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Abstract

In this article, using Banach limits, we study the existence of attractive points of
commutative normally 2‐generalized hybrid mappings in Hilbert spaces. Then we prove
a mean convergence theorem for the mappings in Hilbert spaces. Using these results, we
obtain well‐known attractive point and mean convergence theorems in Hilbert spaces.
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1 Introduction

Let  H be a real Hilbert space and let  C be a nonempty subset of  H . Let  T be a mapping of
 C into  H . Then we denote by  A(T) the set of attractive points [18] of  T , i.e.,

 A(T)=\{z\in H: \Vert Tx-z\Vert\leq\Vert x-z\Vert, \forall x\in C\}.

We know from [18] that  A(T) is closed and convex. A mapping  T :  Carrow H is said to be
nonexpansive if  \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all  x,  y\in C . It is well‐known that if  C is a bounded,
closed and convex subset of  H and  T :  Carrow C is nonexpansive, then  F(T) is nonempty.
Furthermore, from Baillon [2] we know the first nonlinear ergodic theorem in a Hilbert space:
Let  C be a nonempty, closed and convex subset of  H and let  T :  Carrow C be a nonexpansive
mapping with   F(T)\neq\emptyset . Then for any  x\in C,

 S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}
converges weakly to an element  z\in F(T) , where  F(T) is the set of fixed points of  T . In
2010, Kocourek, Takahashi and Yao [6] defined a broad class of nonlinear mappings in a
Hilbert space: Let  H be a Hilbert space and let  C be a nonempty subset of  H . A mapping
 T :  Carrow H is called generalized hybrid [6] if there exist  \alpha,  \beta\in \mathbb{R} such that

 \alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-
y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2} (1.1)

for all  x,  y\in C . Such a mapping  T is called  (\alpha, \beta) ‐generalized hybrid. We also know the
following mapping: For  \lambda\in \mathbb{R} , a mapping  U:Carrow H is called  \lambda‐hybrid [1] if

 \Vert Ux-Uy\Vert^{2}\leq\Vert x-y\Vert^{2}+2(1-\lambda)  \langle x —  Ux ,   y-Uy\rangle (1.2)
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for all  x,  y\in C . Notice that the class of generalized hybrid mappings covers several well‐
known mappings. For example,  a(1,0)‐generalized hybrid mapping is nonexpansive. It is
nonspreading [8, 9] for  \alpha=2 and  \beta=1 . It is also hybrid [17] for   \alpha=\frac{3}{2} and   \beta=\frac{1}{2} . In general,
nonspreading and hybrid mappings are not continuous; see [5]. The nonlinear ergodic theorem
by Baillon [2] for nonexpansive mappings has been extended to generalized hybrid mappings
in a Hilbert space by Kocourek, Takahashi and Yao [6]. Recently, Kohsaka [7] also proved the
following theorem.

Theorem 1.1 ([7]). Let  H be a Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  S and  T be commutative  \lambda and  \mu ‐hybrid mappings of  C into itself such that
the set  F(S)\cap F(T) of common fixed points of  S and  T is nonempty. Then, for any  x\in C,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x
converges weakly to a point of  F(S)\cap F(T) .

On the other hand, Takahashi and Takeuchi [18] proved the following attractive point and
mean convergence theorem without convexity in a Hilbert space.

Theorem 1.2 ([18]). Let  H be a Hilbert space and let  C be a nonempty subset of H. Let  T

be a generalized hybrid mapping from  C into itself. Assume that {Tnz} for some  z\in C is
bounded and define

 S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}
for all  x\in C and  n\in \mathbb{N} . Then  \{S_{n}x\} converges weakly to  u_{0}\in A(T) , where  u_{0}=

  \lim_{narrow\infty}P_{A(T)}T^{n}x and  P_{A(T)} is the metric projection of  H onto  A(T) .

Maruyama, Takahashi and Yao [13] also defined a more broad class of nonlinear mappings
called 2‐generalized hybrid which contains generalized hybrid mappings in a Hilbert space.
Let  C be a nonempty subset of  H . A mapping  T:Carrow C is 2‐generalized hybrid [13] if there
exist  \alpha_{1},  \alpha_{2},  \beta_{1},  \beta_{2}\in \mathbb{R} such that

 \alpha_{1}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{2}\Vert Tx-Ty\Vert^{2}+(1-\alpha_{1}
-\alpha_{2})\Vert x-Ty\Vert^{2} (1.3)

 \leq\beta_{1}\Vert T^{2}x-y\Vert^{2}+\beta_{2}\Vert Tx-y\Vert^{2}+(1-\beta_{1}-
\beta_{2})\Vert x-y\Vert^{2}

for all  x,  y\in C . Such a mapping is called  (\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2})-2 generalized hybrid. Very recently,
Kondo and Takahashi [10] introduced the following class of nonlinear mappings which covers 2‐
generalized hybrid mappings in Hilbert spaces. Let  C be a nonempty subset of  H . A mapping
 T :  Carrow C is normally 2‐generalized hybrid [10] if there exist  \alpha_{0},  \beta_{0},  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2}\in \mathbb{R} such
that   \sum_{n=0}^{2}(\alpha_{n}+\beta_{n})\geq 0,  \alpha_{2}+\alpha_{1}+\alpha_{0}>0 and

 \alpha_{2}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{1}\Vert Tx-Ty\Vert^{2}+\alpha_{0}
\Vert x-Ty\Vert^{2} (1.4)

 +\beta_{2}\Vert T^{2}x-y\Vert^{2}+\beta_{1}\Vert Tx-y\Vert^{2}+\beta_{0}\Vert x
-y\Vert^{2}\leq 0
for all  x,  y\in C.

In this article, motivated by Kohsaka’ theorem (Theorem 1.1) and Takahashi and Takeuchi’s
therem (Theorem 1.2), we study the existence of attractive points of commutative normally
2‐genralized hybrid mappings in Hilbert spaces. Then we prove a mean convergence theorem
for the mappings in Hilbert spaces. Using these results, we obtain well‐known attractive point
and mean convergence theorems in Hilbert spaces.
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2 Preliminaries

Let  H be a real Hilbert space with inner product  \langle\cdot,  \cdot\rangle and norm  \Vert\cdot\Vert . We denote the strong
convergence and the weak convergence of  \{x_{n}\} to  x\in H by  x_{n}arrow x and  x_{n}harpoonup x , respectively.
Let  A be a nonempty subset of  H . We denote by  \overline{co}A the closure of the convex hull of  A . In
a Hilbert space, it is known that

 \Vert\alpha x+(1-\alpha)y\Vert^{2}=\alpha\Vert x\Vert^{2}+(1-\alpha)\Vert 
y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2} (2.1)

for all  x,  y\in H and  \alpha\in \mathbb{R} ; see [16]. Furthermore, in a Hilbert space, we have that

 2 \langle x-y, z-w\rangle=\Vert x-w\Vert^{2}+\Vert y-z\Vert^{2}-\Vert x-z\Vert^
{2}-\Vert y-w\Vert^{2} (2.2)

for all  x,  y,  z,  w\in H . Indeed, we have that

  2\langle x-y, z-w\rangle=2\langle x, z\rangle-2\langle x, w\rangle-2\langle y,
z\rangle+2\langle y, w\rangle

 =(-\Vert x\Vert^{2}+2\langle x, z\rangle-\Vert z\Vert^{2})+(\Vert x\Vert^{2}-
2\langle x, w\rangle+\Vert w\Vert^{2})
 +(\Vert y\Vert^{2}-2\langle y, z\}+\Vert z\Vert^{2})+(-\Vert y\Vert^{2}+2\{y, w
\rangle-\Vert w\Vert^{2})

 =\Vert x-w\Vert^{2}+\Vert y-z\Vert^{2}-\Vert x-z\Vert^{2}-\Vert y-w\Vert^{2}

From (2.2), we have that

 \langle(x-y)+(x-w) , y-w\rangle=\Vert x-w\Vert^{2}-\Vert x-y\Vert^{2} (2.3)

for all  x,  y,  w\in H . Indeed, we have that

  2\langle(x-y)+(x-w), y-w\rangle=2\langle(x-w)-(y-x), (y-w)-0\rangle

 =\Vert x-w-0\Vert^{2}+\Vert y-x-(y-w)\Vert^{2}-\Vert x-w-(y-w)\Vert^{2}-\Vert y
-x-0\Vert^{2}
 =2\Vert x-w\Vert^{2}-2\Vert y-x\Vert^{2}

and hence  \langle(x-y)+(x-w),  y-w\rangle=\Vert x-w\Vert^{2}-\Vert x-y\Vert^{2}.
Let  l^{\infty} be the Banach space of bounded sequences with supremum norm. Let  \mu be an

element of  (l^{\infty})^{*} (the dual space of  l^{\infty} ). Then, we denote by  \mu(f) the value of  \mu at  f=
 (a_{1}, a_{2}, a_{3}, \ldots)\in l^{\infty} . Sometimes, we denote by  \mu_{n}(a_{n}) the value  \mu(f) . A linear functional  \mu

on  l^{\infty} is called a mean if  \mu(e)=\Vert\mu\Vert=1 , where  e=(1,1,1, \ldots) . A mean  \mu is called a Banach
limit on  l^{\infty} if  \mu_{n}(a_{n+1})=\mu_{n}(a_{n}) . We know that there exists a Banach limit on  l^{\infty} . If  \mu is a

Banach limit on  l^{\infty} , then for  f=(a_{1}, a_{2}, a_{3}, \ldots)\in l^{\infty},

  \lim_{narrow}\inf_{\infty}a_{n}\leq\mu_{n}(a_{n})\leq\lim_{narrow}
\sup_{\infty}a_{n}.
In particular, if  f=(a_{1}, a_{2}, a_{3}, \ldots)\in l^{\infty} and  a_{n}arrow a\in \mathbb{R} , then we have  \mu(f)=\mu_{n}(a_{n})=a.
See [15] for the proof of existence of a Banach limit and its other elementary properties.

Using a mean, we obtain the following result; see[12, 14]: Let  H be a Hilbert space, let  \{x_{n}\}
be a bounded sequence in  H and let  \mu be a mean on  l^{\infty} . Then there exists a unique point
 z_{0}\in\overline{co}\{x_{n} : n\in \mathbb{N}\} such that

 \mu_{n}\langle x_{n}, y\rangle=\langle z_{0}, y\rangle, \forall y\in H . (2.4)

We call such a unique  z_{0}\in H the mean vector of  \{x_{n}\} for  \mu.
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3 Attractive Point Theorems

Let  H be a Hilbert space and let  C be a nonempty subset of  H . A mapping  T :  Carrow C is
normally 2‐generalized hybrid [10] if it satisfies (1.4), i.e., there exist  \alpha_{0},  \beta_{0},  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2}\in \mathbb{R}
such that   \sum_{n=0}^{2}(\alpha_{n}+\beta_{n})\geq 0,  \alpha_{2}+\alpha_{1}+\alpha_{0}>0 and

 \alpha_{2}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{1}\Vert Tx-Ty\Vert^{2}+\alpha_{0}
\Vert x-Ty\Vert^{2}
 +\beta_{2}\Vert T^{2}x-y\Vert^{2}+\beta_{1}\Vert Tx-y\Vert^{2}+\beta_{0}\Vert x
-y\Vert^{2}\leq 0

for all  x,  y\in C . We call such a mapping  (\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}) ‐normally 2‐generalized hybrid.
We know that the class of the mappings above covers well‐known mappings. For example, the
class of  (1-\alpha_{1}, -(1-\beta_{1}), \alpha_{1}, -\beta_{1},0,0) ‐normally 2‐generalized hybrid mappings is the class
of generalized hybrid mappings in the sense of Kocourek, Takahashi and Yao [6]. If  x=Tx

in (1.4), then for any  y\in C,

 \alpha_{2}\Vert x-Ty\Vert^{2}+\alpha_{1}\Vert x-Ty\Vert^{2}+\alpha_{0}\Vert x-
Ty\Vert^{2}

 +\beta_{2}\Vert x-y\Vert^{2}+\beta_{1}\Vert x-y\Vert^{2}+\beta_{0}\Vert x-
y\Vert^{2}\leq 0

and hence

 (\alpha_{2}+\alpha_{1}+\alpha_{0})\Vert x-Ty\Vert^{2}\leq-(\beta_{2}+\beta_{1}+
\beta_{0})\Vert x-y\Vert^{2}.

From   \sum_{n=0}^{2}(\alpha_{n}+\beta_{n})\geq 0 , we have that

 (\alpha_{2}+\alpha_{1}+\alpha_{0})\Vert x-Ty\Vert^{2}\leq-(\beta_{2}+\beta_{1}+
\beta_{0})\Vert x-y\Vert^{2}\leq(\alpha_{2}+\alpha_{1}+\alpha_{0})\Vert x-
y\Vert^{2}.

Since  \alpha_{2}+\alpha_{1}+\alpha_{0}>0 , we have that

 \Vert x-Ty\Vert\leq\Vert x-y\Vert, \forall x\in F(T), y\in C . (3.1)

So a normally 2‐generalized hybrid mapping with a fixed point is quasi‐nonexpansive. Now, we
prove an attractive point theorem for commutative normally 2‐generalized hybrid mappings
in a Hilbert space. Before proving the theorem, we have the following lemma from [4].

Lemma 3.1 ([4]). Let  H be a Hilbert space, let  C be a nonempty subset of  H and let  S and
 T be mappings of  C into itself. Suppose that there exist a mean  \mu on  l^{\infty} and a sequence
 \{x_{n}\}\subset H such that  \{x_{n}\} is bounded and

 \mu_{n}\Vert x_{n}-Sy\Vert^{2}\leq\mu_{n}\Vert x_{n}-y\Vert^{2} and  \mu_{n}\Vert x_{n}-Ty\Vert^{2}\leq\mu_{n}\Vert x_{n}-y\Vert^{2},  \forall y\in C.

Then  A(S)\cap A(T) is nonempty. Additionally, if  C is closed and convex and  \{x_{n}\}\subset C , then
 F(S)\cap F(T) is nonempty.

By taking Banach limit and using Lemma 3.1, we obtain this theorem.

Theorem 3.2 ([3]). Let  H be a Hilbert space, let  C be a nonempty subset of  H and let  S and
 T be commutative normally 2‐generalized hybrid mappings of  C into itself. Suppose that there
exists an element  z\in C such that  \{S^{k}T^{\iota}z:k, l\in \mathbb{N}\cup\{0\}\} is bounded. Then  A(S)\cap A(T) is

nonempty. Additionally, if  C is closed and convex, then  F(S)\cap F(T) is nonempty.

Using Theorem 3.2, we have the following theorem proved by Hojo, Takahashi and Takahashi
[4] for commutative 2‐generalized hybrid mappings in Hilbert spaces.
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Theorem 3.3 ([4]). Let  H be a Hilbert space, let  C be a nonempty subset of  H and let  S and
 T be commutative 2‐generalized hybrid mappings of  C into itself. Suppose that there exists an
element  z\in C such that  \{S^{k}T^{l}z:k, l\in \mathbb{N}\cup\{0\}\} is bounded. Then  A(S)\cap A(T) is nonempty.
Additionally, if  C is closed and convex, then  F(S)\cap F(T) is nonempty.

Using Theorem 3.2, we also have the attractive point theorem by Kondo and Takahashi [10]
for normally 2‐generalized hybrid mappings in Hilbert spaces.

Theorem 3.4 ([10]). Let  C be a nonempty subset of  H and let  T:Carrow C be  a(\alpha_{n}, \beta_{n})_{n=0^{-}}^{2}
normally 2‐generalized hybrid mapping. Assume that there exists  z\in C such that {Tnz} is a
bounded sequence in C. Then,  A(T)\neq\emptyset.

4 Nonlinear Ergodic Theorems
In this section, we prove a mean convergence theorem for commutative normally 2‐generalized
hybrid mappings in Hilbert spaces.

Let  D=\{(k, l) : k, l\in \mathbb{N}\cup\{0\}\} . Then  D is a directed set by the binary relation:

 (k, l)\leq(i,j) if  k\leq i and  l\leq j.

Theorem 4.1 ([3]). Let  H be a Hilbert space and let  C be a nonempty subset of H. Let
 S and  T be commutative normally 2‐generalized hybrid mappings of  C into itself such that
  A(S)\cap A(T)\neq\emptyset . Let  P be the metric projection of  H onto  A(S)\cap A(T) . Then, for any
 x\in C,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}s^{k}\tau^{\iota_{x}}
converges weakly to an element  q of  A(S)\cap A(T) , where  q= \lim_{(k,l)\in D}PS^{k}T^{l}x . In particular,
if  C is closed and convex,  \{S_{n}x\} converges weakly to an element  q of  F(S)\cap F(T) .

Using Theorem 4.1, we can prove the following nonlinear ergodic theorem by Hojo, Taka‐
hashi and Takahashi [4] for commutative 2‐generalized hybrid mappings in Hilbert spaces.

Theorem 4.2 ([4]). Let  H be a Hilbert space and let  C be a nonempty subset of H. Let  S and
 T be commutative 2‐generalized hybrid mappings of  C into itself such that  A(S)\cap A(T)\neq\emptyset.
Let  P be the metric projection of  H onto  A(S)\cap A(T) . Then, for any  x\in C,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x
converges weakly to an element  q of  A(S)\cap A(T) , where  q= \lim_{(k,l)\in D}PS^{k}T^{l}x . In particular,
if  C is closed and convex,  \{S_{n}x\} converges weakly to an element  q of  F(S)\cap F(T) .

Using Theorem 4.1, we also have the following nonlinear ergodic theorem by Kondo and
Takahashi [10].

Theorem 4.3 ([10]). Let  C be a nonempty subset of  H and let  T :  Carrow C be a normally
2‐generalized hybrid mapping with   A(T)\neq\emptyset . Let  P_{A(T)} be the metric projection from  H

onto  A(T) . Then, for any  x\in C , the sequence   \{S_{n}x\equiv\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x\} converges weakly to

 u\in A(T) , where  u= \lim_{narrow\infty}P_{A(T)}T^{n}x.
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