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Abstract

In this paper, we consider iteration processes of Halpern’s type to find fixed point

of quasi‐nonexpansive mapping and common element of solution for the split common

fixed point of quasi‐nonexpansive mappings. We establish strong convergence theorems

of this problems. We apply our results to study the common element of solution of

multiple split fixed point problems for quasi‐nonexpansive mappings. We also apply

our result to study common element of solution for the equilibrium problem and the

fixed point of generalized hybrid mapping. Our result gives an partial answer to two

open questions which were given by Chidume and Chidume [11], and Kurokawa and

Takahashi[12].
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1 Introduction

Let  C , and  Q be nonempty closed convex subsets of Hilbert spaces  H_{1} and  H_{2} respectively

and  A:H_{1}arrow H_{2} be a bounded linear operator.
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The split feasibility problem (SFP) is the problem: Find

 \overline{x}\in H_{1} such that  \overline{x}\in C and  A\overline{x}\in Q.

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first in‐

troduced by Censor and Elfving [1] for modeling inverse problems which arise from phase

retrievals and in medical image reconstruction. The split feasibility problem (SFP) has

many applications in signal processing, image reconstruction, intensity‐modulated radiation

therapy, approximation theory, control theory, biomedical engineering, communications, and

geophysics. For example, one can see [2, 3, 4, 5].

Let  H_{1} and  H_{2} be Hilbert spaces,  U :  H_{1}arrow H_{1},  T :  H_{2}arrow H_{2} be two operators. Let

Fix  (U)=\{x\in H_{1} : x=Ux\} and Fix  (T)=\{x\in H_{2} : x=Tx\} be the fixed point sets of  U

and  T respectively.

The split common fixed point problem (SCFP) is the problem:

Find  \overline{x}\in H_{1} such that  \overline{x}\in Fix(U) and  A\overline{x}\in Fix(T) .

If  H_{1} and  H_{2} are finite dimensional spaces. Censor and Sega1[6] propose the following

iteration process :

 x_{n+1}=U(x_{n}-\lambda A^{*}(I-T)Ax_{n}

Censor and  Segal[6] proved that  \{x_{n}\} converges strongly to the solution of (SCFP) under

suitable assumption.

in 2011,Moudafi [7]established he following weak convergence (SCFP) for quasi‐nonexpansive

mappings.

Theorem 1.1. [7] Let  H_{1} and  H_{2} be Hilbert spaces  U :  H_{1}arrow H_{1},  T :  H_{2}arrow H_{2} be two

demiclosed quasi‐nonexpansive mappings. Suppose that  \Gamma=\{x\in Fix(U), Ax\in Fix(T)\}\neq

 \emptyset . Let  x_{0}\in H_{1},

 u_{n}=x_{n}-\gamma\beta A^{*}(I-T)Ax_{n},

 x_{n+1}=(1-\alpha_{n})u_{n}+\alpha_{n}(x_{n}-\gamma\beta A^{*}(I-T)Ax_{n}) ,
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where  \beta\in(0,1),  \alpha_{n}\in(0,1) , and   \gamma\in(0, \frac{1}{\lambda\beta}) and  \lambda=\Vert AA^{*}\Vert . Then  \{x_{n}\} converges

weakly to  x^{*}\in\Gamma.

In 2014,Kraikaew and Saejung[8] established the following result:

Theorem 1.2. [8] Let  H_{1} and  H_{2} be Hilbert spaces and let  U :  H_{1}arrow H_{1} be a strongly

quasi‐nonexpansive operator, and  T:H_{2}arrow H_{2} be a quasi‐nonexpansive operator such that

 U and  T are demiclosed. Let  A :  H_{1}arrow H_{2}be a bounded linear operator. Suppose that

 \Gamma=\{x\in Fix(U), Ax\in Fix(T)\}\neq\emptyset . Let  x_{0}\in H_{1} and let  \{x_{n}\}\subset H_{1} be a sequence defined

by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})U(I-\gamma A^{*}(I-T)Ax_{n}) ,

where the parameter and the sequence  \{\alpha_{n}\} satisfies the following conditions:

 (C_{1}) :  \{\alpha_{n}\}\subset(0,1),1\dot{{\imath}}m\alpha_{n}narrow\infty=0 , and

 (C_{2}): \sum_{n=0}^{\infty}\alpha_{n}=\infty.

 (C_{3}): \gamma\in(0, \frac{1}{L}) .

Then  x_{n}arrow P_{\Gamma}x_{0}.

The following strong convergence theorem of Halpern’s  type[9]was proved by Withmann

[10].

Theorem 1.3. [10] Let  H_{1} be a Hilbert space and let  C be a nonempty closed convex subset

of  H_{1} and  T :  Carrow C be a nonexpansive mapping with Fix  (T)\neq\emptyset . For any  x_{1}=x\in C,

define a sequence  \{x_{n}\}\in C by

 x_{n+1}=\alpha_{n}x+(1-\alpha_{n})Tx_{n} for all  n\in \mathbb{N},

where  \{\alpha_{n}\} satisfies

 (C_{1}) :  \{\alpha_{n}\}\subset(0,1) ,  narrow\infty 1\dot{{\imath}}m\alpha_{n}=0,
 (C_{2}): \sum_{n=1}^{\infty}\alpha_{n}=\infty,

 (C_{3}): \sum_{n=1}^{\infty}|\alpha_{n}-\alpha_{n+1}|=\infty.

Then  \{x_{n}\} converges strongly to a point  \overline{x}\in Fix(T) .
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Chidume and Chidume [11], give the following question:

Are the conditions  (C_{1}) :  \{\alpha_{n}\}\subset(0,1),1\dot{{\imath}}m\alpha_{n}narrow\infty=0 , and  (C_{2}) :   \sum_{n=1}^{\infty}\alpha_{n}=\infty sufficient

for convergence of algorithm of Halpern’s type

 x_{n+1}=\alpha_{n}u+(1-\alpha_{n}))Tx_{n}, n\geq 0

for all nonexpansive mapping  T:Carrow C.

Kurokawa and Takahashi[12]proved the strong convergence theorem for nonspreading

mapping in Hilbert space:

Theorem 1.4. [12] Let  C be a nonempty closed convex subset of a Hilbert space  H_{1} . Let

 T:Carrow C be a nonspreading mapping. Let  u\in C and define two sequences  \{x_{n}\} and  \{z_{n}\}

as follows:  x_{1}=x\in C

 (i)x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n} , and

 (ii)z_{n}= \frac{1}{n}\sum_{k=0}^{n}T^{k_{X_{n}}}

for all  n=1,2,  \cdot\cdot\cdot , where  \{\alpha_{n}\}\subset(0,1),1\dot{{\imath}}m\alpha_{n}narrow\infty=0 , and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . If Fix  (T)\neq\emptyset,

then  \{x_{n}\} and  \{z_{n}\} converge strongly to  P_{Fix(T)}u , where  P_{Fix(T)} is the metric projection of

 H_{1} to Fix (T) .

Kurokawa and Takahashi[12] gave the following open question:We do not know whether

a strong convergence of Halpern’s type for nonspreading mapping or not.

Motivated by the above two questions, In this paper,we consider iteration processes of

Halpern’s type with conditions  (C_{1}) and  (C_{2}) for quasi‐nonexpansive mapping, we establish

strong convergence theorems to find the fixed point of quasi‐nonexpansive mappint with

Halpern’s iteration process. We also use the Halpern’s iteration processes to find the common

element of solution for the split common fixed point of quasi‐nonexpansive mappings. We

establish strong convergence theorems of this problem. We apply our results to study the

common element of solution of multiple split fixed point problems for quasi‐nonexpansive

mappings. We also apply our result to study common element of solution for the equilibrium

problem and fixed point of generalized hybrid mapping. Our result gives an partial answer
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to two open questions which were given by Chidume and Chidume [11], and Kurokawa and

Takahashi[12].

2 Preliminaries

Let  H_{1} be  a (real) Hilbert space with inner product  \{\cdot,  \cdot\rangle and norm  || .  || , respectively. We

denote the strongly convergence and the weak convergence of  \{x_{n}\}_{n\in \mathbb{N}} to  x\in H by  x_{n}arrow x

and  x_{n}harpoonup x , respectively. Let  H_{1} and  H_{2} be real Hilbert spaces, let  I_{1} :  H_{1}arrow H_{1} be

the identity mapping on  H_{1} and  I_{2} :  H_{2}arrow H_{2} be the identity mapping on  H_{2} . Let  C be

a nonempty, closed, and convex subset of a real Hilbert space  H_{1} , and  T :  Carrow H_{1} be a

mapping. Let Fix (T)  :=\{x\in C : Tx =x\} . Throughout this paper, we use this notations

unless specified otherwise. Let  C be a nonempty, closed, and convex subset of a real Hilbert

space  H_{1} , and  T:Carrow H be a mapping. Then

(1)  T is nonexpansive if  ||Tx-Ty||\leq||x-y|| for all  x,  y\in C ;

(2)  T is quasi‐nonexpansive if Fix  (T)\neq\emptyset and

 \Vert Tx-y||\leq||x-y|| for all  x,  \in C,  y\in Fix(T) ;

(3)  T is generalized  (\alpha, \beta)hybrid[13] , if  \alpha,  \beta\in \mathbb{R} and

 \alpha\Vert Tx—Ty  \Vert^{2}+(1-\alpha)\Vert Ty-x\Vert^{2}\leq(1-\beta)\Vert x-y\Vert^{2}+
\beta\Vert Tx-y\Vert^{2} for all  x,  y\in C ;

(4)  T is  (\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta) widely more generalized hybrid [14]if there exist  \alpha,  \beta,  \gamma,  \delta,  \varepsilon,  \zeta,  \eta\in

 \mathbb{R} such that

 \alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+
\delta\Vert x-y\Vert^{2}

 \leq\varepsilon\Vert x-Ty\Vert^{2}+\zeta\Vert y-Ty\Vert^{2}+\eta\Vert x-Tx-(y-
Ty)\Vert^{2} , for all  x,  y\in C ;

(5)  T is strongly quasi‐nonexpansive [15] if Fix  (T)\neq\emptyset,

 \Vert Tx-y\Vert\leq\Vert x-y\Vert for all  y\in Fix(T) and  \Vert x_{n}-Tx_{n}\Vertarrow 0

whenever  \{x_{n}\} is a bounded sequence in  H and  \Vert x_{n}-p\Vert-\Vert Tx_{n}-p\Vertarrow 0 for some

 p\in Fix(T) .
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Let  C be a nonempty closed convex subset of a real Hilbert space  H_{1} . Let  T :  Carrow H_{1}

be a mapping.  T is said to be demiclosed if for each sequence  \{x_{n}\} and  x in  C with  x_{n}harpoonup x

and  (I-T)x_{n}arrow 0 implies that  (I-T)x=0.

We know that the Ky Fan minimax inequality problem is to find  z\in C such that

(EP)  g(z, y)\geq 0 for each  y\in C,

where  g :  C\cross Carrow \mathbb{R} is a bifunction. This problem includes fixed point problems, op‐

timization problems, variational inequality problems, Nash equilibrium problems, minimax

inequalities, and saddle point problems as special cases. (For examples, one can see [16] and

related literature.) The solution set of Ky Fan minimax inequality problem (EP) is denoted

by (EP(C,g).

To solve the Ky Fan minimax inequality problem, we assume that the bifunction  g :

 C\cross Carrow \mathbb{R} satisfies the following conditions:

(A1)  g(x, x)=0 for each  x\in C ;

(A2)  g is monotone, i.e.,  g(x, y)+g(y, x)\leq 0 for any  x,  y\in C ;

(A3) for each  x,  y,  z\in C,   \lim\sup g(tz+(1-t)x, y)\leq g(x, ) ;
 t\downarrow 0

(A4) for each  x\in C , the scalar function  yarrow g(x, y) is convex and lower semicontinuous.

3 Main Results

Theorem 3.1. Let  C be a closed convex subset of a Hilbert space  H_{1} , let  \omega\in(0,1) , and

let  T:Carrow C be a  \omega‐strongly quasi‐nonexpansive operator such that  T is demiclosed. Let

 x_{0}\in C and  \{x_{n}\}_{n\in \mathbb{N}} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})Tx_{n},

where  \{\alpha_{n}\}_{n\in \mathbb{N}} is a sequence in  (0,1) such that  narrow\infty 1\dot{{\imath}}m\alpha_{n}=0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . Then
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 narrow\infty 1\dot{{\imath}}mx_{n}=P_{Fix(T)^{X}0}.

Theorem 3.2. Let  C be a closed convex subset of a Hilbert space  H_{1} and let  T :  Carrow C

be a quasi‐nonexpansive operator such that  T is demiclosed. Let  \omega\in(0,1),  x_{0}\in C and

 \{x_{n}\}_{n\in \mathbb{N}} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})((1-\omega)I_{1}+\omega T)x_{n},

where  \{\alpha_{n}\}_{n\in \mathbb{N}} is a sequence in  (0,1) such that  narrow\infty 1\dot{{\imath}}m\alpha_{n}=0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . Then

  \lim_{narrow\infty}x_{n}=P_{Fix(T)^{X}0}.

Theorem 3.3. Let  U_{i}:H_{1}arrow H_{1},  i\in\{1,2, , m\}=I and  S_{j} :  H_{2}arrow H_{2},  j\in\{1,2, , l\}=
 J be demiclosed quasi‐nonexpansive mappings, and Let  A :  H_{1}arrow H_{2} be a bounded linear

operator with  \Vert A\Vert>0 . Let  \{\lambda_{i} : i\in I\} , and  \{\eta_{j} : j\in J\} be strict positive numbers such

that  \{\lambda_{i}\}_{i\in I}\in\triangle_{m} and  \{\eta_{j}\}_{j\in J}\in\triangle_{l} . Let

 U= \sum_{i=1}^{m}\lambda_{i}U_{i\omega} , and  V=I_{1}- \frac{1}{\Vert A\Vert^{2}}A^{*}(I_{2}-\sum_{j=1}^{\ell}\eta_{j}
S_{j\omega})A
 U_{i\omega}=(1-\omega)I_{1}+\omega U_{i} and  S_{j\omega}=(1-\omega)I_{2}+\omega S_{j}.

Suppose that   \Gamma=\{x\in\bigcap_{i=1}^{m}Fix(U_{i}), Ax \in\bigcap_{j=1}^{\ell}Fix(S_{j})
\}\neq\emptyset . Let  x_{0}\in H_{1} and let

 \{x_{n}\}_{n\in \mathbb{N}}\subset H_{1} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})UVx_{n},

where the parameter and the sequence  \{\alpha_{n}\}_{n\in \mathbb{N}} satisfies the following conditions:

(i)  \{\alpha_{n}\}_{n\in \mathbb{N}}\subset(0,1),1\dot{{\imath}}m\alpha_{n}
narrow\infty=0 , and

(ii)   \sum_{n=0}^{\infty}\alpha_{n}=\infty.
Then  x_{n}arrow P_{\Gamma}x_{0}.

Theorem 3.4. Let  U_{i}:H_{1}arrow H_{1},  i\in\{1,2, , m\}=I and  S_{j} :  H_{2}arrow H_{2},  j\in\{1,2, , \ell\}=
 J be quasi‐nonexpansive mappings.
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Let  A :  H_{1}arrow H_{2} be a bounded linear operator with  \Vert A\Vert>0 . Suppose that  \Gamma=\{x\in

  \bigcap_{i=1}^{m}Fix(U_{i}),   Ax \in\bigcap_{j=1}^{l}Fix(S_{j})\}\neq\emptyset . Let  \omega\in(0,1) ,

 U_{i\omega}=(1-\omega)I_{1}+\omega U_{i} and  S_{j\omega}=(1-\omega)I_{2}+\omega S_{j}.  U=U_{1\omega}U_{2\omega}\cdots U_{m\omega},  S=S_{1\omega}S_{2\omega}\cdots S_{l\omega},

and let  V=I_{1}- \frac{1}{\Vert A\Vert^{2}}A^{*}(I_{2}-S_{1\omega}S_{2\omega}\cdots 
S_{l\omega})A.
Let  x_{0}\in H_{1} and let  \{x_{n}\}_{n\in \mathbb{N}}\subset H_{1} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})UVx_{n},

where the parameter and the sequence  \{\alpha_{n}\}_{n\in \mathbb{N}} satisfies the following conditions:

(i)  \{\alpha_{n}\}_{n\in \mathbb{N}}\subset(0,1),   \subset(0,1),\lim_{narrow\infty}\alpha_{n}=0 , and

(ii)   \sum_{n=0}^{\infty}\alpha_{n}=\infty.
Then  x_{n}arrow P_{\Gamma}x_{0}.

Theorem 3.5. Let  U_{i} :  H_{1}arrow H_{1},  i\in\{1,2, , m\}=I be demiclosed quasi‐nonexpansive

mappings.

Suppose that   \Gamma=\{x\in\bigcap_{\dot{i}=1}^{m}Fix(U_{i})\}\neq\emptyset . Let  \omega\in(0,1) ,

 U_{i\omega}=(1-\omega)I_{1}+\omega U_{i} ,  U=U_{1\omega}U_{2\omega}\cdots U_{m\omega}.

Let  x_{0}\in H_{1} and let  \{x_{n}\}_{n\in \mathbb{N}}\subset H_{1} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})Ux_{n},

where the sequence  \{\alpha_{n}\}_{n\in \mathbb{N}} satisfies the following conditions:

(i)  \{\alpha_{n}\}.EN\subset(0,1),  \subset(0,1),1\dot{{\imath}}m\alpha_{n}narrow\infty=0 , and

(ii)   \sum_{n=0}^{\infty}\alpha_{n}=\infty.
Then  x_{n}arrow P_{\Gamma}x_{0}.

Theorem 3.6. Let  U_{i} :  H_{1}arrow H_{1},  i\in\{1,2, , m\}=I and  S_{j} :  H_{2}arrow H_{2},  j\in\{1,2, , \ell\}=
 J be demiclosed quasi‐nonexpansive mappings , Let  A_{j} :  H_{1}arrow H_{2},  j=1,2 , ,  \ell be

bounded linear operators with  \Vert A_{j}\Vert>0 , let  \Gamma=\{x\in H_{1} :  x \in\bigcap_{i=1}^{m}Fix(S_{i}),   A_{j}x\in

 Fix(S_{j}) for all  j=1,2 , ,  \ell}  \neq\emptyset .Let  \{\lambda_{i} : i\in I\} , and  \{\eta_{j} : j\in J\} be strict positive

numbers such that  \{\lambda_{i}\}_{i\in I}\in\triangle_{m} and  \{\eta_{j}\}_{j\in J}\in\triangle_{l} . Let
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 U= \sum_{i=1}^{m}\lambda_{i}U_{i\omega} , and  V= \sum_{j=1}^{\ell}\eta_{j}(I_{1}-\frac{1}{\Vert A_{j}\Vert^{2}}A_{j}^{*}
(I_{2}-S_{j\omega})A_{j}) ,

where  U_{i\omega}=(1-\omega)I_{1}+\omega U

and

 S_{j\omega}=(1-\omega)I_{2}+\omega S_{j}.

Suppose that  \Gamma= {  x \in\bigcap_{\dot{i}=1}^{m}Fix(U_{i}),  A_{j}x\in Fix(S_{j}) for all  j=1,2 , ,  \ell}  \neq\emptyset.

Let  x_{0}\in H_{1} and let  \{x_{n}\}_{n\in \mathbb{N}}\subset H_{1} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})UVx_{n},

where the sequence  \{\alpha_{n}\}_{n\in \mathbb{N}} satisfies the following conditions:

(i)  \{\alpha_{n}\}_{n\in \mathbb{N}}\subset(0,1),1\dot{{\imath}}m\alpha_{n}
narrow\infty=0 , and

(ii)   \sum_{n=0}^{\infty}\alpha_{n}=\infty.
Then  x_{n}arrow P_{\Gamma}x_{0}.

4 Applications

Theorem 4.1. Let  C be a nonempty closed convex subset of  H_{1} . Let  G:C\cross C be a function

satisfying  A_{1}-A_{4} . Let  U:H_{1}arrow H_{1} be

 (\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta) widely more generalized hybrid mapping with Fix  (U)\neq\emptyset which satisfies

the condition (1) or (2):

(1)  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\beta>0 and  \zeta+\eta\geq 0.

(2)  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\gamma>0 , and  \varepsilon+\eta\geq 0.

Let  \omega\in(0,1),  U_{\omega}=(1-\omega)I_{1}+\omega U and let

 T_{r}^{G}x= \{z\in C : G(z, y)+\frac{1}{r}\langle y-z, z-x\rangle\geq 0, 
\forall y\in C\}
for all  x\in H.

Suppose that  \Gamma=Fix(U)\cap EP(C, G)\neq\emptyset.

Let  x_{0}\in C and  \{x_{n}\}.EN be a sequence defined by
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 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})U_{\omega}T_{r}^{G}x_{n},

where  \{\alpha_{n}\}_{n\in \mathbb{N}} is a sequence in  (0,1) such that  narrow\infty 1\dot{{\imath}}m\alpha_{n}=0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . Then

 narrow\infty 1\dot{{\imath}}mx_{n}=P_{\Gamma}x_{0}.

Theorem 4.2. Let  U:H_{1}arrow H_{1} be

 (\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta) widely more generalized hybrid mapping with Fix  (T)\neq\emptyset which satisfies

the condition (1) or (2):

(1)  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\beta>0 and  \zeta+\eta\geq 0.

(2)  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\gamma>0 , and  \varepsilon+\eta\geq 0.

Let  S :  Carrow H_{1} be  a(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, \varepsilon_{1}, \zeta_{1}, 
\eta_{1}) widely more generalized hybrid mapping

with Fix  (T)\neq\emptyset which satisfies the condition (3) or (4):

(3)  \alpha_{1}+\beta_{1}+\gamma_{1}+\delta_{1}\geq 0,  \alpha_{1}+\beta_{1}>0 and  \zeta_{1}+\eta_{1}\geq 0.

(4)  \alpha_{1}+\beta_{1}+\gamma_{1}+\delta_{1}\geq 0,  \alpha_{1}+\gamma_{1}>0 , and  \varepsilon_{1}+\eta_{1}\geq 0.

Let  A :  H_{1}arrow H_{2} be a bounded linear operator with  \Vert A\Vert>0 . Suppose that  \Gamma=

 \{x\in Fix(U), Ax \in Fix(S)\}\neq\emptyset . Let  \omega\in(0,1) , and let  V=I_{1}- \frac{1}{\Vert A\Vert^{2}}A^{*}(I_{2}-S_{\omega})A . Let

 U_{\omega}=(1-\omega)I_{1}+\omega U and  S_{\omega}=(1-\omega)I_{2}+\omega S . Let  x_{0}\in H_{1} and let  \{x_{n}\}_{n\in \mathbb{N}}\subset H_{1} be a

sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})U_{\omega}V,

where the parameter and the sequence  \{\alpha_{n}\}_{n\in \mathbb{N}} satisfies the following conditions:

(i)  \{\alpha_{n}\}_{n\in \mathbb{N}}\subset(0,1),1\dot{{\imath}}m\alpha_{n}
narrow\infty=0 , and

 ( ii)\sum_{n=0}^{\infty}\alpha_{n}=\infty.
Then  x_{n}arrow P_{\Gamma}x_{0}.

Theorem 4.3. [14] Let  U:H_{1}arrow H_{1} be

 (\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta) widely more generalized hybrid mapping with Fix  (U)\neq\emptyset which satisfies

the condition (1) or (2):
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(1)  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\beta>0 and  \zeta+\eta\geq 0.

(2)  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\gamma>0 , and  \varepsilon+\eta\geq 0.

Suppose that  \Gamma=Fix(U)\neq\emptyset . Let  U_{\omega}=(1-\omega)I_{1}+\omega U for  \omega\in(0,1) . Let  x_{0}\in H_{1} and

let  \{x_{n}\}_{n\in \mathbb{N}}\subset H_{1} be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})U_{\omega}x_{n},

where the parameter and the sequence  \{\alpha_{n}\}_{n\in \mathbb{N}} satisfies the following conditions:

(i)   \{\alpha_{n}\}_{n\in \mathbb{N}}\subset(0,1),\lim_{narrow\infty}\alpha_{n}=0 , and

(ii)   \sum_{n=0}^{\infty}\alpha_{n}=\infty.
Then  x_{n}arrow P_{\Gamma}x_{0}.

Theorem 4.4. [17] Let  C be a nonempty closed convex subset of  H_{1} . Let  T:Carrow Cbe a

 (\alpha, \beta) generalized hybrid mapping with  \alpha<\beta . Let  \omega\in(0,1),  T_{\omega}=(1-\omega)I_{1}+\omega T.

Suppose that Fix  (T)\neq\emptyset.

Let  x_{0}\in C and  \{x_{n}\}.EN be a sequence defined by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})T_{\omega}x_{n},

where  \{\alpha_{n}\}_{n\in \mathbb{N}} is a sequence in  (0,1) such that  narrow\infty 1\dot{{\imath}}m\alpha_{n}=0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . Then

  \lim_{narrow\infty}x_{n}=P_{Fix(T)^{X_{0}}}.

5 Numerical Example

Example 5.1. Let  H_{1}=\mathbb{R},   C=[-5, \infty ). Let  T:Carrow C be defined by  T(x)= \frac{x-5}{2},  x\in C.

It is easy to see Fix  (T)=\{-5\}.

 |T(x)-y|=| \frac{x+5}{2}|=\frac{x+5}{2}\leq(x+5)\leq|x+5| , for all  y\in Fix(T)=\{5\}.

Therefore  T is a quasi‐nonexpansive mapping.

Let   \alpha_{n}=\frac{1}{2n},  \omega=0.1,  x_{0}=1.
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Then

 x_{n+1}= \alpha_{n}x_{0}+(1-\alpha_{n}(\omega x_{n}+(1-\omega)Tx_{n}=\frac{1}
{2n}+(1-\frac{1}{2n})\frac{11x_{n}-45}{2}.
We see

 x_{1}=-0.35,  x_{2}=-1 , 70685,  x_{3}=-2.49651,  x_{4}=-3.0423758,  x_{5}=-3.430976,  x_{10}=

 -4.2718038,  x_{20}=-4.6311819,  x_{30}=-4.7726976,  x_{40}=-4.8305837,  x_{50}=-4.8650305,  x_{60}=

 -4.8877178,  x_{70}=-4.9038248,  x_{80}=-4.9160061,  x_{90}=-4.9254063,  x_{100}=-4.9329136,  x_{110}=

 -4.939049,  x_{120}=-4.9441544,  x_{130}=-4 , 9484713,  x_{140}=-4.9521689,  x_{150}=-4.955371,  x_{160}=

 -4.9581712,  x_{170}=-4.9606409,  x_{180}=-4.9628352,  x_{190}=-4.96479977,  x_{200}=-4.9665632,  x_{210}=

 -4 , 9681608, x220  =-4.9696117,  x_{223}=-4.9700216.

From these results, we see   \lim_{narrow\infty}x_{n}=-5\in P_{Fix(T)}x_{0}=\{-5\}
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