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Abstract. In this paper, we establish optimality conditions (both necessary
and sufficient) for a nonsmooth semi‐infinite vector optimization problem by
using the scalarization method.

1 Introduction

As we know, scalarization methods are regarded as very important tools to
study (weakly/properly) efficient solutions to multiobjective optimization. The
relevance of using scalarization methods to solve multiobjective optimization
problems is that scalar problems can have more effective means of finding opti‐
mal solutions than vector problems. The reader can refer to the papers [12, 14],
where surveys of methods for multiobjective optimization are reviewed. For
deeper, the reader is referred to the books [1, 6, 7, 11] and the papers [2, 10, 13].
In this paper, we are interested in Chankong‐Haimes method which is an effec‐
tive method to solve multiobjective optimization problems for exact solutions
via scalarization also. The reader is referred to the Chankong‐Haimes’s book [3]
for more details. Mathematically speaking, consider the following nonsmooth
semi‐infinite multiobjective optimization problem:

(MP) Minimize f(x)  :=(f_{1}(x), f_{2}(x), \ldots, f_{m}(x))
subject to  g_{t}(x)\leqq 0,  t\in T,

 x\in C,

where  f_{i} :  \mathbb{R}^{n}arrow \mathbb{R},  i\in M  :=\{1,2, . . . , m\},  g_{t},  t\in T are locally Lipschitz
functions,  T is an index set (possibly infinite), and  C is a nonempty closed subset
of  \mathbb{R}^{n} . The feasible set of (MP) is denoted by  F_{M}  :=\{x\in C:g_{t}(x)\leqq 0, t\in T\}.

lThis paper is based on the published one “Optimality conditions in nonconvex semi‐
infinite multiobjective optimization problems. J. Nonlinear Convex Anal. 17 (2016), no.1,
167−175” written by G.‐R. Piao, L.G. Jiao and D.S. Kim.
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In our research, due to Chankong‐Haimes method, for  j\in M and  z\in C,
we formulate the following scalar problem associated to (MP),

 (P_{j}(z)) Minimize  f_{j}(x)
subject to  f_{k}(x)\leqq f_{k}(z),  k\in M^{j}  :=M\backslash \{j\},

 g_{t}(x)\leqq 0, t\in T,
 x\in C.

First we give the necessary condition for an optimal solution of  (P_{j}(z)) by
introducing a modified constraint qualification, then generalized necessary con‐
dition for an efficient solution of (MP) is established by using the modified
constraint qualification. In addition, sufficient condition for the optimal solu‐
tion of  (P_{j}(z)) and generalized sufficient condition for the efficient solution of

(MP) are provided by using suitable generalized convexity conditions.

2 Preliminaries

The following notation will be used for vectors in  \mathbb{R}^{n} :

 x<y\Leftrightarrow x_{i}<y_{i}, i=1,2, , n ;

 x\leqq y\Leftrightarrow x_{i}\leqq y_{i}, i=1,2, , n ;

 x\leq y\Leftrightarrow x_{i}\leqq y_{i},  i=1,2 , ,  n but  x\neq y.

Let us denote by  \mathbb{R}^{(T)} a following linear space (see [9]):

 \mathbb{R}^{(T)}  := {  \lambda=(\lambda_{t})_{t\in T}|\lambda_{t}=0 for all  t\in T but only finitely many  \lambda_{t}\neq 0}.

For each  \lambda\in \mathbb{R}^{(T)} , the supporting set corresponding to  \lambda is  T(\lambda)  :=\{t\in
 T:\lambda_{t}\neq 0\} , which is a finite subset of  T.

We denote  \mathbb{R}_{+}^{(T)}  :=\{\lambda=(\lambda_{t})_{t\in T}\in \mathbb{R}^{(T)}:\lambda_{t}\geqq 0, t\in
T\} , which is a nonneg‐
ative cone of  \mathbb{R}^{(T)}.

For  \lambda\in \mathbb{R}^{(T)} and  \{z_{t}\}_{t\in T}\subset Z,  Z being a real linear space, we understand
that

  \sum_{t\in T}\lambda_{t}z_{t}=\{\begin{array}{ll}
\sum_{t\in T(\lambda)}\lambda_{t}z_{t}   if T(\lambda)\neq\emptyset,
0   if T(\lambda)=\emptyset.
\end{array}
For  g_{t},  t\in T,

  \sum_{t\in T}\lambda_{t}g_{t}=\{\begin{array}{ll}
\sum_{t\in T(\lambda)}\lambda_{t}g_{t}   if T(\lambda)\neq\emptyset,
0   if T(\lambda)=\emptyset.
\end{array}
We also note that in  \mathbb{R}^{(T)} , a norm formulated by (see [15])

  \Vert\lambda\Vert_{1}=\sum_{t\in T(\lambda)}|\lambda_{t}|.
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Throughout this paper,  f :  \mathbb{R}^{n}arrow \mathbb{R} is a locally Lipschitz function, and
 g_{t} :  \mathbb{R}^{n}arrow \mathbb{R},  t\in T , are locally Lipschitz with respect to  x uniformly in  t\in T,
i.e.,

 \forall x\in X,  \exists U(x),  \exists K>0,  |g_{t}(u)-g_{t}(v)|\leqq K\Vert u-v\Vert,  \forall u,  v\in U(x),  \forall t\in T.

We also suppose that the function  t\mapsto g_{t}(x) is upper semicontinuous on  T

for every  x\in X . Note that most of the following basic concepts are concerned
with nonsmooth analysis theory, which can be found in [4, 5, 8].

Let  g:Xarrow \mathbb{R} be a locally Lipschitz function. The directional derivative of
 g at  z\in X in direction  d\in X , is

 g'(z;d)= \lim_{tarrow 0+}\frac{g(z+td)-g(z)}{t}
if the limit exists.

The Clarke generalized directional derivative of  g at  z\in X in direction
 d\in X is

 g^{c}(z;d):=1 \dot{{\imath}}m\sup_{yarrow z}\frac{g(y+td)-g(y)}{t}.
 tarrow 0^{+}

The Clarke subdifferential of  g at  z\in X , denoted by  \partial^{c}g(z) , is defined by

 \partial^{c}g(z) :=\{v\in X^{*} : v(d)\leqq g^{c}(z;d), \forall d\in X\}.

A locally Lipschitz function  g is said to be regular (in the sense of Clarke)
at  z\in X if  g'(z;d) exists and

 g^{c}(z;d)=g'(z;d), \forall d\in X.

Let  D be a nonempty closed subset of  X . The tangent cone to  D is defined
by

 T_{D}(x)=\{h\in X:d_{D}^{c}(x;h)=0\},

where  d_{D} denotes the distance function to  D . The normal cone to  D at a point
 z\in D coincides with the normal cone in the sense of convex analysis and given
by

 N_{D}(z) :=\{v\in X^{*} : v(x-z)\leqq 0, \forall x\in D\}.

Definition 2.1 Let  C be a subset of  \mathbb{R}^{n} and  h:\mathbb{R}^{n}arrow \mathbb{R} be a locally Lipschitz
function.

(i) The function  h is said to be pseudoconvex at  x\in C if

 h(y)<h(x)\Rightarrow u(y-x)<0, \forall u\in\partial^{c}h(x), y\in C,

equivalently,

 u(y-x)\geqq 0\Rightarrow h(y)\geqq h(x) , \forall u\in\partial^{c}h(x), y\in C.
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(i) The function  h is said to be pseudoconvex on  C if it is pseudoconvex at
every  x\in C . Moreover, the function  f is said to be strictly pseudoconvex
at  x\in C if

 u(y-x)\geqq 0\Rightarrow f(y)>f(x) ,  \forall u\in\partial^{c}f(x) ,  y\neq x and  y\in C.

(ii) The function  h is said to be quasiconvex at  x\in C if

 h(y)\leqq h(x)\Rightarrow u(y-x)\leqq 0, \forall u\in\partial^{c}h(x), y\in C,

equivalently,

 u(y-x)>0\Rightarrow h(y)>h(x) , \forall u\in\partial^{c}h(x), y\in C.

(ii)’ The function  h is said to be quasiconvex on  C if it is quasiconvex at every
 x\in C.

Below, we recall the concept of efficient solution of (MP).

Definition 2.2 A point  z\in F_{M} is said to be an efficient solution of (MP) if
there exists no other  x\in F_{M} such that

 f_{i}(x)\leqq f_{i}(z) , for all  i\in M

and

 f_{i_{0}}(x)<f_{i_{0}}(z) , for some  i_{0}\in M,

it is equivalent to
 f(x)\leq f(z) .

Let us consider the following single objective optimization problem.

(P) Minimize  f(x)
subject to  g_{t}(x)\leqq 0,  t\in T,

 x\in C

where  f :  \mathbb{R}^{n}arrow \mathbb{R} is locally Lipschitz function and functions  g_{t},  t\in T and  C

are as above. Also, the feasible set of (P) is denoted by  F_{M}  :=\{x\in C:g_{t}(x)\leqq
 0,  t\in T\}.

Let  x\in \mathbb{R}^{n} . We need the following condition [16],
(  \mathcal{A}) :  \exists d\in T_{C}(x) :  g_{t}^{c}(x;d)<0 , for all  t\in I(x)  :=\{t\in T:g_{t}(x)=0\}.
Then we would like to derive the following KKT necessary optimality the‐

orem for the case of the involved functions defined on  \mathbb{R}^{n} and index set  T is

compact.
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Theorem 2.1 Let  z be an optimal solution for (P), and assume that the con‐

dition (  \mathcal{A}) holds for  z . Then, there exists  \lambda\in \mathbb{R}_{+}^{(T)} such that

 0 \in\partial^{c}f(z)+\sum_{t\in T}\lambda_{t}\partial^{c}g_{t}(z)+N_{C}(z) , 
g_{t}(z)=0, \forall t\in T(\lambda) .

Definition 2.3 Let  z\in C,  \lambda\in \mathbb{R}_{+}^{(T)},  (z, \lambda) is said to satisfy generalized KKT
condition if the following condition holds

 0 \in\partial^{c}f(z)+\sum_{t\in T}\lambda_{t}\partial^{c}g_{t}(z)+N_{C}(z) , 
\lambda_{t}g_{t}(z)=0, \forall t\in T(\lambda) .

Remark 2.1 If  z is an optimal solution of (P) and the condition (  \mathcal{A} ) holds

for  z , then there exists  \lambda\in \mathbb{R}_{+}^{(T)} and  (z, \lambda)\in C\cross \mathbb{R}_{+}^{(T)} satisfies obviously the
generalized KKT condition from Theorem 2.1.

Recall that the criteria of Chankong‐Haimes method [3] applied for a semi‐
infinite multiobjective optimization problem (MP) is as follows. The proof would
be omitted.

Lemma 2.1 A feasible point  z of (MP) is an efficient solution Of and only Of it
is an optimal solution of  (P_{j}(z)) for each  j\in M.

Remark 2.2 If  z is an efficient solution of (MP), then obviously, it is also an
optimal solution of  (P_{j}(z)) for some  j\in M , but the converse is not always true.

3 Optimality Conditions

In this section we establish KKT and generalized KKT optimality conditions
for  (P_{j}(z)) and (MP), successively. The following condition, which is a modified
constraint qualification, is associated to the problem  (P_{j}(z)) , and the feasible
set of  (P_{j}(z)) is denoted by  F_{j}(z) .

Let  x\in \mathbb{R}^{n},  I(x)=\{t\in T:g_{t}(x)=0\},  H_{j}(x)=\{k\in M^{j}:f_{k}(x)=f_{k}(z)\},
and  \overline{T}(x)=I(x)\cup H_{j}(x) .

 (\mathcal{A}_{j}) :  \exists d\in T_{C}(x):\{\begin{array}{l}
g_{t}^{c}(x;d)<0, for all t\in I(x) ,
f_{k}^{c}(x;d)<0, for all k\in H_{j}(x) .
\end{array}
With the fulfilment of condition  (\mathcal{A}_{j}) , we now give the KKT necessary con‐

dition for  (P_{j}(z)) .
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Theorem 3.1 Let  z be an optimal solution for  (P_{j}(z)) and assume that the

condition  (\mathcal{A}_{j}) holds for  z , then there exist  \overline{\tau}_{k}\geqq 0,  k\in M^{j} and  \overline{\lambda}\in \mathbb{R}_{+}^{(T)} such
that the following KKT condition holds,

 0 \in\partial^{c}f_{j}(z)+\sum_{k\in M^{j}}\overline{\tau}_{k}\partial^{c}f_{k}
(z)+\sum_{t\in T}\overline{\lambda}_{t}\partial^{c}g_{t}(z)+N_{C}(z) , (3.1)

 g_{t}(z)=0, \forall t\in T(\overline{\lambda}) . (3.2)

KKT sufficient condition for  (P_{j}(z)) is proposed as follows by using suitable
generalized convexity.

Theorem 3.2 Let  z\in F_{j}(z) . Assume that the function  f_{j} is pseudoconvex, the

functions  f_{k},  k\in M^{j} and  g_{t},  t\in T are quasiconvex. If there exist  \overline{\tau}_{k}\geqq 0,  k\in M^{j}

and  \overline{\lambda}\in \mathbb{R}_{+}^{(T)} such that (3.1) and (3.2) hold. Then  z is an optimal solution for
 (P_{j}(z)) .

We now give the following generalized KKT necessary and sufficient condi‐
tions for (MP).

Theorem 3.3 Let  z\in F_{M} be an efficient solution of  (MP) . If there exists
 j\in M such that the condition  (\mathcal{A}_{j}) holds for  z , then there exist  \tau_{j}\geqq 0,   j\in

 M,   \sum_{j\in M}\tau_{j}=1 and  \lambda\in \mathbb{R}_{+}^{(T)} such that the following generalized KKT condi‐

tion holds,

 0 \in\sum_{j\in M}\tau_{j}\partial^{c}f_{j}(z)+\sum_{t\in T}\lambda_{t}
\partial^{c}g_{t}(z)+N_{C}(z) ,  \lambda_{t}g_{t}(z)=0,  \forall t\in T . (3.3)

Theorem 3.4 Let  z\in F_{M} . Assume that there exist  \tau_{j}\geqq 0,  j\in M,   \sum_{j\in M}\tau_{j}=
 1 and  \lambda\in \mathbb{R}_{+}^{(T)} such that (3.3) holds. If  \tau^{T}f is strictly pseudoconvex and
  \sum_{t\in T}\lambda_{t}g_{t} is quasiconvex. Then  z is an efficient solution of (MP).
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