traders, from which we derive an equilibrium

execution strategy at a Markov perfect equilibrium. Section 3 displays the numerical examples

of each model. Finally, Section 4 concludes.

2  n‐Large Trader Stochastic Game Model

In the discrete time framework  t=1,  T,  T+1(, T\in \mathbb{Z}+ :=\{1,2, \ldots\}) , we assume that

there exists  n‐large traders in a trading market, denoted by  i=1,  n  (, n\in \mathbb{Z}+ :=\{1,2, \ldots\}) .

These large traders plan to purchase  Q^{i}(\in \mathbb{R}) volume of one risky asset by the time  T+1.

We also suppose that each large trader has the CARA utility function with the absolute risk
aversion rate  R^{i}>0.

2.1 Market Model

We assume that  q_{t}^{\dot{i}}(\in \mathbb{R}) for  i\in\{1, n\} represent the large amount of orders submitted by

the large trader at time  t\in\{1, T\} . Then,  \overline{Q}_{t} denotes the number of shares remained to

purchase by the large trader at time  t\in\{1, T, T+1\} . The positive and negative  Q_{t} stand

for the acquisition and the liquidation of the risky asset, respectively. This leads to the similar
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setup for a selling problem. From this assumption, we have  \overline{Q_{1}}=Q and

 \overline{Q}_{t+1}^{i}=\overline{Q_{t}}-q_{t}^{i}, t=1, T, i=1, n . (2.1)

The market price (or quoted price) of the risky asset at time  t\in\{1, T, T+1\} is repre‐
sented by  p_{t} . Since the large trader submit large amount of orders, the execution price becomes

not  p_{t} but  \hat{p}_{t} with the additive execution cost. Submitting one unit of (large) order at time
 t\in\{1, T\} causes the instantaneous price impact, which is denoted as  \lambda_{t} . The execution

of trading crowd also has an impact on the execution price.  \kappa_{t} represents the price impact

per unit at time  t\in\{1, T\} which stems from the submittion of trading crowd. We denote

the total execution volume of trading crowd at time  t\in\{1, T\} by a sequence of random

variables  v_{t} , which follows a normal distribution with mean  \mu_{v_{t}} and variance  \sigma_{v_{t}}^{2} for each time

 t\in\{1, T, T+1\} , that is,

 v_{t}\sim N(\mu_{v_{t}}, \sigma_{v_{t}}^{2}) ,  t=1 ,  T . (2.2)

Throughout this paper, we assume that the buy‐trade and sell‐trade of a large trader induce

the same (instantaneous) price impact, although it would be different in the real market. This

assumption is, however, justified from the statistical analysis of market data in [3]. In this
work, they estimate the permanent and temporary price impact by conducting a robust linear

regression of price changes on net order‐flow. This estimation and the relevant statistics obtained

by using several stock market data reveal that the linear assumption of the price impact is

compatible with the real stock market and that the price impact caused by both buy and sell

trades are same from the statistical point of view.

From these facts, we define the execution price in the form of the linear price impact model
as follows:

  \hat{p}_{t}=p_{t}+\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+\kappa_{t}v_{t},  t=1 , . . . ,  T . (2.3)

We assume that the two large traders cause same price impact per unit,  \lambda_{t} for simplicity.

The generalization of the price impact caused by each large trader, that is, the dependency of  \lambda_{t}

on  i\in\{1, n\} is not what we want to explore and it leads to a substantially tedious extension.

This dependence will not contribute to additional intriguing results or will not have significant

influences on the execution strategies we obtain in the following. We henceforth conduct the

subsequent formulation with  \lambda_{t} which is independent of each large trader  i from these reasons.

The residual price impact of past price  r_{t} at time  t\in\{1, T, T+1\} is represented by

means of a decay kernel function  G(t) of time  t\in\{1, T, T+1\} . We define this price impact

with the exponantial decay kernel,

 G(t):=e^{-\rho t}, t=1, T, T+1 . (2.4)

With a deterministic price reversion rate  \alpha_{t}(\in[0,1]) and deterministic resilience speed  \rho(\in
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 [0, \infty)) , the dynamics of the residual effect of past price impact  r_{t} is given by

 r_{t+1}:= \sum_{k=1}^{t}\{\lambda_{k}(\sum_{i=1}^{n}q_{k}^{i})+\kappa_{k}v_{k}
\}\alpha_{k}e^{-\rho((t+1)-k)}
 = e^{-\rho}\sum_{k=1}^{t-1}\{\lambda_{k}(\sum_{i=1}^{n}q_{k}^{i})+\kappa_{k}
v_{k}\}\alpha_{k}e^{-\rho(t-k)}+\{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+
\kappa_{t}v_{t}\}\alpha_{t}e^{-\rho}
 =[r_{t}+ \{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+\kappa_{t}v_{t}\}\alpha_{t}]e^{
-\rho} . (2.5)

Eq. (2.5) shows the recursiveness of the residual effect, i.e.,  r_{t+1} depends on only  r_{t} and the

transient price impact   \{(\lambda_{t}(\sum_{i=1}^{n}q_{t}^{\dot{i}})+\kappa_{t}v_{t} }  \alpha_{t}e^{-\rho} , which indicates that  r_{t} has a Markov property
in this settings. The Markov property of this residual effect arises from the assumption of the

exponantial decay kernel.

Some public news or information of the economic situation affect the price. Therefore, we

define the independent random variable  \varepsilon_{t} at time  t\in\{1, T\} as the effect of the public

news/information about economic situation between  t and  t+1 , and assume that  e_{t} follows the
normal distribution with mean  \mu_{\varepsilon_{t}} and variance  \sigma_{\varepsilon_{t}}^{2} , i.e.,

 \varepsilon_{t}\sim N(\mu_{\varepsilon_{t}}, \sigma_{\varepsilon_{t}}^{2}) ,  t=1 ,  T . (2.6)

We suppose in the following that the two stochastic process,  v_{t} and  \varepsilon_{t},  t\in\{1, T\} are

mutually independent. However, we can derive similar results without this assumption (that is,

if they follow a bivariate normal distribution).
By the definition of  \varepsilon_{t} , we can set the fundamental price  p_{t}^{f}  :=p_{t}-r_{t} as follows:

 p_{t+1}^{f}=p_{t}^{f}+ \{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{\dot{i}})+\kappa_{t}
v_{t}\}(1-\alpha_{t})+\varepsilon_{t}
 (=p_{t+1}-r_{t+1}=p_{t}-r_{t}+ \{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{\dot{i}})+
\kappa_{t}v_{t}\}(1-\alpha_{t})+\varepsilon_{t}) ,  t=1 , . . . ,  T . (2.7)

From (2.3), (2.5), and (2.7), the the dynamics of market price satisfies

 p_{t+1}=p_{t}-(1- e^{-\rho})r_{t}+\{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+
\kappa_{t}v_{t}\}\{\alpha_{t}e^{-\rho}+(1-e^{-\rho})\}+\varepsilon_{t},  t=1 , . . . , T. (2.8)

Corollary 1 In this context,   \{\lambda_{t}(\sum_{\dot{i}=1}^{n}q_{t}^{i})+\kappa_{t}v_{t}\}(1-\alpha_{t}),   \{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+\kappa_{t}v_{t}\}\alpha_{t} , and   \{\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+
 \kappa_{t}v_{t}\}\alpha_{t}e^{-\rho} represent the parmanent impact, temporary impact, and transient impact, respec‐

tively.

Let  w_{t}^{i},  i=1,  n denote the wealth processes of each large trader. The dynamics of  w_{t}^{\dot{i}}
becomes

 w_{t+1}^{i}=w_{t}^{i}-\hat{p}_{t}q_{t}^{i}

 =w_{t}^{i}- \{p_{t}+\lambda_{t}(\sum_{i=1}^{n}q_{t}^{i})+\kappa_{t}v_{t}\}q_{t}
^{i},  t=1 , . . . ,  T,  i=1 , . . . ,  n . (2.9)
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2.2 Formulation as a Markov Game Model

In this subsection, we formulate the large trader’s problem as a discrete‐time Markov game

model. Time elapses as 1,  T,  T+1 . The state of the process at time  t\in\{1, T, T+1\} is

 a(2n+2)‐tuple, and is denoted as

 s_{t}  :=((w_{t}^{1}, \ldots, w_{t}^{n}),p_{t}, (\overline{Q}_{t}^{1}, \ldots, 
\overline{Q}_{t}^{n}), r_{t})\in \mathbb{R}^{2n+2}=:  S . (2.10)

For  t\in\{1, T\} , an allowable action chosen at state  s_{t} is an execution volume  q_{t}^{i}\in \mathbb{R}=:A^{i},
 i\in\{1, n\} so that the set  A^{1},  A^{n} of admissible actions is independent of the current state

 s_{t}.

When an action  q_{t}^{i} is chosen in a state  s_{t} at time  t\in\{1, T\} , a transition to a next state

 s_{t+1}=h_{t} (s_{t}, (q_{t}^{1}, \ldots , q_{t}^{n}), (v_{t}, \varepsilon_{t})
) . (2.11)

occurs according to the law of motion precisely described in the previous subsection which is

symbolically denoted by  a (Borel measurable) system dynamics function  h_{t}  ( :   S\cross(A^{1}\cross  \cross

 A^{n})\cross(\mathbb{R}\cross \mathbb{R})arrow S) :

 s_{t+1}=h_{t}(s_{t}, (q_{t}^{1}, \ldots, q_{t}^{n}), (v_{t}, \varepsilon_{t})) ,  t=1 ,  T . (2.12)

A utility payoff (or reward) arises only in a terminal state  s_{T+1} at the end of horizon  T+1

as

 g_{T+1}^{\dot{i}}(s_{T+1}):=\{\begin{array}{ll}
-\exp\{-Rw_{T+1}^{i}\}   if \neg Q_{T+1}=0;
-\infty   if \overline{Q}_{T+1}\neq 0,
\end{array} (2.13)

where  R^{i} for all  i\in\{1, n\} represent the risk aversion rate and is larger than  0 . The term
 -\infty means a hard constraint enforcing the large trader to execute all of the remaining volume

 \neg Q_{T} at the maturity  T , that is,  q_{T}^{i}=\neg Q_{T} for all  i\in\{1, , n\}.
The types of large traders could be defined by

 (w_{1}^{\dot{i}}, Q^{i}, R^{i}) , i=1, n , (2.14)

and these are assumed to be their common knowledge. In the real market, large traders have

little access to these information of the counterpart. We can, however, consider a plausible

explanation for the assumption of Eq. (2.14) from the viewpoint of game theoretic analysis.
In this model, our focus is placed on how the existence of the other large trader influences the

execution strategy in comparison with a single large trader’s (optimal) execution problem. We
formulate this Markov game model as a dynamic game of complete information. Therefore, the

above (hypothesized) definition and assumption associated with the notion of common knowledge
are legitimate so that the solution concept of a Nash equilibrium in a non‐cooperative game

is (rationally or ideally) applicable in this model. The formulation of a generalized model as a
dynamic game of incomplete information requires further intricate analysis, which is left for our
future research.
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If we define  a (history‐independent) one‐stage decision rule  f_{t} at time  t\in\{1, T\} by a
Borel measurable map from a state  s_{t}\in S=\mathbb{R}^{2n+2} to an action

 q_{t}^{i}=f_{t}^{i}(s_{t})\in A^{i}=\mathbb{R}, i=1, , n , (2.15)

then a Markov execution strategy  \pi is defined as a sequence of one‐stage decision rules

 \pi^{i} :=(f_{1}^{i}, \ldots, f_{t}^{\dot{i}}, \ldots, f_{T}^{i}) , i=1, n . (2.16)

We denote the set of all Markov execution strategies as  \Pi_{M}^{i} . Further, for  t\in\{1, T\} , we define

the sub execution strategy after time  t of a Markov execution strategy  \pi^{i}=(f_{1}^{i}, \ldots, f_{t}^{i}, \ldots, f_{T}^{\dot{i}})\in
 \Pi^{i} as

 \pi_{t}^{i}:= (f_{t}^{i} , f_{T}^{i}) , i=1, , n , (2.17)

and the entire set of  \pi_{t}^{i} as  \Pi_{M,t}^{i} . Hereafter, we consider only non‐randomized Markov strategies

in this paper.

By definition (2.13), the value function for  i\in\{1, n\} under an execution strategy  \pi^{i}

becomes an expected utility payoff arising from the terminal wealth  W_{T+1}^{i} of the large trader
with the absolute risk aversion  R^{i} :

 V_{1(\pi^{1},\ldots,\pi^{n})[s_{t}])}^{\dot{i}}:=E_{1}^{\pi^{1},\ldots\pi^{n}}[
-\exp\{-R^{i}w_{T+1}^{\dot{i}}\}\cdot 1_{\{\overline{Q}_{T+1}^{i}=0\}}+(-\infty)
\cdot 1_{\{\overline{Q}_{T+1}^{\dot{i}}\neq 0\}}|s_{t}],
 i=1,  n , (2.18)

where  1_{A} is the indicator function of the event  A and, for  t\in\{1, T\},  E_{1}^{\pi^{1},\ldots,\pi^{n}} is a conditional

expectation under substrategy profile  (\pi^{1}, \ldots, \pi^{n}) from time  t\in\{1, T, T+1\}.
Then, for  t\in\{1, T, T+1\} and  s_{t}\in S , we further let

 V_{t}^{\dot{i}}(\pi_{t}^{1}, \ldots, \pi_{t}^{n})[s_{t}]:=E_{t}^{\pi_{t}^{1},
\ldots,\pi^{n}}t[-\exp\{-R^{i}w_{T+1}^{\dot{i}}\}\cdot 1_{\{\overline{Q}_{T+1}^{
\dot{i}}=0\}}+(-\infty)\cdot 1_{\{\overline{Q}_{T+1}^{i}\neq 0\}}|s_{t}],
 i=1,  n,  t=1,  T,  T+1 , (2.19)

be the expected utility payoff at time  t under substrategy profile  (\pi_{t}^{1}, \ldots, \pi_{t}^{n}) from time   t\in

 \{1, T\}.
What we seek here is an equilibrium execution strategy of these large traders. First, the

definition of a Nash equilibrium in this model becomes as follows:

Definition 1 (Nash Equilibrium)  (\pi^{1*}, \ldots, \pi^{n*})\in\Pi_{M}^{1}\cross  \cross\Pi_{M}^{n} is a Nash equilibrium
starting from a fixed state  s_{1} if and only if

 V_{1}^{i}(\pi^{1*}, \ldots, \pi^{i*}, \ldots, \pi^{n*})[s_{1}]\geq V_{1}^{i}
(\pi^{1*}, \ldots, \pi^{i}, \ldots, \pi^{n*})[s_{1}],

 \forall\pi^{i}\in\Pi_{M}^{\dot{i}} , i=1, , n . (2.20)

We can define a refinement of a Nash equilibrium of this model as the notion of a Markov

perfect equilibrium:
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Definition 2 (Markov Perfect Equilibrium)  (\pi^{1*}, \ldots, \pi^{n*})\in\Pi_{M}^{1}\cross  \cross\Pi_{M}^{n} is a Markov
perfect equilibrium if and only if

 V_{t}^{i}(\pi_{t}^{1*}, \ldots, \pi_{t}^{i*}, \ldots, \pi_{t}^{n*})[s_{t}]\geq 
V_{t}^{i}(\pi_{t}^{1*}, \ldots, \pi_{t}^{i}, \ldots, \pi_{t}^{n*})[s_{t}],

 \forall\pi_{t}^{i}\in\Pi_{M,t}^{\dot{i}},  i=1,  n,  \forall s_{t}\in S,  \forall t=1 ,  T . (2.21)

Based on the following One Stage [Step, Shot] Deviation Principle, we obtain a Markov
perfect equilibrium by backward induction procedure of dynamic programming from time  T.

 V_{t}^{\dot{i}}( \pi_{t}^{*})[s_{t}]=\sup_{q_{t}^{\dot{i}}\in R}E[V_{t+1}^{i}
(\pi_{t+1}^{*})[h_{t}(s_{t}, (f_{t}^{1*}(s_{t}), \ldots, q_{t}^{i}, \ldots, 
f_{t}^{n*}(s_{t})), (v_{t}, \varepsilon_{t})]|s_{t}]
 =E[V_{t+1}^{\dot{i}}(\pi_{t+1}^{*})[h_{t}(s_{t}, (f_{t}^{1*}(s_{t}), \ldots, f_
{t}^{i*}(s_{t}), \ldots, f_{t}^{n*}(s_{t})), (v_{t}, \varepsilon_{t})]|s_{t}] ;

 i=1,  n,  t=1,  T , (2.22)

where

 \pi_{t}^{*}  :=(\pi_{t}^{1*}, \ldots, \pi_{t}^{n*})\in\Pi_{M,t}^{1}\cross  \cross\Pi_{M,t}^{n} . (2.23)

2.3 Markov Perfect Equilibrium

Theorem 1 (Markov Perfect Equilibrium) There exists a Markov perfect equilibrium  (\pi^{1*}, \ldots, \pi^{n*})\in
 \Pi_{M}^{1}\cross  \cross\Pi_{M} at which for the large trader  i\in\{1, n\} the following properties hold:

1. The execution volume  q_{t}^{i*},  i=1,  n at the Markov perfect equilibrium are affine functions

of each remaining execution volume,  \overline{Q}_{t}^{1},  \overline{Q}_{t}^{n} , and the cumulative residual effect  r_{t} at

time  t , i. e.,

 q_{t}^{i*}=f_{t}^{i}(s_{t})=a_{t}^{i}+b_{t}^{i,1}\overline{Q}_{t}^{1}+\cdots+b_
{t}^{i,n}\overline{Q}_{t}^{n}+d_{t}^{i}r_{t},  t=1,  T,  i=1,  n ; (2.24)

2. The expected utility at the Markov perfect equilibrium  (\pi^{1*}, \ldots, \pi^{n*}) for the large traders

 i=1,  n in the subgame starting from the state  s_{t}(t=1, \ldots, T) have a functional form

as follows :

 V_{t}^{i}(\pi_{t}^{1*}, \ldots, \pi_{t}^{n*})[s_{t}]=-\exp\{-R^{i}(w_{t-p_{t}
\overline{Q}_{t^{-G_{t}^{\dot{i}}(\overline{Q}_{t})^{2}-H_{t}^{\overline{i}}
Q_{t}+I_{t}^{i}r_{t}Q_{t}+J_{t}^{i}r_{t}^{2}+L_{t}^{\dot{i}}r_{t}}}^{iii\neg}}

 + \sum_{j\neq i}M_{t}^{\dot{x},j}(\overline{Q}_{t}^{j})^{2}+\sum_{j\neq i}N_{t}
^{\dot{x},j}\overline{Q}_{t}^{j}+\sum_{j\neq i}X_{t}^{i,j}r_{t}\overline{Q}_{t}^
{j}+(\sum_{j\neq i}Y_{t}^{\overline{i}}Q_{t}^{j})\overline{Q}_{t}^{i}
 + \sum_{k\neq i}\sum_{l\neq i,k}Y_{t}^{\dot{\iota},k,l}\overline{Q}_{t}^{k}
\overline{Q}_{t}^{l}+Z_{t}^{i})\}, t=1, T, i=1, n.

(2.25)

where

 a_{t}^{i},  b_{t}^{i,1},  b_{t}^{i,n},  d_{t}^{i},  G_{t}^{i},  H_{t}^{i},  I_{t}^{i},  J_{t}^{i},  L_{t}^{i},  M_{t}^{i,j},  N_{t'}^{\dot{i}j},  X_{t}^{\dot{i},j},  Y_{t}^{i,k,l},  Z_{t}^{i},  t=1,  T , (2.26)

are deterministic functions of time  t which are dependent on the problem parameters, and can

be computed backwardly in time  t from maturity  T.
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See the sketchy proof of this theorem in Appendix A.

From the theorem above, a Markov perfect equilibrium strategy  (\pi^{1*}, \ldots, \pi^{n*}) depend on

the state  ((w_{t}^{1}, \ldots, w_{t}^{n}),p_{t}, (\overline{Q}_{t}^{1}, \ldots, \overline
{Q}_{t}^{n}), r_{t}) of the game only through each remaining execution

volume,  \overline{Q}_{t}^{1},  \overline{Q}_{t}^{n} , and the cumulative residual effect  r_{t} , not through the wealth,  w_{t}^{1},  w_{t}^{n},

or market price  p_{t} . In addition, from the difinition of residual effect  r_{t} , the equilibrium executin

volume at a Markov perfect equilibrium  q_{t}^{\dot{i}*} for each  i\in\{1, n\} include a nondeterminis‐

tic term (random variable) only thorough  v_{t} in  r_{t} , which indicates  v_{t} affects the equilibrium
execution strategies. Therefore, we have the folllowing facts.

Corollary 2 If the orders of trading crowds  v_{t} for  t\in\{1, T\} , are deterministic, the opti‐

mal execution volumes  q_{t}^{i*} at time  t\in\{1, T\} for  i\in\{1, n\} also become deterministic

functions of time in a class of the static (and non‐randomized) execution strategy.

These results are our contribution to the field of a market impact game and the different

points compared with the existing research of equilibrium execution strategies such as [14] or [10].
Their works reveal that the equilibrium execution strategies are deterministic when minimizing

the expected execution cost and considering a mean‐variance optimization, that is, minimizing

the mean‐variance functional of trading costs. Moreover, they show that maximizing expected

CARA utility of revenues defined by negative costs is consistent with mean‐variance optimization

over the class of deterministic strategies. As shown in our model, however, equilibrium execution

strategies obtained by backward induction methods of dynamic programming are not always

deterministic. It is mainly when the aggregate volumes of orders submitted by trading crowd

are deterministic that the equilibrium execution strategies become also deterministic.

3 Comparative Statics

In this section, we illustrate some numerical examples and show some properties of the equi‐

librium execution strategies derived in Section 2 in the case of  n=2 . The maturity is set as
 T=10 , and large trader  i=1,2 plans to execute the volume  Q^{i}=100,000 within the time

horizon  \{ 1,  T\} at the beginning. We conduct the following comparative statics assuming the

time homogeneity of the time‐dependent parameters  \mu_{v_{t}},  \sigma_{v_{t}},  \mu_{\varepsilon_{t}},  \sigma_{\varepsilon_{t}},  \alpha_{t},  \lambda_{t},  \kappa_{t} . Here we further

assume that there is no price impact caused by trading crowd, i.e.,  \kappa_{t}=0 , which is equivalent

with setting  \mu_{v_{t}} and  \sigma_{v_{t}} as zero for all  t\in\{1, T\} . This assumption yields the explicit form

of equilibrium execution volumes at a Markov perfect equilibrium (, which indicates the deter‐

ministic equilibrium execution volumes), since  \sigma_{v_{t}}=0 means that the submission of the trading
crowd becomes deterministic. The benchmark values are set as follows:

 \mu_{\varepsilon_{t}}\equiv 0 ;  \sigma_{\varepsilon_{t}}\equiv 0.02 ;  \alpha_{t}\equiv 0.5 ;

 \lambda_{t}\equiv 0.001 ;  \kappa_{t}\equiv 0 ;  \rho=0.1 ;  R^{i}=0.001,  \forall t=1,  T,  i=1,2 . (3.1)

We also set  r_{1}=0 since there exists no residual effects of past price at the beginning of trading,

i.e., at time  t=1.
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3.1 In the Case of Symmetric Large Trader

In this subsection, we deal with the case that the initial inventory and the risk aversion rate of

each large trader are equal;  Q^{1}=Q^{2} , and  R^{1}=R^{2} . We set the same risk aversion rate as  R in
this subsection.

3.1.1 The Effect of Risk Aversion

First, we demonstrate the difference of a large trader’s execution volume with different risk

aversion rates in the following three cases:  R=0.001,  R=0.5 , and  R=1.

 \neg Q(t) q^{1}(t)
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 4000
6000

4000
 2000

2000

 2 4 6 8 10 2 4 6 8 10

bme  b\prime 1P

(a) Remaining Execution Volume  \overline{Q}_{t}^{i}(t=1, \ldots, T) (b) Execution Volume  q_{t}^{i}(t=1, \ldots, T)

Figure 1: The Effect of Risk Aversion

Figure 6 shows that the more risk averse the large trader is, the faster he or she executes.

That is because the more risk‐averse trader tends to avoid the price risk of the fluctuation in

the future as possible, which is consistent with intuitive understanding.

3.1.2 The Effect of  \alpha_{t}

We examine the effect on the execution volume caused by the risk reversion rate  \alpha_{t} through the

following three cases:  \alpha_{t}=0.01,  \alpha_{t}=0.5 , and  \alpha_{t}=1.

As depicted in Figure 7, the large traders execute faster as  \alpha_{t}arrow 0 . The reason for this is

that the smaller  \alpha_{t} at time  t\in\{1, T\} coincides with the smaller price recovery at the next

time  t+1 , which infers that the large part of the price impact remains, leading to a higher

execution price at the next trading.

3.1.3 The Effect of  \sigma_{\varepsilon_{t}}

The next example describes how  \sigma_{\varepsilon_{t}} affects the execution volume through the following three

cases:  \sigma_{\varepsilon_{t}}=0.02,  \sigma_{\varepsilon_{t}}=0.5 , and  \sigma_{\varepsilon_{t}}=1.
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Figure 2: The Effect of  \alpha_{t}
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Figure 3: The Effect of  \sigma_{\varepsilon_{t}}

Figure 8 illustrates that if  \sigma_{\varepsilon_{t}} is large, the large trader executes much faster, particular seen

when  \sigma_{\varepsilon_{t}} is equal to 1. From these kinds of phenomena, we can intuitively interpret that the

large trader takes into account the possibility that the market price of the asset might increase

suddenly in the future since there exist much higher possibilities of fluctuations of the future

price of a risky asset if the variance of the effect of the public news is large.

3.1.4 The Effect of Resilience Speed

To examine the effect of the resilience speed on the execution volume, we draw, in the following,

the figures of the three cases:  \rho=0.1,  \rho=1 , and  \rho=10.
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Figure 4: The Effect of the resilience speed

From Figure 9, we confirm that the large traders execute slower as  \rho increases. That is

because the large  \rho reduces the residual effects, which makes the price at the next transaction

lower. This postulates the following property of the equilibrium execution strategy at a Markov

perfect equilibrium. Since  r_{t+1}arrow 0 as  \rho tends to  \infty from Eq. (2.5), the equilibrium execution
volume at a Markov perfect equilibrium at time  t\in\{1, T\} becomes an affine function of the

remaining execution volumes of each large trader  \overline{Q}_{t}^{1} and  \overline{Q}_{t}^{2} :

 q_{t}^{i*}=f_{t}^{i}(s_{t})=a_{t}^{i}+b_{t}^{i^{\neg}}Q_{t}+c_{t}^{\overline{i}
}Q_{t}^{j}, t=1, T, i, j=1,2, i\neq j , (3.2)

when  \rho goes to infinity. Hence, when the price impact is supposed to be permanent,  q_{t}^{*} is a deter‐

ministic function on time  t\in\{1, T\} and depends on the state  s_{t}=((w_{t}^{1}, w_{t}^{2}),p_{t}, (\overline{Q}_{t}^{1}, \overline{Q}_{t}
^{2}), r_{t})
only through the remaining execution volumes  \overline{Q}_{t}^{1} and  \overline{Q}_{t}^{2} . These facts resolve the deterministic

equilibrium execution strategy into a one at a Markov perfect equilibrium in a more broader

class of non‐static execution strategy.

3.2 In the Case of Asymmetric Large Trader

We illustrate the situation where the position of each large trader at the beginning of the trading

horizon or the risk aversion rate are different in this subsection;  Q^{1}\neq Q^{2} or  R^{1}\neq R^{2}.

3.2.1 The Effect of  Q^{i}

We demonstrate the case that at the beginning one large trader  i plans to purchase  Q^{i} volumes

of one risky asset which is not equal to (or less than) the quantity  Q^{j} to be bought by the
large trader  j . We present the three cases as follows:  Q^{i}=100,000,  Q^{i}=50,000 , and  Q^{i}=0 ;

whereas the remaining execution volume of the counterpart is fixed:  Q^{j}=100,000.
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Figure 5: The Effect of  Q^{i}

In [9], they consider about a possibility of a gain from a round trip trading in the case of a

single large trader model. Referring to [5], an opportunity of an arbitrage in a weak sense is a
round trip trading schedule  (\pi^{i}=)q^{i} if

  E_{1}^{q}[w_{T+1}^{i}|s_{1}]-w_{1}^{i}=E_{1}^{q}[w_{T+1}^{i}-w_{1}^{i}|s_{1}]=
E_{1}^{q}[-\sum_{t=1}^{T}\hat{p}_{t}q_{t}^{i}|s_{1}]>0 (3.3)

where for a sequence  q^{i}  :=(q_{1}^{i}, \ldots, q_{T}^{\dot{i}})\in \mathbb{R}^{T} , a static (and non‐randomized) execution strategy

 \pi^{i}=(f_{1}^{i}, \ldots, f_{T}^{i})\in\Pi_{M}^{i} defined by  f_{t}^{i}(s_{t})=q_{t}^{i} for any  s_{t}\in S=\mathbb{R} is a round trip trading

schedule if   \sum_{t=1}^{T}q_{t}^{i}=0 , and  \hat{p}_{t} for  t\in\{1, T\} is the execution price defined in Section 2. [9]

shows that when trading crowd causes an price impact, either positive or negative one (which

means  \mu_{v_{t}}\neq 0 ), then there exist a round trip trade for a large trader which satisfies an arbitrage
in a weak sense in the case of  n=1.

Figure 10 illustrates that if the initial volume  Q^{i} is equal to  0 , there exists a round trip

trading for trader  i which satisfy an arbitrage in a weak sense. When  Q^{i} is 50000, a round trip

trading is included in the trajectory of the remaining execution volume. These results infer a

new (essential) opportunity of a round trip trading. This insights also suggest a possibility that
a volume  Q^{i*} exists for the large trader  i satisfying the following condition: if the initial volume

 Q^{i} is smaller than  Q^{i*} , the execution strategy of large trader  i becomes a round trip trading or

partially includes a round trip trading which meets the requirement for a weak arbitrage.

3.2.2 The Effect of  R^{j}

We examine how the execution strategies are affected by the risk aversion of the opponent by

illustrating the following three cases:  R^{j}=0.001,  R^{j}=0.1 and  R^{j}=10 while  R^{i} is always 0.1.

From Figure 11, we confirm that the large trader  i executes less volume at the beginning and

liquidates  his/her last position more at the terminal as the risk aversion rate of the counterpart
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Figure 6: The Effect of  R^{j}

 j becomes larger. In the middle time of the trading epoch, the trajectory of the executed volume

tends to increase, particularly seen when  R^{j}=10 . These facts infer the following statements: as

the counterpart is more risk‐averse, the speed of the execution becomes slower at the beginning

and the path of the execution volume of the large trader is gradually growing over the course of

the execution process. Then, the large trader executes more volume at the end of the trading.

Proposition 2 If the price impact (or quoted price) is not affected by the public news effect for
all the time, that is,  \mu_{\varepsilon_{t}}=0 and  \sigma_{\varepsilon_{t}}=0,  (t\in\{1, \ldots, T\}) , the execution strategies of the large

trader  i do not depend on the risk aversion rate of the counterpart  R^{j} . Then, a unique strategy

is determined by other determining factors and parameters.

3.2.3 The Existence of Sell Trader

In the following, we illustrate the case that one large trader  j sells the quantity  Q^{j} . The quantity

 Q^{j} to be sold is the same as the volume  Q^{i} to be bought by the large trader  i . In mathematical

expression,  Q^{j}=-Q^{i}=-100000.
Figure 12 indicates both the buy‐ and sell‐traders remain patient with the other side’s

execution with each other before the maturity  T , liquidating all their remaining positions at the

terminal. A close consideration reveals that they don’t execute their whole order simultaneously

at the beginning of the trade, although it leads to canceling out the impact of their execution on

market price. The following reasoning illustrates the above insights. The sell‐trader can earn

if  he/she executes the sell‐transaction after the execution price goes up because of a buy‐side

execution than the simultaneous execution at the beginning. In contrast, the buy‐side trader

can purchase the risky asset at a lower price after the sell‐trader unwinds  his/her position, which

saves execution costs. These examinations imply that both sides of the large traders can produce

a profit by executing slowly, which causes them to liquidate their positions much measuredly.
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Figure 7: The Existence of Sell Trader

3.3 Comparison of the Case with Single Large Trader Case

The following figures show how the executions differ between in the single‐large trader model

and two‐large trader model in our model. In order to compare the differences, the price impact

coefficient of the trading crowd  v_{t} is set as  0 , which is the same meaning as setting  \mu_{v_{t}}=0 and

 \sigma_{v_{t}}=0,  (t=1, \ldots, T) , in both models. Then, the volume of which a single large trader unwinds

the position and the total volume of two large traders are deemed as same, i.e.,  Q/2=Q^{i}=
 Q^{j}=100,000 (that is,  Q=Q^{i}+Q^{j}=200,000 and  Q^{i}=Q^{j} ).

 \overline{O}(t),Q(t),Q(t)\neg\neg+\partial(t) q(t),q^{t}(t),
q^{\ovalbox{\tt\small REJECT}}(t)+d(t)
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(a) Remaining Execution Volumes  \overline{Q}_{t},  \overline{Q}_{t}^{i} , and  \overline{Q}_{t}^{1}+(b) Execution Volumes  q_{t},  q_{t}^{i} , and  q_{t}^{1}+q_{t}^{2}(t=1, \ldots, T)
 \overline{Q}_{t}^{2}(t=1, \ldots, T)

Figure 8: Comparison of the Two Models
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From Figure 13, the single large trader of the two‐large trader model executes each order

not too fast over the trading time horizon at first glance. The initial position is, however, quite

different, the second model of which is half the volume of the first model  (Q=200,000 and

 Q^{i}=100,000) . It is not overstated that the large trader of the two large trader model unwinds

 his/her position twice as fast as that of the single large trader model. The interaction of the

multiple large traders becomes a vital factor for the reason. The traders in the second model

unwind their positions faster for fear that the price will be pushed up by the execution of the

counterpart. This logic contrasts with the explanation in Subsection 3.2.2., where each large

trader intends to acquire/liquidate their positions after the counterpart executes  his/her order;
if two large traders with equivalent initial inventories, either buying or selling, exist in a market,

each large trader takes advantage of acquiring the risky asset at a lower price and liquidating

at a higher price by executing faster than the counterpart.

4 Conclusion and Future Research

We constructed, in  a (finite) discrete time framework, a model focusing on multiple large traders.
They maximize the expected CARA utility arising from each large trader’s wealth at the end

of the trading epoch in a market with trading crowd. By constructing the generalized price

impact model, the backward induction method of dynamic programming permitted us to de‐

rive a Markov perfect equilibrium strategy in this model. The most important results which

emerged from this research is as follows: the aggregate execution volume of trading crowd has

an impact on the execution of each large trader. All the intriguing results we have obtained

from the numerical examples accounted for how various kinds of situations can influence the ex‐

ecution strategy of a large trader in our models. This kind of work concerned with an execution

problem through the backward induction procedure of dynamic programming will be explored

from a more in‐depth and extensive perspective, which we can expect will also give us a more

illuminating insight into all the other problems left in this field of research as follows.

In the above model, we have assumed that the price reversion rate and the resilience speed

are deterministic and, due to the assumption, that the residual effect becomes deterministic

if the total execution volumes of trading crowd are also deterministic, which gives rise to the

deterministic optimal and equilibrium execution strategies in our model. This assumption makes

the fundamental price of the risky asset observable for large traders before the trading time.

The fundamental value of a risky asset is, however, unobservable and uncertain in a real market.

Therefore, we can evolve the model built in this paper as an incomplete state information

model, which leads to an analysis in a more realistic situation of the marketplace. Developing

an incomplete state information model of either single‐or multiple‐large traders will (surely)
contribute to some developments of a study involved in a trading market.

99



100

Acknowledgements

The authors would like to thank Dr. Sato for closely examining our preliminary draft and the

comments at the Japan Finance Conference, and Dr. Jaimungal and Dr. Al‐Aradi for their

helpful comments and suggestions at the Quantitative Methods in Finance 2018 Conference.

References

[1] Almgren, R. and Chriss, N., Optimal execution of portfolio transactions. Journal of Risk,
2000, 3, 5‐39.

[2] Bertsimas, D. and Lo, A. W., Optimal control of execution costs. Journal of Financ. Mark.,
1998, 1, 1‐50.

[3] Cartea, Á. and Jaimungal, S., Incorporating order‐flow into optimal execution. Math. and
Financ. Econ., 2016, 10, 339‐364.

[4] Guéant, O., The Financial Mathematics of Market Liquidity: From optimal execution to

market making. 2016 (CRC Press: Boca Raton, Florida).

[5] Huberman, G. and Stanzl, W., Price manipulation and quasi‐arbitrage. Econometrica, 2004,
72, 1247‐1275.

[6] KKunou, S. and Ohnishi, M., Optimal execution strategies with price impact. RIMS
Kokyuroku, 2010, 1645, 234‐247.

[7] Kuno, S. and Ohnishi, M., Optimal execution in illiquid market with the absence of price
manipulation. J. of Math. Fin., 2015, 5, 1‐14.

[8] Kuno, S., Ohnishi, M., and Shimizu, P., Optimal off‐exchange execution with closing price.
J. of Math. Fin., 2017, 7, 54‐64.

[9] Kuno, S., Ohnishi, M., and Shimoshimizu, M., Optimal execution strategies with general‐
ized price impact models. RIMS Kokyuroku, 2018, 2078, 77‐83.

[10] Luo, X. and Schied, A., Nash equilibrium for risk‐averse investors in a market impact game
with transient price impact. arXiv preprint arXiv: IS07.03S13,201S.

[11] Ohnishi, M., and Shimoshimizu, M., Optimal and equilibrium execution strategies with
generalized price impact. Paper presented at the Nippon Finance Association 26th Annual

Conference, Hitotsubashi University, 24 June, 2018.

[12] Ohnishi, M., and Shimoshimizu, M., Optimal and equilibrium execution strategies with
generalized price impact. Paper presented at JAFEE International Conference on Financial

Engineering on Collaboration with NUS‐UTokyo, The University of Tokyo, 24‐25 August
2018.

100



101

[13] Potters, M. and Bouchaud, J. P., More statistical properties of order books and price
impact. Physica A, 2003, 324, 133‐140.

[14] Schied, A. and Zhang, T., A market impact game under transient price impact. Math. Oper.
Res., 2018, Published online in Articles in Advance 06 Sep 2018, 1‐20.

[15] Schöneborn, T., Trade execution in illiquid markets: Optimal stochastic control and multi‐
agent equilibria. Doctoral dissertation, Technische Universität Berlin, 2008.

Appendix

A Proof of Theorem 2.1

In the following, we derive an equilibrium execution strategy for each large trader at a Markov

perfect equilibrium by backward induction method of dynamic programming from maturity  T

in the case of  n=2 . The following proof describes the sketchy one of Theorem 4.1 for the case

 \kappa_{t}\equiv 0 or  v_{t}\equiv 0 , from the results of which we conduct the comparative statics shown in Section

5. We can derive the similar results if  \kappa_{t}\neq 0 and  v_{t} satisfies  v_{t}\neq 0 for all  t\in\{1, T\} . First,

at the time  t=T , due to the (hard) constraint for each large trader to unwind all remainder of

 his/her position at time  t=T,

 \neg Q_{T+1}=\neg Q_{T}-q_{T}^{i}=0,  i=1,2 , (A.1)

must be satisfied, which yields  \neg Q_{T}=q_{T}^{i} for  i=1,2 . Therefore, the expected utility payoff of

the large trader  i=1,2 (or the value function of large trader i) at the maturity becomes

 V_{\tau}^{i}( \pi_{T}^{1*}, \pi_{T}^{2*})[s_{T}]=\sup_{q_{T}^{i}\in \mathbb{R}}
E[V_{\tau+1}^{i}(\pi_{T+1}^{1*}, \pi_{T+1}^{2*})[s_{T+1}]|s_{T}]
 = \sup_{q_{T}^{\dot{i}}\in \mathbb{R}}E[-\exp\{R^{i}w_{T+1}^{i}\}|s_{T}]
 = \sup_{q_{T}^{\dot{i}}\in \mathbb{R}}E[-\exp\{R^{i}[W_{T}^{i}-\{p\tau+\lambda_
{T}(q_{T}^{i}+q_{T}^{j})\}q_{T}^{\dot{i}}]\}|s_{T}]
 =-\exp\{R^{i}[w_{T}^{i}-\{p_{T}+\lambda_{T}(Q_{T}+\overline{Q}_{T}^{\dot{j}})\}
\overline{Q}_{T}]\}\neg.
 =-\exp\{R^{i}[w_{T}^{i}-p\tau\overline{Q}_{T}^{i}-\lambda_{T}(Q_{T})^{2}\neg-
\lambda_{t}\overline{Q}_{T}\overline{Q}_{T}^{j}],  i,  j=1,2,  i\neq j . (A.2)

For  t=T-1 , the value functions  V_{T-1}^{i}(\pi_{T-1}^{1*}, \pi_{T-1}^{2*})[s_{T-1}],  i=1,2 become the following
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functional form:

 V_{T-1}^{i}(\pi_{T-1}^{1*}, \pi_{T-1}^{2*})[s_{T-1}]

 = \sup_{q_{T-1}^{\dot{i}}\in \mathbb{R}}E[V_{T}^{i}(\pi_{T}^{1*}, \pi_{T}^{2*})
[s_{T}]|s_{T-1}]
 = \sup_{q_{T-1}^{i}\in \mathbb{R}}E[-\exp\{-R^{i}[w_{T}^{i}-p_{T}\overline{Q}
_{T}-\lambda_{T}(Q_{T})^{2}-\lambda_{T}\overline{Q}_{T}\overline{Q}_{T}^{j}]\}
|s_{T-1}]\neg
 = \sup_{q_{T-1}^{i}\in \mathbb{R}}  - \exp\{-R^{i}\{(1-\alpha^{T-1})\lambda_{T-1}+\lambda_{T}+\frac{1}{2}R^{i}
\sigma_{\epsilon_{T-1}}^{2}\}(q_{T-1}^{i})^{2}

 +\{(-\lambda_{T-1}\alpha^{T-1}+2\lambda_{T}+R^{i}\sigma_{\epsilon_{T-1}}^{2})
\overline{Q}_{T-1}^{i}+\lambda_{T}\overline{Q}_{T-1}^{j}-(1-e^{-\rho})r_{T-1}
 -\{(1-\alpha^{T-1})\lambda_{T-1}+\lambda_{T}\}q_{T-1}^{j}+\mu_{\epsilon_{T-1}}
\}q_{T-1}^{i}

 +w_{T-1}-p_{T-1} \overline{Q}_{T-1}-(\lambda_{T}+\frac{1}{2}R^{i}
\sigma_{\epsilon_{T-1}}^{2})(\overline{Q}_{T-1})^{2}-\mu_{\epsilon_{T-1}}
\overline{Q}_{T-1}^{i}+(1-e^{-\rho})r_{T-1}\overline{Q}_{T-1}^{i}
‐  \lambda_{T}\overline{Q}_{T-1}^{i}\overline{Q}_{T-1}^{j}+(\lambda_{T}-\lambda_{T
-1}\alpha^{T-1})Q_{T-1}q_{T-1}^{j}\}\neg , (A.3)

where

 \alpha^{T-1}:=\alpha_{T-1}e^{-\rho}+(1-\alpha_{T-1}) . (A.4)

Thus, we can obtain the execution volume of the large trader  i=1,2 for  t=T-1 at the

supremum of Eq. (A.3) by completing the square of the quadratic equation in the negative
exponential function above as follows:

 q_{T-1}^{i*}= \frac{1}{2A_{T-1}^{i}}(B^{i}\tau_{-1^{\neg}}Q_{T-1}+C_{T-1}^{\dot
{i}}\overline{Q}_{T-1}^{j}+D_{T-1}^{i}r_{T-1}+F_{T-1}^{i}q_{T-1}^{j}+S_{T-1}^{i}
) ,

 i,j=1,2,  i\neq j , (A.5)

where

 A_{T-1}^{i}:=(1- \alpha^{T-1})\lambda_{T-1}+\lambda_{T}+\frac{1}{2}R^{i}\sigma_
{\varepsilon_{T-1}}^{2},
 B_{T-1}^{i}:=-\lambda_{T-1}\alpha^{T-1}+2\lambda_{T}+R^{i}
\sigma_{\varepsilon_{T-1}}^{2},
 C_{T-1}^{\dot{i}}:=\lambda_{T},

 D_{T-1}^{i}:=-(1-e^{-\rho}) ,

 F_{T-1}^{i}:=-\{(1-e^{-\rho})\lambda_{T-1}+\lambda_{T}\},

 S_{T-1}^{i}:=\mu_{\varepsilon_{T-1}} . (A.6)

Solving the simultaneous equation of Eq. (A.5) with respect to  q_{T-1}^{1} and  q_{T-1}^{2} yields the execu‐
tion volumes at a Markov perfect equilibrium:

 f_{T-1}^{i*}(s_{T-1})=:B^{i*}\tau-1^{\neg}Q_{T-1}+C_{T-1}^{i*}\overline{Q}_{T-
1}^{j}+D_{T-1}^{\dot{i}*}r_{T-1}+S_{T-1}^{i*}
 =a_{T-1}^{i}+b^{i}\tau_{-1^{\neg}}Q_{T-1}+c_{T-1}^{i}\overline{Q}_{T-1}^{j}+
d_{T-1}^{i}r_{T-1},  i,  j=1,2,  i\neq j , (A.7)
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where for  i,  j=1,2,  i\neq j,,

  \delta_{T-1}^{i}:=2A_{T-1}^{i}-\frac{F_{T-1}^{i}F_{T-1}^{j}}{2A_{T-1}^{j}},
 B_{T-1}^{i*}:=b_{T-1}^{i}= \frac{1}{\delta_{T-1}^{i}}(B_{T-1}^{i}+\frac{F_{T-1}
^{j}C_{T-1}^{i}}{2A_{T-1}^{i}}) ,  C_{T-1}^{\dot{i}*}:=c_{T-1}^{i}= \frac{1}{\delta_{T-1}^{i}}(C_{T-1}^{i}+
\frac{F_{T-1}^{j}B_{T-1}^{i}}{2A_{T-1}^{i}}) ,

 D_{T-1}^{i*}:= \phi_{-1}=\frac{1}{\delta_{T-1}^{i}}(D_{T-1}^{\dot{i}}+
\frac{F_{T-1}^{j}D_{T-1}^{\dot{i}}}{2A_{T-1}^{i}}) ,  S_{T-1}^{\dot{i}*}:=a_{T-1}^{i}= \frac{1}{\delta_{T-1}^{i}}(S_{T-1}^{i}+
\frac{F_{T-1}^{j}S_{T-1}^{i}}{2A_{T-1}^{\dot{i}}}) .

(A.8)

Then, we obtain the following expected utility payoff for large trader  i=1,2,  i\neq j at the

Markov perfect equilibrium:

  V_{T-1}^{i}(\pi_{T-1}^{1*}, \pi_{T-1}^{2*})[s_{T-1}]=-\exp\{-R^{i}(w_{T-1-p_{T
-1}\overline{Q}_{T-1}^{\dot{i}}-G_{T-1}(Q_{T-1})-H_{T}Q_{T-1}}^{ii2i_{-1^{\neg}}
}\neg
 +I_{T-1}^{\dot{i}}r_{T-1^{\neg}}Q_{T-1}+J_{T-1}^{i}r_{T-1}^{2}+L_{T-1}^{i}r_{T-
1}+M_{T-1}^{\dot{i}}(\overline{Q}_{T-1}^{j})^{2}

 +N_{T-1}^{i}\overline{Q}_{T-1}^{j}+X_{T-1}^{i}r_{T-1}\overline{Q}_{T-1}+Y_{T-1}
^{i}Q_{T-1}\overline{Q}_{T-1}^{j}+Z_{T-1}^{i})\}j\neg,
(A.9)

where

 B_{T-1}^{i**}  :=B_{T-1}^{\dot{i}}+F_{T-1}C_{T-1}^{j},  C_{T-1}^{i**}  :=C_{T-1}^{i}+F_{T-1}^{i}B_{T-1}^{j*},
 D_{T-1}^{i**}:=D_{T-1}^{i}+F_{T-1}^{i}D_{T-1}^{\dot{j}*},  S_{T-1}^{i**}:=S_{T-1}^{i}+F_{T-1}^{i}S_{T-1}^{\dot{j}*},  i,  j=1,2,  i\neq j , (A.10)

and for trader  i,  j=1,2,  i\neq j,

 G_{T-1}^{i}:= \lambda_{T}+\frac{1}{2}R^{i}\sigma_{\varepsilon_{T-1}}^{2}-
(\lambda_{T}-\lambda_{T-1}\alpha^{T-1})C_{T-1}^{j*}-\frac{(B_{T-1}^{i**})^{2}}
{4A_{T-1}^{\dot{i}}},
 B_{T-1}^{i**}S_{T-1}^{i**}

 H_{T-1}^{i}:=\mu_{\varepsilon_{T-1}}-(\lambda_{T}-\lambda_{T-1}\alpha^{T-1})
S_{T-1}^{j*}-\overline{2A_{T-1}^{i}},

 I_{T-1}^{\dot{i}}:=(1- e^{-\rho})+(\lambda_{T}-\lambda_{T-1}\alpha^{T-1*})D_{T-
1}^{j}+\frac{B_{T-1}^{i**}D_{T-1}^{\dot{x}**}}{2A_{T-1}^{i}},
 J_{T-1}^{i}:= \frac{(D_{T-1}^{i**})^{2}}{4A_{T-1}^{i}}, L_{T-1}^{i}:=\frac{D_{T
-1}^{\dot{i}**}S_{T-1}^{i**}}{2A_{T-1}^{i}}, M_{T-1}^{i}:=\frac{(C_{T-1}^{i**})^
{2}}{4A_{T-1}},

 N_{T-1}^{i}:= \frac{C_{T-1}^{i**}S_{T-1}^{i**}}{2A_{T-1}^{i}}, X_{T-1}^{i}:=
\frac{C_{T-1}^{i**}D_{T-1}^{i**}}{2A_{T-1}^{i}},
 Y_{T-1}^{i}:=( \lambda_{T}-\lambda_{T-1}\alpha^{T-1})B_{T-1}^{j*}+\frac{B_{T-1}
^{\dot{i}**}C_{T-1}^{\dot{i}**}}{2A_{T-1}^{\dot{i}}}-\lambda_{T},  Z_{T-1}^{i}:= \frac{(S_{T-1}^{\dot{i}**})^{2}}{4A_{T-1}^{i}} . (A.ll)

Hereafter, we assume that the expected utility payoff functions of the large trader  i=1,2

at time  t+1 take the following functional form:

  V_{t+1}^{i}(\pi_{t+1}^{1*}, \pi_{t+1}^{2*})[s_{t+1}]=-\exp\{-R^{i}(w_{t+1}^{i}
-p_{t+1^{\neg}}Q_{t+1}-G_{t+1}^{i}(Q_{t+1})^{2}-H_{t+1}^{i}\overline{Q}_{t+1}
^{\dot{i}}\neg
 +I_{t+1}^{\dot{i}}r_{t+1^{\neg}}Q_{t+1}+J_{t+1}^{\dot{i}}r_{t+1}^{2}+L_{t+1}
^{\dot{i}}r_{t+1}+M_{t+1}^{i}(\overline{Q}_{t+1}^{\dot{j}})^{2}
 +N_{t+1}^{\dot{i}}\overline{Q}_{t+1}^{\dot{j}}+X_{t+1}^{i}r_{t+1}\overline{Q}
_{t+1}^{\dot{j}}+Y_{t+1}^{i}Q_{t+1}\overline{Q}_{t+1}^{j}\neg+Z_{t+1}^{\dot{i}})
\} . (A.12)
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Then,  V_{t}^{\dot{i}}  (\pi_{t}^{1*}, \pi_{t}^{2*})[s_{t}],  i=1,2 become

 V_{t}^{i}(\pi_{t}^{1*}, \pi_{t}^{2*})[s_{t}]

 = \sup_{q_{t}^{i}\in \mathbb{R}}E[V_{t+1}^{i}(\pi_{t+1}^{1*}, \pi_{t+1}^{2*})
[s_{t+1}]|s_{t}]
 = \sup_{q_{t}^{\dot{i}}\in \mathbb{R}}-\exp\{-R^{i}[-A_{t}^{\dot{i}}(q_{t}^{i})
^{2}+\{B_{t}^{i}Q_{t}+C_{t}^{\overline{i}}Q_{t}^{\dot{j}}+D_{t}^{i}r_{t}+F_{t}
^{i}q_{t}^{\dot{j}}+S_{t}^{i}\}q_{t}^{i}\neg

 +w_{t}^{i}-p_{t^{\neg}}Q_{t}-(G_{T+1}^{\dot{i}}+ \frac{1}{2}R^{i}
\sigma_{\varepsilon_{t}})(Q_{t})^{2}-(H_{t+1}^{i}+\mu_{\varepsilon_{t}})Q_{t}+\{
(1-e^{-\rho})+I_{t+1}^{i}e^{-\rho}\}r_{t}Q_{t}\neg\neg\neg
 +J_{t+1}^{i}e^{-2\rho}r_{t}^{2}+L_{t+1}^{i}e^{-\rho}r_{t}+M_{t+1}^{i}(\overline
{Q}_{t}^{\dot{j}})^{2}+N_{t+1}^{i}\overline{Q}_{t}^{\dot{j}}+X_{t+1}^{i}e^{-
\rho}r_{t}\overline{Q}_{t}^{\dot{j}}+Y_{t+1}\overline{Q_{t}}\overline{Q}_{t}
^{\dot{j}}+Z_{t+1}^{i}
 +\{(-\lambda_{t}\alpha^{t}+I_{t+1}^{\dot{i}}e^{-\rho}\lambda_{t}\alpha_{t}-Y_{t
+1}^{i})Q_{t}+(-2M_{t+1}^{i}+Y_{t+1}^{i}e^{-\rho}\lambda_{t}\alpha_{t})\overline
{Q}_{t}^{j}\neg
 +(2J_{t+1}^{i}e^{-2\rho}\lambda_{t}\alpha_{t}-X_{t+1}^{i}e^{-\rho})r_{t}+(L_{t+
1}^{i}e^{-\rho}\lambda_{t}\alpha_{t}-N_{t+1}^{i})\}q_{t}^{\dot{j}}
 +(J_{t+1}^{i}e^{-2\rho}\lambda_{t}^{2}\alpha_{t}^{2}+M_{t+1}^{i}-X_{t+1}^{i}e^{
-\rho}\lambda_{t}\alpha_{t})(q_{t}^{\dot{j}})^{2}]\} , (A.13)

where for  i=1,2

 A_{t}^{\dot{i}}:=(1- \alpha^{t})\lambda_{t}+G_{t+1}^{i}+L_{t+1}^{i}e^{-\rho}
\lambda_{t}\alpha_{t}-J_{t+1}^{i}e^{-2\rho}\lambda_{t}^{2}\alpha_{t}^{2}+
\frac{1}{2}R^{i}\sigma_{\varepsilon_{t}}^{2},
 B_{t}^{i} :=-\lambda_{t}\alpha^{t}+2G_{t+1}^{i}+I_{t+1}^{\dot{i}}e^{-\rho}
\lambda_{t}\alpha_{t}+R^{i}\sigma_{\varepsilon_{t}}^{2},
 C_{t}^{\dot{i}}:=X_{t+1}^{i}e^{-\rho}\lambda_{t}\alpha_{t}-Y_{t+1}^{\dot{i}},
 D_{t}^{i} :=-(1-e^{-\rho})-I_{t+1}^{i}e^{-\rho}+2J_{t+1}^{i}e^{-2\rho}
\lambda_{t}\alpha_{t},
 F_{t}^{i} :=-(1-\alpha^{t})\lambda_{t}-I_{t+1}^{i}e^{-\rho}\lambda_{t}
\alpha_{t}+2J_{t+1}^{i}e^{-2\rho}\lambda_{t}^{2}\alpha_{t}^{2}-X_{t+1}^{i}e^{-
\rho}\lambda_{t}\alpha_{t}+Y_{t+1}^{i},

 S_{t}^{i}  :=H_{t+1}^{\dot{i}}+L_{t+1}^{i}e^{-\rho}\lambda_{t}\alpha_{t}-\mu_{\varepsilon_
{t}} . (A.14)

Therefore, the execution volume of the large trader  i=1,2 at time  t\in\{T-2, 1\} attain‐

ing the supremum of  V_{t}^{i}(\pi_{t}^{1}, \pi_{t}^{2})[s_{t}] becomes like Eq. (A.5) by the same derivation methods
beforehand:

 q_{t}^{i*}(s_{t})= \frac{1}{2A_{t}^{i}}(B_{t}^{i^{\neg}}Q_{t}+C_{t}
^{\overline{i}}Q_{t}^{\dot{j}}+D_{t}^{i}r_{t}+F_{t}^{i}q_{t}^{\dot{j}}+S_{t}^{i}
) ,  i,  j=1,2,  i\neq j . (A.15)

From Eq. (A.15), we obtain the following execution volume at the Markov perfect equilibrium

 q_{t}^{i*},  i=1,2 :

 f_{t}^{i*}(s_{t})=B_{t}^{i*}Q_{t}\neg+C_{t}^{i*}\overline{Q}_{t}^{\dot{j}}+
D_{t}^{i*}r_{t}+S_{t}^{i*}
 =a_{t}^{i}+b_{t}^{l^{\neg}}Q_{t}+c_{t}^{\overline{l}}Q_{t}^{j}+d_{t}^{i}r_{t},  i,  j=1,2,  i\neq j , (A.16)

where for  i,  j=1,2,  i\neq j,

  \delta_{t}^{i}:=2A_{t}^{i}-\frac{F_{t}^{i}F_{t}^{j}}{2A_{t}^{\dot{j}}},
 B_{t}^{i*}:=b_{t}^{i}= \frac{1}{\delta_{t}^{\dot{i}}}(B_{t}^{i}+\frac{F_{t}^{j}
C_{t}^{i}}{2A_{t}^{i}}) , C_{t}^{i*}:=c_{t}^{i}=\frac{1}{\delta_{t}^{i}}(C_{t}
^{i}+\frac{F_{t}^{j}B_{t}^{i}}{2A_{t}^{i}}) ,

 D_{t}^{i*}:=d_{t}^{\dot{i}}= \frac{1}{\delta_{t}^{i}}(D_{t}^{i}+\frac{F_{t}^{j}
D_{t}^{i}}{2A_{t}^{i}}) ,  S_{t}^{i*}:=a_{t}^{i}= \frac{1}{\delta_{t}^{i}}(S_{t}^{i}+\frac{F_{t}^{j}S_{t}^
{i}}{2A_{t}^{i}}) , (A.17)
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and the expected equilibrium payoff for large trader  i=1,2 at the Markov Perfect equilibrium

 (\pi^{1*}, \pi^{2*})\in\Pi_{M}^{1}\cross\Pi_{M}^{2} become

 V_{t}^{i}(\pi_{t}^{1*}, \pi_{t}^{2*})[s_{t}]

 =- \exp\{-R^{i}[w_{t}^{\dot{i}}-p_{t}\overline{Q_{t}}-(G_{T+1}^{\dot{i}}+
\frac{1}{2}R_{i}\sigma_{\varepsilon_{t}}^{2})(\overline{Q_{t}})^{2}-(H_{t+1}^{i}
+\mu_{\varepsilon_{t}})\overline{Q}_{t}^{i}
 +\{(1-e^{-\rho})+I_{t+1}^{i}e^{-\rho}\}r_{t}\overline{Q_{t}}+J_{t+1}^{\dot{i}}
e^{-2\rho}r_{t}^{2}+L_{t+1}^{i}e^{-\rho}r_{t}+M_{t+1}(\overline{Q}_{t}^{j})^{2}+
N_{t+1}\overline{Q}_{t}^{j}
 +X_{t+1}^{i}e^{-\rho}r_{t}\overline{Q}_{t}^{j\neg j\neg}+Y_{t+1}Q_{t}
\overline{Q}_{t}+Z_{t+1}^{i}+\{(-\lambda_{t}\alpha^{t}+I_{t+1}^{i}e^{-\rho}
\lambda_{t}\alpha_{t}-Y_{t+1}^{i})Q_{t}
 +(-2M_{t+1}^{i}+Y_{t+1}e^{-\rho}\lambda_{t}\alpha_{t})\overline{Q}_{t}^{j}+(2J_
{t+1}^{i}e^{-2\rho}\lambda_{t}\alpha_{t}-X_{t+1}^{i}e^{-\rho})r_{t}
 +(L_{t+1}^{i}e^{-\rho}\lambda_{t}\alpha_{t}-N_{t+1}^{i})\}q_{t}^{j*}+(J_{t+1}
^{i}e^{-2\rho}\lambda_{t}^{2}\alpha_{t}^{2}+M_{t+1}^{i}-X_{t+1}^{i*}e^{-\rho}
\lambda_{t}\alpha_{t})(q_{t}^{\dot{j}})^{2}

 + \frac{1}{4A_{t}^{i}}(B_{t}^{\dot{i}**}\overline{Q}_{t}^{i}+C_{t}^{i**}
\overline{Q}_{t}^{\dot{j}}+D_{t}^{\dot{x}**}r_{t}+S_{t}^{i**})^{2}]\}
 =-\exp\{-R^{i}(w_{t}^{i}-p_{t}Q_{t}\neg-G_{t}(\overline{Q}_{t}^{\dot{i}})^{2}-
H_{t}Q_{t}\neg+I_{t}r_{t}Q_{t}\neg+J_{t}r_{t}^{2}+L_{t}r_{t}

 +M_{t}^{i}(\overline{Q}_{t}^{\dot{j}})^{2}+N_{t}^{\overline{l}}Q_{t}^{j}+X_{t}^
{i}r_{t}\overline{Q}_{t}^{j}+Y_{t}^{i^{\neg}}Q_{t}\overline{Q}_{t}^{j}+Z_{t}^{i}
)\} , (A.18)

where

 \psi_{t}^{i}:=-\lambda_{t}\alpha^{t}+I_{t+1}^{i}e^{-\rho}\lambda_{t}\alpha_{t}-
Y_{t+1}^{i},
 \phi_{t}^{i}:=-2M_{t+1}^{i}+Y_{t+1}^{\dot{i}}e^{-\rho}\lambda_{t}\alpha_{t},
 \theta_{t}^{i}:=2J_{t+1}^{\dot{i}}e^{-2\rho}\lambda_{t}\alpha_{t}-X_{t+1}^{i}e^
{-\rho},
 \iota_{t}^{i}:=L_{t+1}^{i}e^{-\rho}\lambda_{t}\alpha_{t}-N_{t+1}^{i},

 \nu_{t}^{i}  :=J_{t+1}^{i}e^{-2\rho}\lambda_{t}^{2}\alpha_{t}^{2}+M_{t+1}^{\dot{i}}-X_{t+1}^
{i}e^{-\rho}\lambda_{t}\alpha_{t} , (A.19)

and

 B_{t}^{i**} :=B_{t}^{i}+F_{t}^{i}C_{t}^{\dot{j}*}, C_{t}^{i**} :=C_{t}^{i}+
F_{t}^{i}B_{t}^{j*},
 D_{t}^{i**}:=D_{t}^{i}+F_{t}^{i}D_{t}^{j*},  S_{t}^{i**}:=S_{t}^{i}+F_{t}^{i}S_{t}^{\dot{j}}*,  i,  j=1,2,  i\neq j , (  A .20)
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and

 G_{t}^{i}:=G_{t+1}^{i}+ \frac{1}{2}R^{i2*}\sigma_{\varepsilon}-\psi_{t}
^{\dot{i}}C_{t}^{\dot{j}}-\nu_{t}^{i}(B_{t}^{j*})^{2}-\frac{(B_{t}^{i**})^{2}}
{4A_{t}},
 H_{t}^{i}:=H_{t+1}^{i}+ \mu_{\epsilon_{t}}-\psi_{t}^{ij*i*}S_{t}-\iota_{t}C_{t}
^{\dot{j}}-2\nu_{t}^{i}C_{t}^{j*}S_{t}^{j*}-\frac{B_{t}^{i**}S_{t}^{\dot{i}**}}
{2A_{t}^{i}},

 I_{t}^{i} :=I_{t+1}^{i}e^{-\rho}+(1-e^{-\rho})+\psi_{t}^{i}D_{t}^{j*}+
\theta_{t}^{i}C_{t}^{\dot{j}*}+2\nu_{t}^{i}C_{t}^{j*}D_{t}^{\dot{j}*}+
\overline{2A_{t}^{i}} ,

 B_{t}^{\dot{i}**}D_{t}^{i**}

 J_{t}^{i}:=J_{t+1}^{i} e^{-2\rho}+\theta_{t}^{i}D_{t^{*}}^{\dot{j}}+\nu_{t}^{i}
(D_{t}^{j*})^{2}+\frac{(D_{t}^{i**})^{2}}{4A_{t}^{i}},
 L_{t}^{i} :=L_{t+1}^{\dot{i}} e^{-\rho}+\theta_{t}^{\dot{i}}S_{t}^{j*}+
\iota_{t}^{i}D_{t}^{j*}+2\nu_{t}^{i}D_{t}^{j*}S_{t}^{j*}+\frac{D_{t}^{i**}S_{t}^
{i**}}{2A_{t}^{i}},

 M_{t}^{i}:=M_{t+1}^{i}+ \phi_{t}^{i}B_{t}^{\dot{j}}*+\nu_{t}^{i}(C_{t}^{j*})
^{2}+\frac{(C_{t}^{i**})^{2}}{4A_{t}^{\dot{i}}},
 N_{t}^{i}:=N_{t+1}^{i}+ \phi_{t}^{i}S_{t}^{j*}+\iota_{t}^{i}B_{t}^{\dot{j}}*+
2\nu_{t}^{i}B_{t}^{j*s_{t}^{\dot{j}}*}+\frac{C_{t}^{i**}S_{t}^{i**}}{2A_{t}^{i}}
,
 X_{t}^{i}:=X_{t+1}^{i} e^{-\rho}+\phi_{t}^{i}D_{t^{*}}^{\dot{j}}+\theta_{t}^{i}
B_{t}^{j*}+2\nu_{t}^{i}B_{t}^{\dot{j}}D_{t}^{\dot{j}}**+\frac{C_{t}^{\dot{i}**}
D_{t}^{i**}}{2A_{t}^{i}},
 Y_{t}^{i}:=Y_{t+1}^{i}+ \psi_{t}^{i}B_{t}^{j*}+\phi_{t}^{i}c_{t}^{\dot{j}}*+
2\nu_{t}^{i}B_{t}^{j*}C_{t}^{j*}+\frac{B_{t}^{i**}C_{t}^{i**}}{2A_{t}^{i}},
 Z_{t}^{i}  :=Z_{t+1}^{i}+ \iota_{t}^{i}S_{t}^{j*}+\nu_{t}^{i}(S_{t}^{\dot{j}*})^{2}+\frac{
(S_{t}^{i**})^{2}}{4A_{t}^{\dot{i}}} . (A.21)

 \square 
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