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1 Introduction

Let H be a real Hilbert space and let C' be a nonempty subset of H. A mapping T
from C into H is called generic generalized hybrid [21] if there exist «, 3,7,0 € R such that
a+f8+~v4+5>0, a+ >0 and

a|Ta — Ty|* + Bllz — Tyl* + Tz — y[* + 6z — ylI* < 0

for all z,y € C. The class of generic generalized hybrid mappings covers generalized hybrid
mappings defined by Kocourek, Takahashi and Yao [6]. A mapping T : C — H is called
generalized hybrid [6] if there exist «, 5 € R such that

ol Te = Tyll* + (1 = a)llo = Ty|* < BTz - ylI* + (1 = B)l|lz -y

for all z,y € C. The generalized hybrid mappings were extended by Maruyama, Takahashi
and Yao [11] as follows: A mapping T : C — C'is called 2-generalized hybrid [11] if there exist
a1, a9, f1, B2 € R such that

as | T2 — Ty|* + on [Tz = Ty|” + (1 — on — a) |}z — Ty
< 82 | T2 — y||" + B0 | Tw — y|* + (1 = By — B) 1 — Il
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for all z,y € C. Very recently, 2-generalized hybrid mappings were extended by Kondo and
Takahashi [7]. A mapping T': C' — C is called normally 2-generalized hybrid [7] if there exist
ag, o, a1, B1, az, B2 € R such that

| T?z — Ty + en | Tz — Ty||* + ag |z — Ty|?
+ B2l T%z — y||* + 1l Tz — ylI* + Bollz — y[I* < 0
for all z,y € C, where Zi:o(an + Bn) >0 and as + a1 + a9 > 0.

In this article, using Mann’s type iteration, Halpern’s type iteration, hybrid method and
shrinking projection method, we obtain weak and strong convergence theorems for two gen-
eralized hybrid mappings and two normally 2-generalized hybrid mappings in a Hilbert space
without assuming that they are commutative.

2  Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product (-,-) and norm || -|. We denote
the strong convergence and the weak convergence of {z,} to z € H by z,, —» z and z,, — z,
respectively. In a Hilbert space, it is known that

20z —y,y) < ||z yll* < 2(z — y,2) (2.1)
for all z,y € H and
laz + (1 = @)yl* = all|* + (1 = a) ly|* = a(1 = a) = — y||* (2.2)
for all z,y € H and a € R; see [15]. Furthermore, we have that
2w —y,z—w) = |z —w|’ + |y — 2| = l|lz - 2|* = [ly — w|? (2.3)

for all x,y,z,w € H. Let H be a Hilbert space and let C' be a nonempty subset of H. Let T
be a mapping of C into H. We denote by A(T) the set of attractive points [17] of T, i.e.,

AT)={z€e H: |Tz—z|| < |z —z|, VzeC}

We also denote by F'(T') the set of fixed points of T. A mapping T : C — H with F(T) # 0
is called quasi-nonexpansive if

Tz —ul| < ||z —ul, VzeC, ue F(T).

If C is closed and convex and T': C — H with F(T) # () is quasi-nonexpansive, then F(T) is
closed and convex; see Itoh and Takahashi [5]. For a nonempty, closed and convex subset D of
H, the nearest point projection of H onto D is denoted by Pp, that is, ||z — Ppz|| < ||z — y/|
for all x € H and y € D. Such a mapping Pp is called the metric projection of H onto D.
We know that the metric projection Pp is firmly nonexpansive, i.e.,

| Ppz — Ppyl|” < (Ppa — Ppy,z — y)



for all z,y € H. Furthermore, (x — Ppz,y — Ppx) < 0 holds for all x € H and y € D;
see [14, 15]. Using this inequality and (2.3), we have that

|Ppx —y||> + |Ppx — z|®> < |z — y||>, Vx€H, yeD. (2.4)

The following result was proved by Takahashi and Toyoda [19].

Lemma 2.1 ([19]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {x,} be a sequence in H. If ||xpt1 — ul| < ||zn — u|| for alln e N andu € C,
then {Pox,} converges strongly to z € C, where Pc is the metric projection of H onto C.

To prove one of our main results, we also need the following lemmas by Aoyama, Kimura,
Takahashi and Toyoda [1, 24] and Maingé [9].

Lemma 2.2 ([1, 24]). Let {sn} be a sequence of nonnegative real numbers, let {a,} be a
sequence of [0,1] with > > | an = 00, let {B,} be a sequence of nonnegative real numbers with
S oo Bn < 00, and let {v,} be a sequence of real numbers with limsup,,_,., v < 0. Suppose
that

Sn+1 < (1 - an)sn + apyn + ﬂn

foralln =1,2,.... Then lim,_, s, = 0.

Lemma 2.3 ([9]). Let {X,,} be a sequence of real numbers. Assume that {X,} is not monotone
decreasing for sufficiently large n € N, in other words, there exists a subsequence {Xp,,} of
{Xn} such that X,,, < Xp, 41 for alli € N. Let ng € N such that {k <ng: X < Xp41} # 0.

Define a sequence {1 (n)}, 5, of natural numbers as follows:

T(n)=max{k <n:Xp <X}, VYn>ng.

Then, the followings hold:
(i) 7 (n) — 0o as n — oo
(ii) Xn < XT(n)+1 and Xr(n) < XT(TL)+].7 Vn > ng.

3 Weak convergence theorems of Mann's type iteration

In this section, using Lemma 2.1, we obtain a weak convergence theorem of Mann’s type
iteration [10] for finding a common attractive point of two generalized hybrid mappings without
assuming that the mappings are commutative. Before proving the theorem, we need the
following lemma.

Lemma 3.1. Let H be a Hilbert space and let C be a nonempty subset of H. LetT : C — H
be a generalized hybrid mapping and let {z,} C C. If z, —= z and x, — Tz, — 0, then
z € A(T). Additionally, if C is closed and convex, then z € F(T).

Theorem 3.2 ([16]). Let H be a Hilbert space and let C be a nonempty and convez subset of
H. Let S and T be generalized hybrid mappings of C into itself such that A(S) N A(T) # 0.
Let {x,,} be a sequence generated by 1 =z € C and

Tng1 = @ + (1 — o) (W Szn + (1 = v)T2y), VR €N,
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where a,b,c,d € R, {y,} and {a,} satisfy the following:
0<a<v<b<l and 0<c<a,<d<l1l, VneN.

Then {xn} converges weakly to a point z € A(S) N A(T), where z = limy, ;00 Pa(s)na(r)®n-
Additionally, if C is closed, then {x,} converges weakly to a point z € F(S) N F(T), where
z =limy 00 Pr(s)nF(T)Tn-

We can also prove a weak convergence theorem by Mann’s type iteration [10] for noncom-
mutative two normally 2-generalized hybrid mappings in Hilbert spaces; see also [3].

Theorem 3.3 ([13]). Let H be a Hilbert space and let C' be a nonempty and convex subset
of H. Let S and T be normally 2-generalized hybrid mappings of C into itself such that
A(S)NA(T) £ 0. Given xq € C, define a sequence {x,} in C as follows:

Tp4+1 = Gnlnp + bn ('YnS + (1 - 'Yn)T)iEn +cp ((snSQ + (1 — (S,L)TZ)LI?”

for all n € N, where a,b,c,d,e,f € R and {y,}, {00}, {an},{0n},{cn} C [0,1] satisfy the
following:
0<a<~v <b<l 0<c<d,<d<1,
an+by+cpn=1 and 0<e<apbyc, <f<1l, VnelN
Then {zn} converges weakly to a point u of A(S)NA(T), where u = lim,_o0c Pa(s)na(r)Zn.

Additionally, if C is closed, then {x,} converges weakly to a point z € F(S) N F(T), where
z = limp 00 Pr(s)ynr(T)Tn-

4 Strong convergence theorems of Halpern's type iteration

In this section, using Lemmas 2.2 and 2.3, we prove the following strong convergence theorem
of Halpern’s type iteration [2] for noncommutative two generalized hybrid mappings in a
Hilbert space; see also [22].

Theorem 4.1 ([16]). Let H be a Hilbert space and let C' be a nonempty and conver subset of
H. Let S and T be generalized hybrid mappings of C' into itself with A(S) N A(T) # (. Given
x1 € C and {u,} C C with u, — u, define a sequence {x,} in C as follows:

Tnt1 = apty + (1 — ay) (,ann +(1— ﬁn)(vnan +(1- vn)Txn))

for all n € N, where a,b,c,d € R, {v,}, {an} and {B,} satisfy the following:

o0
lim «, =0, E Qy = 00,
n—o0

n=1

0<a<v<b<l and 0<c<pB,<d<l1l, VneN.

Then the sequence {x,} converges strongly to Pacs)na(ryt, where Pysyna(r) is the metric
projection from H onto A(S)NA(T). Additionally, if C is closed, then {x,} converges strongly
to Pp(synr(ryu, where Ppsynp(r) is the metric projection from H onto F(S)NF (T).



We can also prove a strong convergence theorem by Halpern’s type iteration [2, 23] for
noncommutative two normally 2-generalized hybrid mappings in Hilbert spaces; see also [3, 8].

Theorem 4.2 ([13]). Let H be a Hilbert space and let C be a nonempty and convex subset
of H. Let S and T be normally 2-generalized hybrid mappings of C into itself such that
A(S)NA(T) # 0. Given z1,z € C, define a sequence {zn} in C as follows:

Tn+l = )\’nz + (1 - )‘n) Zn,
Zn = ATy + by (’Yns + (1 - 'Vn)T)xn +cn (51152 + (1 - Jn)T2)xna vn €N,

where a,b,c,d, e, f € R and {\,}, {vn}, {0n}, {an}, {bn}, {cn} C [0,1] satisfy the following:

hm )\" = 0, i )\n = o0,
n=1

n—00

0<a<v <b<l 0<c<d,<d<1,
an+by+cen=1 and 0<e<ap,bp,cn <f<1l, VneN.

Then the sequence {x,} converges strongly to zo = Pa(syna(r)z, where Pacs)nacry s the
metric projection from H onto A(S)N A(T).

Additionally, if C is closed, then {x,} converges strongly to Pp(synr(1)%, where Pp(synp(r)
is the metric projection from H onto F(S)N F(T).

5 Strong convergence theorems by hybrid methods

In this section, we obtain a strong convergence theorem by the hybrid method [12] for
finding a common fixed point of two generalized hybrid mappings without assuming that the
mappings are commutative.

Theorem 5.1 ([4]). Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let S,T : C — C be generalized hybrid mappings such that F(S) N F(T) # 0.
Let {z,} C C be a sequence generated by x1 € C and

Yn = @y + (1 — ay) (WnSacn +(1- Vn)Ta?n),
Cn={2€C:|lyn — 2|l < llzn — 2|},
Qn={2€C:{(x,—z,x—xz,) >0},

ZTnt1 = Po,ng, 1, YVneN,

where Pc,,nq, 1S the metric projection of H onto C,NQy, and a,b,c € R and {an}, {7y} C [0,1]
satisfy
0<a,<a<l and 0<b<~y,<c<1l, VnelN

Then {x,} converges strongly to zy = Prsynr(TyT1, where Prsynr(T) 18 the metric projection
of H onto F(S)N F(T).

Next, we prove a strong convergence theorem by the shrinking projection method [18] for
noncommutative two generalized hybrid mappings in a Hilbert space.
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Theorem 5.2 ([4]). Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let S,T : C — C be generalized hybrid mappings such that F(S) N F(T) # (.
Let {u,} be a sequence in C' such that u, — u. Let Cy = C and let {z,} C C be a sequence
generated by 1 € C and

Yn = Ty + (1 — ap) (7 Szy + (1 — Vn)Tﬂfn),
Gt = 12 € Gt g — 2l < [l — 21,
Tny1 = Po,  Uny1, VR EN,

where Pc,,,, is the metric projection of H onto Cni1 and b,c € R and {an}, {y} C [0,1]
satisfy
0 <liminfa, <1 and 0<b<~vy,<c<l1l, VnelN

n—r00

Then, {x,} converges strongly to zo = Pp(synr(ryu, where Pp(synp(r) is the metric projection
of H onto F(S)NF(T).

Furthermore, using the hybrid method [12], we prove a strong convergence theorem for
noncommutative normally 2-generalized hybrid mappings in a Hilbert space.

Theorem 5.3 ([20]). Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let S,T : C — C be normally 2-generalized hybrid mappings such that F(S) N
F(T) #0. Let {z,} C C be a sequence generated by x1 € C and

Yn = anTp + by (WS + (1 = ) T) @y + ¢ (6,5% + (1 = 6,)T%) 2,
Co={2€C:|lyn— 2| < [lzn — 2|},

Qn = {Z eC: <xn _Zu‘r_x7b> 2 0}7

Tp41 = Pcannxl, Vn € N,

where Pc,nq, 15 the metric projection of H onto Cp, N @y and a,b,c,d,e,f € R and
{n}: {0n}, {an}, {bn}, {cn} C [0,1] satisfy the following:

0<a<~v <b<l 0<c<d,<d<1,
an+by+cpn=1 and 0<e<apbyc, <f<1l, VnelN.

Then {x,} converges strongly to zo = Pp(synr(r)T1, where Pr(s)np(r) is the metric projection
of H onto F(S)NF(T).

Finally, we prove a strong convergence theorem by the shrinking projection method [18] for
noncommutative normally 2-generalized hybrid mappings in a Hilbert space.

Theorem 5.4 ([20]). Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let S,T : C — C be normally 2-generalized hybrid mappings such that F(S) N
F(T) # 0. Let {u,} be a sequence in C such that u,, — u. Let C1 = C and let {z,} C C be
a sequence generated by x1 € C' and

Yn = an +bn (1S + (1 = 1) T) 20 + €a (805 + (1 = 60)T7%) 2,
Cnp1 ={z€Cn: lyn — 2|l < |0 — 2I},
Tp+l = PCn+1un+17 Vn € N,



where Pc, ., 1is the metric projection of H onto Cny1 and a,b,c,d,e,f € R and

{n}: {0n}, {an}, {bn}, {cn} C [0,1] satisfy the following:

0<a<~v <b<l 0<c<d,<d<l,
n+bp+cn=1 and 0<e<an,bp,cn < f<1l, VneN

Then {xn} converges strongly to zo = Pp(synp (), where Ppisynpr) is the metric projection
of H onto F(S)NF(T).
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