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1 Introduction

Let H be a real Hilbert space and let  C be a nonempty subset of  H . A mapping  T

from  C into  H is called generic generalized hybrid [21] if there exist  \alpha,  \beta,  \gamma,  \delta\in \mathbb{R} such that
 \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\beta>0 and

 \alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+
\delta\Vert x-y\Vert^{2}\leq 0

for all  x,  y\in C. The class of generic generalized hybrid mappings covers generalized hybrid
mappings defined by Kocourek, Takahashi and Yao [6]. A mapping  T :  Carrow H is called
generalized hybrid [6] if there exist  \alpha,  \beta\in \mathbb{R} such that

 \alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-
y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}

for all  x,  y\in C. The generalized hybrid mappings were extended by Maruyama, Takahashi
and Yao [11] as follows: A mapping  T:Carrow C is called 2‐generalized hybrid [11] if there exist
 \alpha_{1},  \alpha_{2},  \beta_{1},  \beta_{2}\in \mathbb{R} such that

 \alpha_{2}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{1}\Vert Tx-Ty\Vert^{2}+(1-\alpha_{1}
-\alpha_{2})\Vert x-Ty\Vert^{2}
 \leq\beta_{2}\Vert T^{2}x-y\Vert^{2}+\beta_{1}\Vert Tx-y\Vert^{2}+(1-\beta_{1}-
\beta_{2})\Vert x-y\Vert^{2}
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for all  x,  y\in C . Very recently, 2‐generalized hybrid mappings were extended by Kondo and
Takahashi [7]. A mapping  T :  Carrow C is called normally 2‐generalized hybrid [7] if there exist
 \alpha_{0},  \beta_{0},  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2}\in \mathbb{R} such that

 \alpha_{2}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{1}\Vert Tx-Ty\Vert^{2}+\alpha_{0}
\Vert x-Ty\Vert^{2}
 +\beta_{2}\Vert T^{2}x-y\Vert^{2}+\beta_{1}\Vert Tx-y\Vert^{2}+\beta_{0}\Vert x
-y\Vert^{2}\leq 0

for all  x,  y\in C , where   \sum_{n=0}^{2}  (\alpha_{n}+\beta_{n} )  \geq 0 and  \alpha_{2}+\alpha_{1}+\alpha_{0}>0.

In this article, using Mann’s type iteration, Halpern’s type iteration, hybrid method and
shrinking projection method, we obtain weak and strong convergence theorems for two gen‐
eralized hybrid mappings and two normally 2‐generalized hybrid mappings in a Hilbert space
without assuming that they are commutative.

2 Preliminaries

Throughout this paper, we denote by  \mathbb{N} the set of positive integers and by  \mathbb{R} the set of real
numbers. Let  H be a real Hilbert space with inner product  \langle\cdot,  \cdot\rangle and norm  \Vert\cdot\Vert . We denote
the strong convergence and the weak convergence of  \{x_{n}\} to  x\in H by  x_{n}arrow x and  x_{n}harpoonup x,

respectively. In a Hilbert space, it is known that

 2 \{x-y, y\rangle\leq\Vert x\Vert^{2}-\Vert y\Vert^{2}\leq 2\langle x-y, x\} (2.1)

for all  x,  y\in H and

 \Vert\alpha x+(1-\alpha)y\Vert^{2}=\alpha\Vert x\Vert^{2}+(1-\alpha)\Vert 
y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2} (2.2)

for all  x,  y\in H and  \alpha\in \mathbb{R} ; see [15]. Furthermore, we have that

 2\langle x-y, z-w\rangle=\Vert x-w\Vert^{2}+\Vert y-z\Vert^{2}-\Vert x-
z\Vert^{2}-\Vert y-w\Vert^{2} (2.3)

for all  x,  y,  z,  w\in H . Let  H be a Hilbert space and let  C be a nonempty subset of  H . Let  T

be a mapping of  C into  H . We denote by  A(T) the set of attractive points [17] of  T , i.e.,

 A(T)=\{z\in H: \Vert Tx-z\Vert\leq\Vert x-z\Vert, \forall x\in C\}.

We also denote by  F(T) the set of fixed points of  T . A mapping  T :  Carrow H with   F(T)\neq\emptyset
is called quasi‐nonexpansive if

 \Vert Tx-u\Vert\leq\Vert x-u\Vert, \forall x\in C, u\in F(T) .

If  C is closed and convex and  T:Carrow H with   F(T)\neq\emptyset is quasi‐nonexpansive, then  F(T) is
closed and convex; see Itoh and Takahashi [5]. For a nonempty, closed and convex subset  D of
 H , the nearest point projection of  H onto  D is denoted by  P_{D} , that is,  \Vert x-P_{D}x\Vert\leq\Vert x-y\Vert
for all  x\in H and  y\in D . Such a mapping  P_{D} is called the metric projection of  H onto  D.

We know that the metric projection  P_{D} is firmly nonexpansive, i.e.,

 \Vert P_{D}x-P_{D}y\Vert^{2}\leq\langle P_{D}x-P_{D}y, x-y\rangle
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for all  x,  y\in H . Furthermore,  \langle x —PDx,  y-P_{D}x\rangle\leq 0 holds for all  x\in H and  y\in D ;
see [14, 15]. Using this inequality and (2.3), we have that

 \Vert P_{D}x-y\Vert^{2}+\Vert P_{D}x-x\Vert^{2}\leq\Vert x-y\Vert^{2}, \forall 
x\in H, y\in D . (2.4)

The following result was proved by Takahashi and Toyoda [19].

Lemma 2.1 ([19]). Let  H be a Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  \{x_{n}\} be a sequence in H. If  \Vert x_{n+1}-u\Vert\leq\Vert x_{n}-u\Vert for all  n\in \mathbb{N} and  u\in C,
then  \{P_{C}x_{n}\} converges strongly to  z\in C , where  P_{C} is the metric projection of  H onto  C.

To prove one of our main results, we also need the following lemmas by Aoyama, Kimura,
Takahashi and Toyoda [1, 24] and Maingé [9].

Lemma 2.2 ([1, 24]). Let  \{s_{n}\} be a sequence of nonnegative real numbers, let  \{\alpha_{n}\} be a
sequence of  [0,1] with   \sum_{n=1}^{\infty}\alpha_{n}=\infty , let  \{\beta_{n}\} be a sequence of nonnegative real numbers with
  \sum_{n=1}^{\infty}\beta_{n}<\infty , and let  \{\gamma_{n}\} be a sequence of real numbers with   \lim\sup_{narrow\infty}\gamma_{n}\leq 0 . Suppose
that

 s_{n+1}\leq(1-\alpha_{n})s_{n}+\alpha_{n}\gamma_{n}+\beta_{n}

for all  n=1,2 , Then   \lim_{narrow\infty}s_{n}=0.

Lemma 2.3 ([9]). Let  \{X_{n}\} be a sequence of real numbers. Assume that  \{X_{n}\} is not monotone
decreasing for sufficiently large  n\in \mathbb{N} , in other words, there exists a subsequence  \{X_{n_{i}}\} of
 \{X_{n}\} such that  X_{n_{i}}<X_{n_{i}+1} for all  i\in \mathbb{N} . Let  n_{0}\in \mathbb{N} such that  \{k\leq n_{0} : X_{k}<X_{k+1}\}\neq\emptyset.
Define a sequence  \{\tau(n)\}_{n\geq n_{0}} of natural numbers as follows:

  \tau(n)=\max\{k\leq n:X_{k}<X_{k+1}\} , \forall n\geq n_{0}.

Then, the followings hold:
(i)  \tau(n)arrow\infty as   narrow\infty ;
(ii)  X_{n}\leq X_{\tau(n)+1} and  X_{\tau(n)}<X_{\tau(n)+1},  \forall n\geq n_{0}.

3 Weak convergence theorems of Mann’s type iteration

In this section, using Lemma 2.1, we obtain a weak convergence theorem of Mann’s type
iteration [10] for finding a common attractive point of two generalized hybrid mappings without
assuming that the mappings are commutative. Before proving the theorem, we need the
following lemma.

Lemma 3.1. Let  H be a Hilbert space and let  C be a nonempty subset of H. Let  T:Carrow H

be a generalized hybrid mapping and let  \{x_{n}\}\subset C. If  x_{n}harpoonup z and  x_{n}-Tx_{n}arrow 0 , then
 z\in A(T) . Additionally, if  C is closed and convex, then  z\in F(T) .

Theorem 3.2 ([16]). Let  H be a Hilbert space and let  C be a nonempty and convex subset of
H. Let  S and  T be generalized hybrid mappings of  C into itself such that  A(S)\cap A(T)\neq\emptyset.
Let  \{x_{n}\} be a sequence generated by  x_{1}=x\in C and

 x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})(\gamma_{n}Sx_{n}+(1-\gamma_{n})Tx_{n}) ,
\forall n\in \mathbb{N},

67



68

where  a,  b,  c,  d\in \mathbb{R},  \{\gamma_{n}\} and  \{\alpha_{n}\} satisfy the following:

 0<a\leq\gamma_{n}\leq b<1 and  0<c\leq\alpha_{n}\leq d<1,  \forall n\in \mathbb{N}.

Then  \{x_{n}\} converges weakly to a point  z\in A(S)\cap A(T) , where  z= \lim_{narrow\infty}P_{A(S)\cap A(T)}x_{n}.
Additionally, if  C is closed, then  \{x_{n}\} converges weakly to a point  z\in F(S)\cap F(T) , where
 z= \lim_{narrow\infty}P_{F(S)\cap F(T)^{X}n}.

We can also prove a weak convergence theorem by Mann’s type iteration [10] for noncom‐
mutative two normally 2‐generalized hybrid mappings in Hilbert spaces; see also [3].

Theorem 3.3 ([13]). Let  H be a Hilbert space and let  C be a nonempty and convex subset
of H. Let  S and  T be normally 2‐generalized hybrid mappings of  C into itself such that
  A(S)\cap A(T)\neq\emptyset . Given  x_{1}\in C , define a sequence  \{x_{n}\} in  C as follows:

 x_{n+1}=a_{n}x_{n}+b_{n}(\gamma_{n}S+(1-\gamma_{n})T)x_{n}+c_{n}(\delta_{n}
S^{2}+(1-\delta_{n})T^{2})x_{n}

for all  n\in \mathbb{N} , where  a,  b,  c,  d,  e,  f\in \mathbb{R} and  \{\gamma_{n}\},  \{\delta_{n}\},  \{a_{n}\},  \{b_{n}\},  \{c_{n}\}\subset[0,1] satisfy the
following:

 0<a\leq\gamma_{n}\leq b<1, 0<c\leq\delta_{n}\leq d<1,

 a_{n}+b_{n}+c_{n}=1 and  0<e\leq a_{n},  b_{n},  c_{n}\leq f<1,  \forall n\in \mathbb{N}.

Then  \{x_{n}\} converges weakly to a point  u of  A(S)\cap A(T) , where  u= \lim_{narrow\infty}P_{A(S)\cap A(T)}x_{n}.
Additionally, if  C is closed, then  \{x_{n}\} converges weakly to a point  z\in F(S)\cap F(T) , where

 z= \lim_{narrow\infty}P_{F(S)\cap F(T)^{X}n}.

4 Strong convergence theorems of Halpern’s type iteration

In this section, using Lemmas 2.2 and 2.3, we prove the following strong convergence theorem
of Halpern’s type iteration [2] for noncommutative two generalized hybrid mappings in a
Hilbert space; see also [22].

Theorem 4.1 ([16]). Let  H be a Hilbert space and let  C be a nonempty and convex subset of
H. Let  S and  T be generalized hybrid mappings of  C into itself with   A(S)\cap A(T)\neq\emptyset . Given
 x_{1}\in C and  \{u_{n}\}\subset C with  u_{n}arrow u , define a sequence  \{x_{n}\} in  C as follows:

 x_{n+1}=\alpha_{n}u_{n}+(1-\alpha_{n})(\beta_{n}x_{n}+(1-\beta_{n})(\gamma_{n}
Sx_{n}+(1-\gamma_{n})Tx_{n}))
for all  n\in \mathbb{N} , where  a,  b,  c,  d\in \mathbb{R},  \{\gamma_{n}\},  \{\alpha_{n}\} and  \{\beta_{n}\} satisfy the following:

  \lim_{narrow\infty}\alpha_{n}=0, \sum_{n=1}^{\infty}\alpha_{n}=\infty,
 0<a\leq\gamma_{n}\leq b<1 and  0<c\leq\beta_{n}\leq d<1,  \forall n\in \mathbb{N}.

Then the sequence  \{x_{n}\} converges strongly to  P_{A(S)\cap A(T)^{U}} , where  P_{A(S)\cap A(T)} is the metric
projection from  H onto  A(S)\cap A(T) . Additionally, if  C is closed, then  \{x_{n}\} converges strongly
to  P_{F(S)\cap F(T)^{U}} , where  P_{F(S)\cap F(T)} is the metric projection from  H onto  F(S)\cap F(T) .
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We can also prove a strong convergence theorem by Halpern’s type iteration [2, 23] for
noncommutative two normally 2‐generalized hybrid mappings in Hilbert spaces; see also [3, 8].

Theorem 4.2 ([13]). Let  H be a Hilbert space and let  C be a nonempty and convex subset
of H. Let  S and  T be normally 2‐generalized hybrid mappings of  C into itself such that
  A(S)\cap A(T)\neq\emptyset . Given  x_{1},  z\in C , define a sequence  \{x_{n}\} in  C as follows:

 \{\begin{array}{l}
x_{n+1}=\lambda_{n}z+(1-\lambda_{n})z_{n},
z_{n}=a_{n}x_{n}+b_{n}(\gamma_{n}S+(1-\gamma_{n})T)x_{n}+c_{n}(\delta_{n}S^{2}+
(1-\delta_{n})T^{2})x_{n}, \forall n\in \mathbb{N},
\end{array}
where  a,  b,  c,  d,  e,  f\in \mathbb{R} and  \{\lambda_{n}\},  \{\gamma_{n}\},  \{\delta_{n}\},  \{a_{n}\},  \{b_{n}\},  \{c_{n}\}\subset[0,1] satisfy the following:

  \lim_{narrow\infty}\lambda_{n}=0, \sum_{n=1}^{\infty}\lambda_{n}=\infty,
 0<a\leq\gamma_{n}\leq b<1, 0<c\leq\delta_{n}\leq d<1,

 a_{n}+b_{n}+c_{n}=1 and  0<e\leq a_{n},  b_{n},  c_{n}\leq f<1,  \forall n\in \mathbb{N}.

Then the sequence  \{x_{n}\} converges strongly to  z_{0}=P_{A(S)\cap A(T)}z , where  P_{A(S)\cap A(T)} is the
metric projection from  H onto  A(S)\cap A(T) .

Additionally, if  C is closed, then  \{x_{n}\} converges strongly to  P_{F(S)\cap F(T)}z , where  P_{F(S)\cap F(T)}
is the metric projection from  H onto  F(S)\cap F(T) .

5 Strong convergence theorems by hybrid methods

In this section, we obtain a strong convergence theorem by the hybrid method [12] for
finding a common fixed point of two generalized hybrid mappings without assuming that the
mappings are commutative.

Theorem 5.1 ([4]). Let  H be a Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  S,  T :  Carrow C be generalized hybrid mappings such that  F(S)\cap F(T)\neq\emptyset.
Let  \{x_{n}\}\subset C be a sequence generated by  x_{1}\in C and

 \{\begin{array}{l}
y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})(\gamma_{n}Sx_{n}+(1-\^{i}_{n})Tx_{n}) ,
C_{n}=\{z\in C: \Vert y_{n}-z\Vert\leq\Vert x_{n}-z\Vert\},
Q_{n}=\{z\in C: \langle x_{n}-z, x-x_{n}\rangle\geq 0\},
x_{n+1}=P_{C_{n}\cap Q_{n}}x_{1}, \forall n\in \mathbb{N},
\end{array}
where  P_{C_{n}\cap Q_{n}} is the metric projection of  H onto  C_{n}\cap Q_{n} and  a,  b,  c\in \mathbb{R} and  \{\alpha_{n}\},  \{\gamma_{n}\}\subset[0,1]
satisfy

 0\leq\alpha_{n}\leq a<1 and  0<b\leq\gamma_{n}\leq c<1,  \forall n\in \mathbb{N}.

Then  \{x_{n}\} converges strongly to  z_{0}=P_{F(S)\cap F(T)^{X}1} , where  P_{F(S)\cap F(T)} is the metric projection
of  H onto  F(S)\cap F(T) .

Next, we prove a strong convergence theorem by the shrinking projection method [18] for
noncommutative two generalized hybrid mappings in a Hilbert space.
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Theorem 5.2 ([4]). Let  H be a Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  S,  T :  Carrow C be generalized hybrid mappings such that  F(S)\cap F(T)\neq\emptyset.
Let  \{u_{n}\} be a sequence in  C such that  u_{n}arrow u . Let  C_{1}=C and let  \{x_{n}\}\subset C be a sequence
generated by  x_{1}\in C and

 \{\begin{array}{l}
y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})(\gamma_{n}Sx_{n}+(1-\gamma_{n})Tx_{n}) ,
C_{n+1}=\{z\in C_{n} : \Vert y_{n}-z\Vert\leq\Vert x_{n}-z\Vert\},
x_{n+1}=P_{C_{n+1}}u_{n+1}, \forall n\in \mathbb{N},
\end{array}
where  P_{C_{n+1}} is the metric projection of  H onto  C_{n+1} and  b,  c\in \mathbb{R} and  \{\alpha_{n}\},  \{\gamma_{n}\}\subset[0,1]
satisfy

 0 \leq\lim_{narrow}\inf_{\infty}\alpha_{n}<1 and  0<b\leq\gamma_{n}\leq c<1,  \forall n\in \mathbb{N}.

Then,  \{x_{n}\} converges strongly to  z_{0}=P_{F(S)\cap F(T)^{U}} , where  P_{F(S)\cap F(T)} is the metric projection
of  H onto  F(S)\cap F(T) .

Furthermore, using the hybrid method [12], we prove a strong convergence theorem for
noncommutative normally 2‐generalized hybrid mappings in a Hilbert space.

Theorem 5.3 ([20]). Let  H be a Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  S,  T :  Carrow C be normally 2‐generalized hybrid mappings such that   F(S)\cap
  F(T)\neq\emptyset . Let  \{x_{n}\}\subset C be a sequence generated by  x_{1}\in C and

 \{\begin{array}{l}
y_{n}=a_{n}x_{n}+b_{n}(\gamma_{n}S+(1-\^{i}_{n})T)x_{n}+c_{n}(\delta_{n}S^{2}+(1
-\delta_{n})T^{2})x_{n},
C_{n}=\{z\in C: \Vert y_{n}-z\Vert\leq\Vert x_{n}-z\Vert\},
Q_{n}=\{z\in C: \langle x_{n}-z, x-x_{n}\rangle\geq 0\},
x_{n+1}=P_{C_{n}\cap Q_{n}}x_{1}, \forall n\in \mathbb{N},
\end{array}
where  P_{C_{n}\cap Q_{n}} is the metric projection of  H onto  C_{n}\cap Q_{n} and  a,  b,  c,  d,  e,  f\in \mathbb{R} and
 \{\gamma_{n}\},  \{\delta_{n}\},  \{a_{n}\},  \{b_{n}\},  \{c_{n}\}\subset[0,1] satisfy the following:

 0<a\leq\gamma_{n}\leq b<1, 0<c\leq\delta_{n}\leq d<1,

 a_{n}+b_{n}+c_{n}=1 and  0<e\leq a_{n},  b_{n},  c_{n}\leq f<1,  \forall n\in \mathbb{N}.

Then  \{x_{n}\} converges strongly to  z_{0}=P_{F(S)\cap F(T)}x_{1} , where  P_{F(S)\cap F(T)} is the metric projection
of  H onto  F(S)\cap F(T) .

Finally, we prove a strong convergence theorem by the shrinking projection method [18] for
noncommutative normally 2‐generalized hybrid mappings in a Hilbert space.

Theorem 5.4 ([20]). Let  H be a Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  S,  T :  Carrow C be normally 2‐generalized hybrid mappings such that   F(S)\cap
  F(T)\neq\emptyset . Let  \{u_{n}\} be a sequence in  C such that  u_{n}arrow u . Let  C_{1}=C and let  \{x_{n}\}\subset C be
a sequence generated by  x_{1}\in C and

 \{\begin{array}{l}
y_{n}=a_{n}x_{n}+b_{n}(\gamma_{n}S+(1-\^{i}_{n})T)x_{n}+c_{n}(\delta_{n}S^{2}+(1
-\delta_{n})T^{2})x_{n},
C_{n+1}=\{z\in C_{n}: \Vert y_{n}-z\Vert\leq\Vert x_{n}-z\Vert\},
x_{n+1}=P_{C_{n+1}}u_{n+1}, \forall n\in \mathbb{N},
\end{array}
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where  P_{C_{n+1}} is the metric projection of  H onto  C_{n+1} and  a,  b,  c,  d,  e,  f  \in  \mathbb{R} and
 \{\gamma_{n}\},  \{\delta_{n}\},  \{a_{n}\},  \{b_{n}\},  \{c_{n}\}\subset[0,1] satisfy the following:

 0<a\leq\gamma_{n}\leq b<1, 0<c\leq\delta_{n}\leq d<1,

 a_{n}+b_{n}+c_{n}=1 and  0<e\leq a_{n},  b_{n},  c_{n}\leq f<1,  \forall n\in \mathbb{N}.

Then  \{x_{n}\} converges strongly to  z_{0}=P_{F(S)\cap F(T)^{U}} , where  P_{F(S)\cap F(T)} is the metric projection
of  H onto  F(S)\cap F(T) .
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