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1 Introduction

Along with the market fragmentation in recent years, the alternative trading venues have at‐

tracted to massively executing institutional investors. As a result, the execution strategies of

various investors are also increasing in complexity. The institutional investors such as index

funds and pension funds often use these alternative trading venues because they affect the stock

price by their large execution. Hence, even if they pay the execution fee, they consider their

execution at the off‐exchange such as OTC (over‐the counter) trading with brokers. We give
three advantages that the institutional investor uses the off‐exchange trading venue. First of all,

the institutional investor is able to prevent a leakage of information by large trades. The leakage

of large trade information in the traditional exchange causes the followings of other investors.

As a result, the stock price significantly fluctuates. Secondly, the institutional investor is surely

able to executes her volume that contracted with the counterparty (broker). Finally, the insti‐
tutional investor can trade at a desirable price. That is, there is no limit for the nominal price

quotation. On the other hand, since the broker may be able to manipulate the price, he may be

taking advantage of the institutional investor. Moreover, it is well known to obstruct the fair

price formation. There exist various types of trading venues, for example off‐hours trading like

ToSTNeT and off‐exchange trading like the dark poor and the internal pool. For more detail,

see [12].
Many literatures have studied about the execution strategy at the traditional stock exchange

or the allocation both in traditional exchange and in the off‐exchange. For example, [9] and [11].
In [9], they derive optimal liquidation strategy of an institutional investor with dark pool and

the stock exchange considering first the liquidity of the (off‐exchange) dark pool. The timing of
the execution in the dark pool is determined by the comparison between the value function of

the dark pool trading and that of the traditional stock exchange trading. In [11], they consider
that an institutional investor makes a contract with a broker to execute the particular volume

at the closing price of that day at the off‐exchange beforehand, then she executes the volume

not contracted with the broker at the stock exchange. Finally, after the market of that day is

close, she trades with the broker at the market closing price based on the previous agreement.

However, it is similar to after hour closing price execution like ToSTNeT‐2 at Tokyo Stock

Exchange (Japan Exchange,) the conditions of their model are relaxed.
In this paper, we consider the optimal execution problem of the institutional investor who

has opportunities to execute her holding to the traditional stock exchange and the off‐exchange

mentioned in [11]. In the off‐exchange trading venue, the closing price guaranteed transaction

between an institutional investor and a broker shall be conducted. The price model in [11]
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satisfies the absent of pure price manipulation in the sense of [8] and transaction‐triggered price
manipulation in the sense of [2] unless we consider only the execution in the stock exchange. See

also [5]. However, we mention here that by adding the alternative trading venues, both absent of
price manipulation are violated. Moreover, the manipulation of closing price on the traditional

exchange has been reported by [1] and [7]. Under these situations and the algorithm in [11], by
exemplifying the execution volume at the off‐exchange we indicate the possibility of the market

manipulation. In particular, we show that when the execution cost (off‐exchange contract price)
which is established by the broker is low, the algorithmic trading of the institutional investor

judges that it is optimal for the institutional investor to manipulate the market and makes the

market unstable. Thereby we give some implications about the characterization of an appropri‐

ate contract pricing in the off‐exchange trading venue, which perform as precautionary measures

against market manipulation. Although [6] developed VWAP guaranteed contract pricing, we
focus on the closing price guaranteed contract. As for the VWAP guaranteed contracts, it is

structurally easy to derive the analytical solution.

This paper is organized as follows. Section 2 presents the framework of the price model and

the optimal execution strategy considering both the (traditional) stock exchange trading and the

off‐exchange after hour closing price trading in accordance with [11]. We also show that since
the static strategy is optimal in the stock exchange, it indicates that it is possible to make an

agreement with the broker about the execution beforehand. Section 3 gives the characterizations

of the pricing of the closing price guaranteed contract considering both a broker’s perspective

and an institutional investor’s perspective. In Section 4, we illustrate numerical examples about

the manipulation of the institutional investor and indicate that the optimal allocation to both

trading venues changes sensitively according to the market condition, in particular the cost of

off‐exchange trading established by the broker. This induces the price manipulation. Section 5

concludes the paper.

2 Basic Framework and Execution Algorithm

In this section, we present the price model and execution strategy in accordance with [11] in
which an institutional investor is considered to purchase the predetermined shares of a single

stock  \overline{Q} . Her execution is assumed to be completed intraday and not to be carried over her

holdings on the next day. On the other hand, she has opportunities to submit her order to the

traditional stock exchange and the after hour off‐exchange. The institutional investor finishes

her execution in the stock exchange till intraday trading time  T  (\in z_{+} :=\{1,2, \ldots\}) , then after

the trading time in the stock exchange, she executes all of her remaining volume at the off‐

exchange with the closing price of the stock exchange. The time of off‐exchange trading defines

 T+1 . The off‐exchange trading we are considering is a sort of OTC (over‐the‐counter) trading,
strictly it is different from after hour trading like ToSTNeT‐2. Although we consider a purchase

problem, we do not prohibit the intermediate sell order. In the stock exchange, we construct

the price model which is absence of pure price manipulation in the single stock exchange in the

sense of [8].
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Let  q_{t} denotes the submitted order volume (execution order volume) of the institutional

investor at time  t(=1, \ldots, T) . If she submits buy (market) order, then  q_{t}>0 and on the other

hand, if sell (market) order, then  q_{t}<0). Moreover denote  Q_{t} as the remaining order volume
at time  t(=1, \ldots, T, T+1) and  Q_{T+1} is the off‐exchange order volume. Hence

 Q_{t+1}=Q_{t}-q_{t} , (2.1)

 Q_{1}=\overline{Q} and  Q_{T+1}=q_{T+1} . Finally we represent  w_{t} as a wealth of the institutional investor at
time  t.

2.1 Price Model

Let  p_{t} denotes a risky asset price at time  t . Because of temporary imbalance of supply and

demand caused by her large order, the execution price is not the same as  p_{t} . We give the

execution price which denotes  \hat{p}_{t} as

 \hat{p}_{t}=p_{t}+\lambda_{t}q_{t} , (2.2)

where  \lambda_{t}(\geq 0) represents the sensitivity of the price per unit execution volume which is called

market impact. In the stock exchange, although the sifted up price caused by the large buy

order of the institutional investor is considered to revert gradually to some degree with reversion

speed (resilience speed)  \rho , information on the large execution is easily leaked then it will not
return beyond a certain level  \alpha_{t}(\in[0,1]) . The stock price at time  t+1 is

 pt+1=pt+\lambda_{tq_{t}(\alpha_{t}e^{-\rho}}+(1-\alpha_{t}))-S_{t}+\epsilon_{t+
1} , (2.3)

which extends the price model in [10]. Here,  \epsilon_{t}\sim N(\mu_{\epsilon}, \sigma_{\epsilon}^{2}) denotes the random variable
representing the information update, it is recognized by the institutional investor at time  t+1.

In addition, the cumulative price resilience from the past execution represents as

 S_{t}:=l_{t-1}q_{t-1}+e^{-\rho}S_{t-1} , (2.4)

where  l_{t}  :=\lambda_{t}(1-e^{-\rho})e^{-\rho} . Therefore the wealth process in the exchange trading  w_{t} is

 w_{t+1}=w_{t}-\hat{p}_{t}q_{t} . (2.5)

Under the predetermined execution fee  C_{T+1} established by the broker at the off‐exchange, the

wealth after finishing her execution is

 w_{T+1}=w_{T}-\hat{p}_{t}q_{t}-p_{T+1}Q_{T+1}-C_{T+1}Q_{T+1}^{2} , (2.6)

where  p_{T+1} is the closing price when there are no other agents except the institutional investor

who affect the stock price. For more detail, see [4] and [11]. We also deal with a similar model
for the risk averse broker in Section 3.
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2.2 Execution Strategy

We consider the problem of the dynamic execution strategy that maximizes her expected utility

from her wealth  w_{T+1}.  R represents the risk‐averse coefficient of an institutional investor and
 \pi denotes a set of the admissible strategy. We define the expected utility by CARA type utility
function as

 V_{t}^{\pi}=E_{t}^{\pi}[-\exp\{-Rw_{T+1}\}|w_{t},p_{t}, Q_{t}, S_{t}, q_{t}] , (2.7)

and give the optimal value function   asV_{t}(:=\sup_{\pi}V_{t}^{\pi}) . Then by the principle of optimality, the

Bellman equation becomes as

 V_{t}(w_{t},p_{t}, Q_{t}, S_{t})= \sup_{q_{t}\in \mathbb{R}}E[V_{t+1}(w_{t+1},
p_{t+1}, Q_{t+1}, S_{t+1}|w_{t},p_{t}, Q_{t}S_{t}, q_{t})] . (2.8)

Hence, by using the consequence in [10], the following results are shown in [11] which is consid‐
ered not only traditional exchange but off‐exchange.

Theorem 1 (Kuno et  a1.[11] ) Suppose that  i.i.d . random variables  \epsilon_{t}(t=1, \ldots, T+1) follow
normal distributions and the risk‐averse large trader has CARA type vN‐M utility. If  C_{T+1} is

deterministic then a static execution strategy becomes optimal.

The optimal execution volume at time  t(t=1, \ldots, T+1) is represented as

 q_{t}^{*}=a_{t}Q_{t}-b_{t}S_{t}-c_{t} (2.9)

where  a_{t}  := \frac{A_{t}^{2}}{2A_{t}^{1}},  b_{t}  := \frac{A_{t}^{3}}{2A_{t}^{1}},  c_{t}  := \frac{A_{t}^{4}}{2A_{t}^{1}} , and

 (A_{t}^{4}:=B_{t+1}^{2}-B_{t+1}^{5}e^{-\rho}+ \mu_{\epsilon}A_{t}^{3}:=B_{t+1}^
{3}e^{-\rho}-2B_{t+1}^{4}l_{t}e^{-\rho}+1A_{t}^{2}:=-\lambda_{t}m_{t}+2B_{t+1}
^{1}-B_{t+1}^{3}l_{t}+R\sigma_{\epsilon}^{2}A_{t}^{1}:=\lambda_{t}(1-m_{t})+B_{t
+1}^{1}-l_{t}(B_{t+1}^{3}-B_{t+1}^{4}l_{t})+\frac{R\sigma_{\epsilon}^{2}}{2} , (2.10)

 (B_{t}^{6}:= \frac{}{}+B_{t+1}^{6}B_{t}^{5}:=\frac {}{}B_{t+1}^{5}e^{-\rho}
B_{t}^{4}:=\frac{}{}+B_{t+1}^{4}e^{-2\rho}B_{t}^{3}:=\frac{--A_{t}^{2}}{--A_{t}^
{3}2A2A}B_{t+1}^{3}e^{-\rho},-1B_{t}^{2}:=\frac{}{}+B_{t+1}^{2}+\mu_{\epsilon}B_
{t}^{1}:=\frac{(A_{t}^{2})^{2}}{A_{t}^{2}A_{t}^{t_{4}},(A_{t}^{3})^{2}(A_{t}^{4}
)^{2}A_{t}^{4}A_{t}^{3}4A_{t}^{1^{+}}4A_{t}^{1^{+}}4A^{1}2A_{t}^{1}tt11}+B_{t+1}
^{1}.+\frac{R\sigma_{\epsilon}^{2}}{2}, (2.11)

This result makes it possible to contract about the volume of off‐exchange trading with the

broker before the exchange trading.

Corollary 1 The closing price guaranteed execution at the off‐exchange after the market is close

is contractible. That is, the optimal execution volume at the off‐ecchange  q_{T+1}^{*} can determine
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before the market(the traditional exchange) opening time,

 q_{T+1}^{*} = Q_{T}- \frac{(-\lambda_{T}m_{T}+2C_{T+1}+R\sigma_{\epsilon}^{2})
Q_{T}-S_{T}+\mu_{\epsilon}}{2\lambda_{T}(1-m_{T})+2C_{T+1}+R\sigma_{\epsilon}
^{2}}
 =  \frac{\lambda_{T}(2-m_{T})Q_{T}+S_{T}-\mu_{\epsilon}}{2\lambda_{T}(1-m_{T})+
2C_{T+1}+R\sigma_{\epsilon}^{2}} . (2.12)

2.3 Definition of price manipulation

The following two definitions are often referred as the price manipulation in the field of optimal

execution. Firstly, a pure price manipulation strategy introduced by [7] is a round trip trade
such that

 E[ \sum_{t=1}^{T+1}\hat{p}_{t}q_{t}]<0 , (2.13)

where round trip trade is an execution strategy  \{q_{t}\}_{t\in[1,T+1]} such that   \sum_{t=1}^{T+1}q_{t}=0 .

Nextly, a transaction‐triggered price manipulation strategy introduced by [2]. If the expected

execution costs of a buy (sell) program can be decreased by intermediate sell (buy) trade, the
price model admits transaction‐triggered price manipulation. That is, there exists  Q_{1},  T>0,

and a corresponding execution strategy  \tilde{q} for which under a monotone execution strategy  q,

 E[C_{T+1}( \tilde{q})]<\min E[C_{T+1}(q)] . (2.14)

In this paper we use the concept of pure price manipulation mainly because it is easy to achieve

the transaction‐triggered price manipulation under a condition that the agent can use the multi

trading venue.

3 Characterization of guaranteed contract price

In this section, we characterize the price in the closing price guaranteed contract from both

the broker and the institutional investor viewpoints. Here, we assume that both brokers and

institutional investors are risk averse economic agants when they execute on the traditional stock

exchange.

3.1 Broker’s perspective

A broker make a following contract with an institutional investor. Firstly, the broker receives

 \overline{Q} units of single stock from the institutional investor before the trading time. The broker sells

 \overline{Q} units on the traditional stock exchange within the trading hours of the day. Then, after the

trading hour, the broker pays the institutional investor the amount that is equal to the closing

price of the day of the exchange  \cross\overline{Q} units — the fee. Such contracts are usually offered to

brokers by institutional investors; see [6]. This contract indicates that the broker takes liquidity
risk by receiving fees and represents the liquidation of the institutional investor. From a reverse

perspective, the institutional investor pays a fee to the broker and sell her whole shares with the

closing price on day. Of course, the closing price is random at the time of the contract conclusion
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while the volume of transaction can be settled. Denote  C(\overline{Q}) as a fee which can be decided by

the broker. We determine  C(\overline{Q}) with solving the broker’s expected utility maximization problem

from time  T+1 . The broker’s expected utility  U_{t}^{\pi} is

 U_{t}^{\pi}=E_{t}^{\pi}[-\exp\{-R(w_{T}-\hat{p}_{T}q_{T}-p_{T+1}\overline{Q}-C(
\overline{Q})\overline{Q})\}|w_{t},p_{t}, Q_{t}, S_{t}, q_{t}] , (3.1)

and the value function  U_{t} is

 U_{t} := \sup_{\pi}U_{t}^{\pi} . (3.2)

Then, the price of the contract is

 C( \overline{Q})=\inf_{\pi}\frac{1}{R\overline{Q}}\ln(E[\exp\{-R(w_{T+1}-w_{0}-
p_{T+1}\overline{Q})\}]) . (3.3)

In this case, obviously the broker will execute to lower the closing price, then the cost calculated

by  w_{T+1}-w_{0}-p_{T+1}\overline{Q} is likely to be negative. Therefore, there will be no institutional investors

who make a closing price guaranteed transaction contract with the broker. Notice that in solving

the utility maximization problem, the closing price actually depends on the broker’s strategy,

and the strategy on the traditional stock exchange also changes. Hence it is difficult to derive

the analytical solution.

As an alternative, without considering the closing price used in off‐exchange transaction, the

broker optimally liquidates  \overline{Q} units on the traditional venue, then we determine the contract price

which equals to the amount that the obtained wealth (cash) with liquidating on the traditional
exchange minus the amount to be handed to the institutional investor in closing price guaranteed

contract. Then the broker’s expected utility and the value function are

 U_{t}^{\pi}=E_{t}^{\pi}[-\exp\{-R(w_{T}-\hat{p}_{t}q_{t}\}|w_{t},p_{t}, Q_{t}, 
S_{t}, q_{t}] , (3.4)

and the value function  U_{t} is

 U_{t}:= \sup_{\pi}U_{t}^{\pi} . (3.5)

The price of closing price guaranteed contract  C(\overline{Q}) is

 C(\overline{Q})=E[w_{T+1}-w_{0}-p_{T+1}\overline{Q}] . (3.6)

Although this characterization is not very realistic, due to [3] and [10], it is well known to be
optimal that the institutional investor does not move significantly, so the closing price can not

be intentionally manipulated price.

3.2 Institutional investor’s perspective

We consider the contract which in the off‐exchange venue, an institutional investor is handed over

(purchases) by a broker the amount of  \overline{Q} units of his holdings after the stock exchange trading
hours of the day with closing price. This contract makes at the time before the traditional

exchange trading starts. From opposite side broker’s perspective, he hands over (sells)  \overline{Q} units to
the institutional investor at the closing price after the end of trading time  T+1 on the traditional

exchange. After the exchange trading hours, the broker pays the institutional investor for the
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amount equivalent to the closing price of the day of the exchange  \cross\overline{Q} units— the fee. Again the

institutional investor pays a fee to the broker instead of surely obtaining  \overline{Q} units at the closing

price. Under such situation, we consider how much the fees that the broker sets are. That is to

say, we construct the fee systems that the institutional investor does not manipulate the market

using the argument in the previous section. Under  q_{t}>0,  Q_{T+1}>0 , from (2,6) and (2,7) the
expected utility of the institutional investor is

 V_{t}^{\pi}=E_{t}^{\pi}[-\exp\{-R(w_{T}-\hat{p}_{t}q_{t}-p_{T+1}Q_{T+1}-C_{T+1}
Q_{T+1}^{2})\}|w_{t},p_{t}, Q_{t}, S_{t}, q_{t}] , (3.7)

and from (2.8), value function is

 V_{t} := \sup_{\pi}V_{t}^{\pi} . (3.8)

We fix  Q_{T+1}=\overline{Q} and determine the cost  C_{T+1} as a price of the contract which achieves the

smallest under the condition of  q_{t}>0,  Q_{T+1}>0 . The reason to do like that, when the value of

 C_{T+1} is too high, the institutional investor do not use the off‐exchange trading and the service

provided by the broker do not make sense. On the other hand, the institutional investor use the

off‐exchange trading as the venue of price manipulation when the value of  C_{T+1} is too low.

4 Numerical examples of institutional investor’s perspective

In this section, we present the intraday optimal execution strategy and allocation considering

both the stock exchange and the off‐exchange with comparative statics. In [11], they focused only
on the allocation of both trading venues, in particular the execution strategy in the traditional

exchange. We now also illustrate the execution plan in the off‐exchange explicitly and we show

that it becomes optimal for the institutional investor to manipulate the price by the level of the

fee. We divide the intraday traditional stock exchange trading time into 13 periods as mentioned

in [1], and after that at time  t=T+1=14 the remaining volume is executed with market
closing price of that day. We use the following base parameters:  \lambda_{t}=0.001,  \alpha_{t}=0.5,  \rho=0.1,

 \mu_{\epsilon}=0,  \sigma_{\epsilon}^{2}=0.02,  C_{T+1}=0.001,  R=0.001 , and  \overline{Q}=100,000 unless otherwise specified.

4.1 Market impact and cost of off‐exchange

Figure 1 shows optimal execution volumes for the institutional investor if the off‐exchange trad‐

ing costs  C_{T+1}=0 , 0.001, 0.01. When  C_{T+1}=0 , though it seems that the institutional investor

executes only at the off‐exchange, she lifts up the price on the stock exchange and sells excess

her holdings in the off‐exchange. When  C_{T+1}=0.001 , since it equals the market impact cost at

the stock exchange then institutional investor deals the off‐exchange trading as the extension of

the stock exchange trading. Finally, it can be seen that institutional investor no longer uses the

off‐exchange trading as the cost of off‐exchange trading becomes higher.

4.2 Off‐exchange execution

Figure 2 illustrates the off‐exchange trading volume of the institutional investor. We will see

that the more risk‐averse the institutional investor is, the faster she finishes her execution. In
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 \supseteq\circ>E\omega

Figure 1: Optimal execution strategy in terms of cost

 \supseteq\circ>E({\imath})
 \underline{\varpi\varpi\subseteq\circ}
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cost  \cross 10^{-3}

Figure 2: Optimal off‐exchange trading volume in terms of cost
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any risk aversion level, the algorithm changes intensely to a certain cost level, however when

it exceeds that level, the algorithm calms down. In fact, in the low cost level the algorithm

fluctuates, nevertheless it seems to be stable from Figure 2. Moreover, when   C_{T+1}arrow\infty , by

equation (2.12) or [11] we get  q_{T+1}arrow 0.

  \frac{\supset E\omega}{o\subseteq\circ\succ\circ}\underline{\varpi}
 \mathring{E}\vee\overline{\supset-}
 \underline{\infty-\varpi\omega}

 \mathbb{E}L\omega x\circ\circ\varpi\subset\circ\omega

Figure 3: Scale up of Figure 2;  0.0001\leq C_{T+1}\leq 0.00035 and  0.0005\leq C_{T+1}\leq 0.0015

The left side of Figure 3 shows the scale up of the fluctuate part of the optimal execution

at the off‐exchange in terms of the range of cost  c_{\tau+1} from 0.0001 to 0.00035. We find that

as the division of the cost is finer, the optimal execution fluctuates in a certain range and it

also fluctuates more intensely as the institutional investor becomes more risk‐neutral. On the

other hand, the risk‐averse institutional investor will not manipulate to pursue her own profit

if the cost of the off‐exchange trading is not so low. We conjecture this fluctuation as that the

range of the low off‐exchange trading cost induces the institutional investor to manipulate the

market. Indeed, the trivial changes of the market parameters cause significant fluctuations in off‐

exchange trading. In spite of using absence of manipulation price model, by adding the trading

opportunity if the off‐exchange trading cost is low, algorithmic trading can make the market

unstable and under both trading venues the round trip trade would make a profit. Analytical

proof and the construction of a new absence of manipulation price model are our future research.

The right side of Figure 3 focuses on the range of the off‐exchange trading cost  C_{T+1} around

the market impact, that is, from 0.0005 to 0.0015. As the institutional investor is more risk‐

averse, she would fasten her execution because she intends to keep away from the price change

risk. As a result, the closing price guaranteed off‐exchange execution is avoided. The point of

the cost  C_{T+1}=1\cross 10^{-3} is the same as the market impact cost in the stock exchange. When
 R=0.001 , it corresponds to time point  t=14 both  \lambda_{t}=0.001 and  C_{T+1}=0.001 . In this case,

the volume of the off‐exchange trading is 11,619.

5 Concluding Remarks

The closing price guaranteed execution makes price manipulation easy by using multiple trading

venues. Under the model in [11], we showed mainly how the cost of the off‐exchange trading
influenced the execution strategy of the institutional investor. The optimal execution strategies
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of institutional investors heavily depend on their own risk aversion and the cost of the off‐

exchange trading established by the broker. We also exemplified in particular that when the cost

of the off‐exchange trading is low, the algorithmic trading by the institutional investor depending

on the degree of risk aversion made the market unstable. On the other hand, if the cost was

set around the market impact coefficient level, the algorithm did not cause fluctuations on the

traditional stock exchange. Actively utilize the algorithmic trading at the low off‐exchange cost

reduces the overall economic welfare, which in turn can be detrimental to institutional investors

themselves. Therefore, as a precautionary measure for the price manipulation algorithm, we

characterized the pricing of the guaranteed contract using closing price from the standpoint of

both a broker and an institutional investor. The derivation of analytical solutions remains our
future work.
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