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Abstract. In this paper, we establish optimality conditions (both necessary
and sufficient) for a nonsmooth semi-infinite vector optimization problem by
using the scalarization method.

1 Introduction

As we know, scalarization methods are regarded as very important tools to
study (weakly/properly) efficient solutions to multiobjective optimization. The
relevance of using scalarization methods to solve multiobjective optimization
problems is that scalar problems can have more effective means of finding opti-
mal solutions than vector problems. The reader can refer to the papers [12, 14],
where surveys of methods for multiobjective optimization are reviewed. For
deeper, the reader is referred to the books [1, 6, 7, 11] and the papers [2, 10, 13].
In this paper, we are interested in Chankong—Haimes method which is an effec-
tive method to solve multiobjective optimization problems for exact solutions
via scalarization also. The reader is referred to the Chankong-Haimes’s book [3]
for more details. Mathematically speaking, consider the following nonsmooth
semi-infinite multiobjective optimization problem:

(MP) Minimize f(z) := (fi(z), fa(2), ..., fm(z))
subject to  g¢(z) £0,t €T,
z e,

where f; : R" = R,i € M = {1,2,...,m}, g+,t € T are locally Lipschitz
functions, T is an index set (possibly infinite), and C is a nonempty closed subset
of R™. The feasible set of (MP) is denoted by Fis := {z € C: ¢g;(x) £ 0,t € T}.

1This paper is based on the published one “Optimality conditions in nonconvex semi-
infinite multiobjective optimization problems. J. Nonlinear Convex Anal. 17 (2016), no.1,
167-175” written by G.-R. Piao, L.G. Jiao and D.S. Kim.
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In our research, due to Chankong-Haimes method, for j € M and z € C,
we formulate the following scalar problem associated to (MP),

(Pj(z)) Minimize f;(x
subject to  fi(z) £
t(l’) § O, te T,

@

First we give the necessary condition for an optimal solution of (P;(z)) by
introducing a modified constraint qualification, then generalized necessary con-
dition for an efficient solution of (MP) is established by using the modified
constraint qualification. In addition, sufficient condition for the optimal solu-
tion of (Pj(z)) and generalized sufficient condition for the efficient solution of
(MP) are provided by using suitable generalized convexity conditions.

2 Preliminaries

The following notation will be used for vectors in R™:

<y <= z; <y, 1=1,2,--- n;
xéy — xzéym 7’:17277,’7'7
r<y <= z;Zvy;, i=1,2,---,nbut x #y.

Let us denote by R(T) a following linear space (see [9]):
RT) .= {X\ = (\)ier | A\ = 0 for all t € T but only finitely many \; # 0}.

For each A\ € R(T), the supporting set corresponding to A is T()\) := {t €
T: A # 0}, which is a finite subset of T.

We denote RSFT) = {A = (M)wer € RT): N\, 20,t € T}, which is a nonneg-
ative cone of R(T).

For A € R™) and {zt}ter C Z, Z being a real linear space, we understand
that

3 Az _{ OZtETw Azeif

T 0
par if T\ =0.

For g;,t € T,

S rgi= { Toeroy o T 20

teT

We also note that in R(T)| a norm formulated by (see [15])

[RYE Y

teT(N)
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Throughout this paper, f : R™ — R is a locally Lipschitz function, and
gt : R" = Rt € T, are locally Lipschitz with respect to x uniformly in ¢ € T,
ie.,

Ve € X,3U(2),3K > 0, |gi(w) — go(v)| £ Kllu— o, Yu,v € U), VieT.

We also suppose that the function ¢ — g;(x) is upper semicontinuous on T'
for every z € X. Note that most of the following basic concepts are concerned
with nonsmooth analysis theory, which can be found in [4, 5, 8].

Let g : X — R be a locally Lipschitz function. The directional derivative of
g at z € X in direction d € X, is

t—0+ t

if the limit exists.
The Clarke generalized directional derivative of g at z € X in direction

de X is
g9°(z;d) := lim sup w

y—z t
t—0t

The Clarke subdifferential of g at z € X, denoted by 0°g(z), is defined by
0°(z) ={ve X :v(d) £g¢°z;d),vd € X}.

A locally Lipschitz function g is said to be regular (in the sense of Clarke)
at z € X if ¢/(z;d) exists and

9°(2:d) = ¢'(2;d),Vd € X.

Let D be a nonempty closed subset of X. The tangent cone to D is defined
by
Tp(x)={h € X:dp(x;h) =0},

where dp denotes the distance function to D. The normal cone to D at a point
z € D coincides with the normal cone in the sense of convex analysis and given
by

Np(z)={ve X":v(x—2)L£0,Vz € D}.

Definition 2.1 Let C be a subset of R” and h : R™ — R be a locally Lipschitz
function.

(i) The function A is said to be pseudoconver at x € C' if
h(y) < h(z) = uly —z) <0, VYue€ O(z),y € C,
equivalently,

u(ly—x) 20= h(y) = h(z), Yue dh(zx),yeC.



(i)’ The function h is said to be pseudoconvex on C if it is pseudoconvex at
every x € C. Moreover, the function f is said to be strictly pseudoconvex
at x € C'if

uwly—xz)=20= f(y) > f(z), Yuedf(zx), y#zandyeC.

(ii) The function h is said to be quasiconver at x € C' if
hy) L h(z) =>u(ly—z) £0, Yue dh(z),y e C,
equivalently,

uw(y —xz) > 0= h(y) > h(z), Yue dh(z),yecC.

(ii)” The function h is said to be quasiconvex on C if it is quasiconvex at every
zeC.

Below, we recall the concept of efficient solution of (MP).

Definition 2.2 A point z € F); is said to be an efficient solution of (MP) if
there exists no other x € F); such that

filx) £ fi(2), forallie M

and
fio(x) < fiy(2), for some ig € M,

it is equivalent to

flx) < f(2).
Let us consider the following single objective optimization problem.

(P) Minimize f(x)
subject to g,(z) £0,t €T,
zeC

where f : R®™ — R is locally Lipschitz function and functions g¢,t € T and C
are as above. Also, the feasible set of (P) is denoted by Fy := {z € C: g:(z) <
0,teT}.

Let € R™. We need the following condition [16],

(A): FdeTe(x):gf(x;d) <0, forall t € I(x) :={t € T: g:(x) = 0}.

Then we would like to derive the following KKT necessary optimality the-
orem for the case of the involved functions defined on R™ and index set T is
compact.

95



96

Theorem 2.1 Let z be an optimal solution for (P), and assume that the con-
dition (A) holds for z. Then, there exists A € RS_T) such that

0€0°f(2) + > M0°0i(2) + Ne(z), gi(2) =0, VteT(N).
teT

Definition 2.3 Let z € C, )\ € Rf), (z,A) is said to satisfy generalized KKT
condition if the following condition holds

0€0°f(2) + Y _ M0gi(2) + No(2). Mgi(z) =0, VteT(N).
teT

Remark 2.1 If z is an optimal solution of (P) and the condition (A) holds

for z, then there exists A € RSFT) and (z,A) € C' x Rf) satisfies obviously the
generalized KKT condition from Theorem 2.1.

Recall that the criteria of Chankong-Haimes method [3] applied for a semi-
infinite multiobjective optimization problem (MP) is as follows. The proof would
be omitted.

Lemma 2.1 A feasible point z of (MP) is an efficient solution if and only if it
is an optimal solution of (Pi(z)) for each j € M.

Remark 2.2 If z is an efficient solution of (MP), then obviously, it is also an
optimal solution of (P;j(z)) for some j € M, but the converse is not always true.

3 Optimality Conditions

In this section we establish KKT and generalized KKT optimality conditions
for (Pj(z)) and (MP), successively. The following condition, which is a modified
constraint qualification, is associated to the problem (P;(z)), and the feasible
set of (Pj(z)) is denoted by F}(z).

Let z € R, I(z) = {t € T: gi(x) = 0}, Hj(z) = {k € M7: fi.(z) = fu(2)},
and T'(x) = I(z) U H;(z).

C(x;d) <0, for all t € I(x),

(Aj): 3d € To(w) { ?f;((x d)) <0, for all k € Igrj)(x).

With the fulfilment of condition (.A;), we now give the KKT necessary con-
dition for (P;(z)).



Theorem 3.1 Let z be an optimal solution for (Pj(z)) and assume that the

condition (A;) holds for z, then there exist 7, = 0,k € M7 and X € RS_T) such
that the following KKT condition holds,

0€0°f(2)+ Y mOful2) + > M0gi(2) + Ne(2), (3.1)
keMi teT
gi(2) =0, VteT(\). (3.2)

KKT sufficient condition for (P;(z)) is proposed as follows by using suitable
generalized convexity.

Theorem 3.2 Let z € Fj(z). Assume that the function f; is pseudoconvez, the
functions fx,k € M7 and g;,t € T are quasiconvez. If there exist 7, = 0,k € M7

and \ € RS_T) such that (3.1) and (3.2) hold. Then z is an optimal solution for

(P(2))-

We now give the following generalized KKT necessary and sufficient condi-
tions for (MP).

Theorem 3.3 Let z € Fy be an efficient solution of (MP). If there exists
Jj € M such that the condition (A;) holds for z, then there exist 7; 2 0,5 €

M, ZjeM i =1and X € RS_T) such that the following generalized KKT condi-
tion holds,

0> 70Fi(2)+ > M0gu(2) + No(z), Mgi(z) =0, VteT. (3.3)
jEM teT
Theorem 3.4 Let z € Fiy. Assume that there exist 7; =2 0,5 € M, ZjeM Tj =

1 and X € Rg_T) such that (3.3) holds. If T f is strictly pseudoconver and
> rer Mge s quasiconvex. Then z is an efficient solution of (MP).
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