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Abstract

This is to introduce the contents of two articles of Granas and Lassonde [2,
3] on applications of some elementary principles of convex analysis. In the first
article, they presented a geometric approach in the theory of minimax inequalities,
which has numerous applications in different areas of mathematics. In the second
article, they complement and elucidate the preceding approach within the context of
complete metric spaces. In this paper, we give abstract convex space versions of the
basic results of [2, 3], and, as the supplements of overviews on recently developed
KKM theory in [5, 8], we introduce applications appeared in [2, 3]. Consequently,
many of known results in the traditional convex analysis can be deduced from the
KKM theory.

1. Introduction

This survey article concerns with applications of convex‐valued KKM maps as shown

in the works of Granas and Lassonde [2, 3]. We obtain abstract versions of basic results
in [2, 3] and introduce applications of some elementary principles of convex analysis given
there. Consequently, many of known results in the traditional convex analysis now belong

to the KKM theory.

In 1991, Granas and Lassonde [2] presented a new geometric approach in the theory of
minimax inequalities, which has numerous applications in different areas of mathematics.

Actually they are based on a particular form of the well‐known KKM lemma due to Ky

Fan in 1961. Their proof of the form is very simple and depends only on the geometric

structure induced by convexity. Many applications to known results are systemically

given on systems of inequalities, variational inequalities, minimax equalities, theorems
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of Markhoff‐Kakutani, Mazur‐Orlicz and Hahn‐Banach, variational problems, maximal

monotone operators, and others in convex analysis.

Moreover, in 1995, Granas and Lassonde [3] complement and elucidate the preceding
approach within the context of complete metric spaces. Their aim of [3] is to provide
simple proofs of several known results, stated in super‐reflexive Banach spaces, concerning

minimization of quasi‐convex functions, variational inequalities, game theory, systems of

inequalities, and maximal monotone operators, by using their intersection principle which

is elementary.

Recently, the present author has tried to give overviews on currently developing KKM

theory of abstract convex spaces in [5, 8]. Moreover, we studied the contributions of
Granas to the KKM theory in [7], where we introduced the contents of most of works
of Granas and his coworkers on the KKM theory and gave some comments to compare

them with current results in the theory. Motivated by such works, we found that, as their

supplements, the contents of [2, 3] seem to be essential and worth to be examined.
This article is organized as follows: Section 2 is a brief introduction on some basic facts

on our abstract convex space theory. In Section 3, basic results of [2] are extended to our
abstract convex spaces. Section 4 devotes to introduce the applications of the geometric

principle in [2]. In Section 5, basic results of [3] are compared with corresponding results
in our abstract convex space theory. Section 6 devotes to introduce the applications of

elementary general principles in [3]. Finally, in Sections 7 and 8, we add‐up the contents
of later works of Horvath [4] and Ben‐El‐Mechaiekh [1], respectively, which are closely
related to [2, 3].

2. Abstract convex spaces

Let  \langle D\rangle denote the collection of all nonempty finite subsets of a set  D . Recall the

following; see [5, 6] and the references therein.

Definition. Let  E be a topological space,  D a nonempty set, and  \Gamma :  \langle D }  arrow Ea

multimap with nonempty values  \Gamma_{A}  :=\Gamma(A) for  A\in\langle D }. The triple  (E, D;\Gamma) is called
an abstract convex space whenever the  \Gamma‐convex hull of any  D'\subset D is denoted and defined

by

 co_{\Gamma}D' :=\cup\{\Gamma_{A}|A\in\langle D'\}\}\subset E.
A subset  X of  E is called a  \Gamma‐convex subset of  (E, D;\Gamma) relative to some  D'\subset D if

for any   N\in\langle D'\rangle , we have  \Gamma_{N}\subset X ; that is,  co_{\Gamma}D'\subset X.

In case  E=D , let  (E;\Gamma)  :=(E, E;\Gamma) .
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Definition. Let  (E, D;\Gamma) be an abstract convex space and  Z be a topological space. For

a multimap  F:Earrow Z with nonempty values, if a multimap  G:Darrow Z satisfies

 F( \Gamma_{A})\subset G(A):=\bigcup_{y\in A}G(y) for all  A\in\{D\rangle,

then  G is called a KKM map with respect to F. A KKM map  G:Darrow E is a KKM map

with respect to the identity map  1_{E}.

A multimap  F:Earrow Z is called a  \mathfrak{K}\mathfrak{C} ‐map [resp.,  a\mathfrak{K}\mathfrak{O} ‐map] if, for any closed‐valued
[resp., open‐valued] KKM map  G :  Darrow Z with respect to  F , the family  \{G(y)\}_{y\in D}
has the finite intersection property. In this case, we denote  F\in \mathfrak{K}\mathfrak{C}(E, D, Z) [resp.,
 F\in \mathfrak{K}0(E, D, Z)].

Definition. The partial KKM principle for an abstract convex space  (E, D;\Gamma) is the

statement  1_{E}\in \mathfrak{K}\mathfrak{C}(E, D, E) ; that is, for any closed‐valued KKM map  G :  Darrow E,

the family  \{G(y)\}_{y\in D} has the finite intersection property. The KKM principle is the

statement  1_{E}\in \mathfrak{K}\mathfrak{C}(E, D, E)\cap \mathfrak{K}\mathfrak{O}(E, D, 
E) ; that is, the same property also holds for any

open‐valued KKM map.

An abstract convex space is called  a (partial) KKM space if it satisfies the (partial)
KKM principle, resp.  A (partial) KKM space  (E, D;\Gamma) is said to be compact whenever
 E is compact.

Now we have the following well‐known diagram for triples  (E, D;\Gamma) :

Simplex  \Rightarrow Convex subset of a t.v.  s.  \Rightarrow Lassonde type convex space
 \Rightarrow H-space  \Rightarrow G‐convex space  \Rightarrow\phi_{A}- space  \Rightarrow KKM space

 \Rightarrow Partial KKM space  \Rightarrow Abstract convex space.

Consider the following related four conditions for a map  G:Darrow Z with a topological

space  Z :

(a)   \bigcap_{y\in D}\overline{G(y)}\neq\emptyset implies   \bigcap_{y\in D}G(y)\neq\emptyset.
(b)   \bigcap_{y\in D}\overline{G(y)}=\overline{\bigcap_{y\in D}G(y)} (  G is intersectionally closed‐valued).

(c)   \bigcap_{y\in D}\overline{G(y)}=\bigcap_{y\in D}G(y) (  G is transfer closed‐valued).

(d)  G is closed‐valued.

The following is one of the most general KKM type theorems in [6]:

Theorem C. Let  (E, D;\Gamma) be an abstract convex space,  Z a topological space,   F\in

 \mathfrak{K}\mathfrak{C}(E, D, Z) , and  G :  Darrow Z a map such that

(1)  \overline{G} is a KKM map  w.r.t.  F ; and
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(2) there exists a nonempty compact subset  K of  Z such that either
(i)  K=Z ;
(ii)  \cap\{\overline{G(y)}|y\in M\}\subset K for some  M\in\{D\} ; or
(iii) for each   N\in\{D\rangle , there exists a  \Gamma ‐convex subset  L_{N} of  E relative to some

 D'\subset D such that  N\subset D',  \overline{F(L_{N})} is compact, and

  \overline{F(L_{N})}\cap\bigcap_{y\in D'}\overline{G(y)}\subset K.
Then we have

  \overline{F(E)}\cap K\cap\bigcap_{y\in D}\overline{G(y)}\neq\emptyset.
Furthermore,

 (\alpha) if  G is transfer closed‐valued, then  \overline{F(E)}\cap K\cap\cap\{G(y)|y\in D\}\neq\emptyset ; and

(  \beta ) if  G is intersectionally closed‐valued,  then\cap\{G(y)|y\in D\}\neq\emptyset.

Our KKM theory concerns with the study of partial KKM spaces and their applica‐
tions.

3. Abstractions of basic results in [2]

Recall that each of two articles [2] and [3] consist of basic results and their applications.
In this section, we present some abstract space versions of basic results mainly given in

[2].
The paper [2] concerns with many known applications of the convex‐valued KKM

maps. The main result (called the geometric principle) is as follows: Let  E be a t.v.  s. , let
 \emptyset\neq D\subset E , and let  G:Darrow E be a multimap satisfying (1)  G(x) is a closed convex set
for all  x\in D , and (2) the convex hull of  A is contained in  \cup\{G(x)|x\in A\} for all finite
subsets  A of  D (that is,  G is a KKM map); then the family  \{G(x)|x\in D\} has the finite
intersection property.

Note that the proof of Ky Fan’s 1961 KKM lemma contains the geometric principle

without assuming convexity of  G(x) for all  x\in D based on the original KKM theorem in

1929. Since the authors’ (  E,  D ; co) is a particular partial KKM space, it satisfies a large
number of equivalent results in [5]. Some of them appear in [3] in particular forms.

In fact, the geometric principle in [3] is a particular form of the following in [5]:

The KKM principle. For an abstract convex space  (E, D;\Gamma) , any closed‐valued [resp.,
open‐valued] KKM map  G :  Darrow E , the family  \{G(z)\}_{z\in D} has the finite intersection
property.
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The closed‐valued case is called the partial KKM principle; and any abstract convex

space satisfying the (partial) KKM principle is called  a (partial) KKM space, resp.
For an abstract convex space  (E, D;\Gamma) , at first we did not assumed any topology on

 E . Under such circumstance, we define

Definition. For  (E\supset D;\Gamma) , a map  G :  Darrow E is said to be strongly KKM provided

(i)  x\in G(x) for each  x\in D , and (ii) the cofibers  G^{*}(y)  :=D\backslash G^{-}(y),  y\in E , of  G are
convex.

Proposition 3.1. In  (E\supset D;\Gamma) , if  D is  \Gamma ‐convex and  G :  Darrow E is strongly KKM,

then  G is a KKM map.

Proof. Let  A\in\langle D } and  y_{0}\in\Gamma_{A} . We have to show that  y_{0}\in G(A) . Since  y_{0}\in G(y_{0}) , we
see that  y_{0}\not\in G^{*}(y_{0}) and therefore  \Gamma_{A} is not contained in  G^{*}(y_{0}) . Since the set  G^{*}(y_{0}) is

 \Gamma‐convex, at least one point  x\in A does not belong to  G^{*}(y_{0}) , which means that  y_{0}\in G(x) .
 \square 

When  E is a vector space, Proposition 3.1 reduces to [2, Proposition 4.2], where
examples of three strongly KKM maps and one KKM map were given.

Corollary 3.2. Let  (X; \Gamma) be a compact partial KKM space and  F,  G :  Xarrow X two

multimap satisfying

(i)  F(x)\subset G(x) for each  x\in X,

(ii)  G has closed values,
(iii)  F has  \Gamma ‐convex cofibers.

If  x\in F(x) for each  x\in X,  then\cap\{G(x)|x\in X\}\neq\emptyset.

Proof. Since  x\in F(x) for each  x\in X , by Proposition 3.1,  F is a KKM map and so is  G

by (i). Since  (X; \Gamma) is a compact partial KKM space, the conclusion follows immediately.
 \square 

Note that Corollary 3.2 reduces to [3, Corollaire 1.1] when  X is a nonempty compact
convex subset of a t.v.  s.

The following is a particular form of [5, (XXIV)]:

Theorem 3.3. (The Fan type analytic alternative) Let  (X; \Gamma) be a compact partial KKM
space and  f,  g:X\cross Xarrow \mathbb{R} be real functions such that

(i)  g(x, y)\leq f(x, y) for each  x,  y\in X,

(ii)  g is  l.s.c . on each  y [that is,  \{x\in X|g(x, y)\leq 0\} is closed in  X].
(iii)  f is quasi‐concave on each  x [that is,  \{y\in X|g(x, y)>0\} is  \Gamma ‐convex in  X].

Then either

(a) there exists  y_{0}\in X such that  g(x, y_{0})\leq 0 for all  x\in X ; or
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(b) there exists  x_{0}\in X such that  f(x_{0}, x_{0})>0.

Proof. Consider multimaps  F:x\mapsto\{y\in X|f(x, y)\leq 0\} and   G:x\mapsto\{y\in X|g(x, y)\leq
 0\} from  X to  X . From the hypotheses, all the conditions of Corollary 3.2 are satisfied.

Hence, if  x\in F(x) for every  x\in X , there exists  y_{0}\in X such that  y_{0}\in G(x) for all  x\in C,

and hence (a) holds; otherwise, if there exists  x_{0}\in X such that  x_{0}\not\in F(x_{0}) , then the case
(b) holds.  \square .

Note that Theorem 3.3 reduces to [2, Theorem 2] when  X is a nonempty compact
convex subset of a t.v.  s . Moreover, three results given in this section are “mutually

equivalent” :

In the above proofs, we have seen:

The partial KKM principle  \Rightarrow Corollary 3.2. and

Corollary   3.2\Rightarrow Theorem 3.3.

Moreover, we can show

Theorem   3.3\Rightarrow Corollary 3.2. We take  f and  g are functions indicating the graphs

of  F and  G , resp.

Corollary  3.2\Rightarrow The partial KKM principle for the case  D\subset E . If  G :  Darrow E is

a KKM map and  A is a finite subset of  D , by letting  G(x)  :=E when  x\in\Gamma_{A}\backslash D , we

can construct an  F :  \Gamma_{A}arrow\Gamma_{A} having convex cofibers and satisfying  x\in F(x)\subset G(x)
for every  x\in\Gamma_{A}.

In our previous work [5], we gave a large number of equivalent formulations of the
(partial) KKM principle. Recall that [5] contains incorrect statements such as (V), (VI),
Theorem 4, (XVI), and (XVII). These can be easily corrected.

In [2], it is noted that the geometric principle is given by Valentine (1964) and Asakawa
(1986), and the geometric lemma in [2](which is a basis of the geometric principle) is a
reformulation of a lemma of Klee (1951).

Abstract forms of many equivalent forms of these statements also can be also estab‐

lished as in our work [5].

4. Applications of the geometric principle

In [2], it is shown that many known results can be proved by the aid of the geometric
principle. Therefore, those results are contained in the realm of the KKM theory. Actually

they listed as follows:
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4.1. Systems of inequalities

Theorem 3. [M. Neumann 1977]

Corollary 3.1. [Fan‐Glicksberg‐Hoffman 1957]

Theorem 4. (Generalization of [Fan 1957])

Corollary 4.1. [Bohnenblust‐Karlin‐Shapley 1950, Fan 1957]

4.2. Minimax equalities

Theorem 5. [König 1968]

Theorem 6. (Reformulation)

Corollary 6.1. [Kneser 1952, Fan 1953]

It is also noted that minimax theorems of [Nikaido 1954] and [Sion 1958] can be equally
obtained by the geometric principle.

4.3. Markov‐Kakutani Theorem

In this subsection,  E stands for a t.v.  s . having sufficiently many continuous linear
functionals.

Theorem 7. (A fixed point theorem)

Theorem 8.  [Markov-Kakutani1

4.4. Theorems of Mazur‐Orlicz and Hahn‐Banach

Theorem 9. [Mazur‐Orlicz]

Corollary 9.1.

Theorem 10. [Hahn‐Banach]

4.5. Variational Problems

Theorem 11. [Mazur‐Schauder]

Theorem 12. [Stampacchia]

Theorem 13.  [Hartmann-Stampacchia1

Corollary 13. 1. [Browder‐Minty]

Corollary 13.2.  [Browder-Goehde-Kirk1 Hilbert space case.

4.6. Maximal Monotone Multivalued Operators

Theorem 14. (Particular case of [Debrunner‐Flor 1964])
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Corollary 14.1. [Minty]

Corollary 14.2. [Minty]

5. Abstractions of basic results in [3]

The aim of [3] is to provide simple proofs of several results, stated in super‐reflexive
Banach spaces, concerning minimization of quasi‐convex functions, variational inequali‐

ties, game theory, systems of inequalities, and maximal monotone operators, by using the

following “intersection principle” : Let  (E, ||\cdot||) be super‐reflexive and let  \{C_{i}|i\in I\} be

a family of closed convex sets in  E with the finite intersection property. If  C_{i_{0}} is bounded

for some  i_{0}\in I , then the intersection  \cap\{C_{i}|i\in I\} is not empty. As the authors point

out, most of the results are valid for arbitrary reflexive spaces.

From [3], recall that a Banach space  (E, || . ||) is uniformly convex provided its norm
 ||  || has the following property: If  (x_{n}),  (y_{n}) are sequences in  E such that the three

sequences  ||x_{n}||,  ||y_{n}|| , and   \frac{1}{2}||x_{n}+y_{n}|| converge to 1, then  ||x_{n}-y_{n}||arrow 0 . Recall that

any Hilbert space is uniformly convex.

A Banach space  (E, || ||) is called super‐reflexive provided it admits an equivalent

uniformly convex norm. In weak topology, closed convex bounded subsets of a super‐

reflexive Banach spaces are compact.

Lemma 5.1. [3] Let  (E, || . ||) be super‐reflexive and  (C_{n}) be a decreasing sequence of
nonempty closed convex subsets of E. Suppose that  d= \sup_{n}d(0, C_{n}) is finite. Then there

exists a unique point   \overline{x}\in\bigcap_{n}C_{n} and  ||\overline{x}||=d.

Theorem 5.2. (Intersection Principle [3]) Let  (E, ||\cdot||) be super‐reflexive and  \{C_{i}|i\in I\}
be a family of closed convex sets in  E with the finite intersection property. If  C_{i_{0}} is bounded

for some  i_{0}\in I , then the intersection  \cap\{C_{i}|i\in I\} is not empty.

In [3], this has an elegant proof using Lemma 5.1, but, by switching to the weak
topology, this is clear since  C_{i_{0}} becomes compact.

Lemma 5.3. Let  E be a  t.v.s.,  X be a nonempty subset of  E, and  G:Xarrow E be a closed

valued KKM map. Then the  \{G(x)\}_{x\in X} has the finite intersection property.

This simply tells that (  E,  X ; co) is a partial KKM space and was first proved by Ky
Fan in the proof of his 1961 KKM lemma based on the original KKM theorem in 1929.

In [3, Theorem 5.1], Lemma 5.3 was proved for a super‐reflexive Banach space  E and
for a KKM map with closed convex values in a elegant method.

From Theorem C in Section 2, we have the following immediately by considering the

weak topology on  E :
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Theorem 5.4. (Elementary Principle of KKM maps [3]) Let  E be super‐reflexive,  X be a
nonempty subset of  E and  G:Xarrow E be a KKM map with convex closed values. Assume,

furthermore, that one of the following conditions is satisfied:

(i)  X is bounded,
(ii) all  G(x) are bounded,

(iii)  G(x_{0}) is bounded for some  x_{0}\in X.

Then the intersection  \cap\{G(x)|x\in X\} is not empty.

6. Applications of elementary principles

In [3], the elementary principle is applied to obtain the following many known results:

6.1. Minimization of quasiconvex functions

Theorem 3.1. Existence of minimum.

Theorem 3.2. Specialized to quadratic forms in Hilbert spaces.

Corollary 3.3. (F. Riesz representation theorem)

Corollary 3.4. (Projection on closed convex sets)

Corollary 3.5. (Separation of closed convex sets)

6.2. Variational inequalities

Theorem 6.1. [Stampacchia]

Corollary 6.2. [Lax‐Milgram] A generalization of Riesz representation theorem.

Theorem 6.3.  [Hartman-Stampacchia1 A generalization of theorems of Stampacchia and

Lax‐Milgram.

Corollary 6.4. [Minty‐Browder]

Corollary 6.5.  [Browder-Goehde-Kirk1 For nonexpansive maps on Hilbert space.

6.3. Minimax theorem of von Neumann

Theorem 7.1. [von Neumann] This is for two super‐reflexive spaces. For partial KKM
spaces, a general form is given in [5, (XXVI)].

6.4. Systems of inequalities

Theorem 8.1. Existence of common solutions of a system of inequalities on a super‐

reflexive space.

Theorem 8.2. A variant for Ky Fan type family of functions.
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Theorem 8.3. A minimax theorem which is a consequence of Theorem 8.2.

Corollary 8.4. [Kneser‐Fan] A minimax equality.

6.5. Maximal monotone operators

Theorem 9.1. A basic result in the theory of maximal monotone operators in a Hilbert

space  H.

Corollary 9.2. [Minty] Surjectivity of a maximal monotone operator with bounded domain.

Corollary 9.3. [Minty] If  T:Harrow H is maximal monotone, then  1_{H}+T is onto.

7. Add‐up of Horvath [4] in 2014

In 2014, Horvath [4] published a related article to [2] as follows:

ABSTRACT : If one adds one extra assumption to the classical Knaster‐Kuratowski‐

Mazurkiewicz (KKM) theorem, namely that the sets  F_{i} are convex, one gets the Elemen‐
tary KKM theorem; the name is due to A. Granas and M. Lassonde [2] who gave a simple
proof of the Elementary KKM theorem and showed that despite being elementary, it is

powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent

to Klee’s theorem, the Elementary Alexandroff. Pasynkov theorem, the Elementary Ky

Fan theorem and the Sion‐von Neumann minimax theorem, as well as a few other classical

results with an extra convexity assumption; hence the adjective elementary. The Sion.von

Neumann minimax theorem itself can be proved by simple topological arguments using

connectedness instead of convexity. This work answers a question of Professor Granas re‐

garding the logical relationship between the Elementary KKM theorem and the Sion‐von
Neumann minimax theorem.

8. Add‐up of Ben‐El‐Mechaiekh [1] in 2015

In 2015, Ben‐El‐Mechaiekh [1] published a related article to [2] as follows:

ABSTRACT : A number of landmark existence theorems of nonlinear functional anal‐

ysis follow in a simple and direct way from the basic separation of convex closed sets in

finite dimension via elementary versions of the Knaster‐Kuratowski‐Mazurkiewicz princi‐

ple‐ which we extend to arbitrary topological vector spaces‐ and a coincidence property

for so‐called von Neumann relations. The method avoids the use of deeper results of

topological essence such as the Brouwer fixed point theorem or the Sperner’s lemma and

underlines the crucial role played by convexity. It turns out that the convex KKM princi‐

ple is equivalent to the Hahn‐Banach theorem, the Markov‐Kakutani fixed point theorem,

and the Sion‐von Neumann minimax principle.
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COMMENTS: Note that the convex KKM principle is the geometric principle in [2].
This principle can be generalized to abstract convex spaces as follows:

Consider the case  E=Z and  F=id_{E} in Theorem C. Then we have the following
conclusion:

 (\alpha) if  G is  \Gamma ‐convex transfer closed‐valued, then   K\cap\cap\{G(y)|y\in D\}\neq\emptyset ; and

(  \beta ) if  G is  \Gamma ‐convex intersectionally closed‐valued,  then\cap\{G(y)|y\in D\}\neq\emptyset.

Then the conclusion generalizes the geometric principle of Granas and Lassonde [2]
and the convex KKM theorem (Theorem 6) of Ben‐El‐Mechaiekh [1].

FINAL REMARK: Recall that some people complained against our use of triples for

abstract convex spaces. Note that here also appears a large number of triples  (E, D;\Gamma) .
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