Equilibrium problems on geodesic spaces and approximation to their solutions 測地距離空間上の均衡問題と解近似

東邦大学・理学部 木村泰紀 Yasunori Kimura Department of Information Science Faculty of Science Toho University

Abstract

In this paper, we consider an equilibrium problem for a bifunction defined on a Hadamard space. Using the notion of resolvent for this bifunction, we generate an iterative sequence of Halpern type and prove its convergence to a solution of the problem.

1 Introduction

Let K be a metric space and F a bifunction of $K \times K$ to \mathbb{R} . An equilibrium problem for F is defined as to find $z \in X$ such that $F(z, y) \geq 0$ for all $y \in K$. This problem has been widely investigated by a large number of researchers in the case that K is a nonempty closed convex subset of a Banach space. In this theory, it is known that the notion of resolvents for F plays an important role.

Recently, Kimura and Kishi [7] proposed the notion of resolvent for F in the setting of Hadamard spaces. They also study several basic properties of this operator.

In this paper, we apply the resolvent for F to generate an iterative sequence approximating a solution to the equilibrium problem for F defined on a Hadamard space. We adopt the Halpern type scheme for an approximating sequence and prove its convergence.

2 Preliminaries

Let X be a metric space with a metric d. For $x, y \in X$, a mapping $c : [0, l] \to X$ is called a geodesic with endpoints x, y if c(0) = x, c(l) = y, and d(c(s), c(t)) = |s - t|for all $s, t \in [0, l]$, where l = d(x, y). We say that X is a geodesic space if there exists a geodesic for any two endpoints in X. In what follows, we assume that a geodesic is uniquely determined for every $x, y \in X$. The image of the geodesic with endpoints $x, y \in X$ is denoted by [x, y]. A subset C of X is said to be convex if $[x, y] \subset C$ for any $x, y \in C$. For $x, y \in X$ and $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that d(x, z) = (1 - t)d(x, y) and d(z, y) = td(x, y). We denote it by $tx \oplus (1 - t)y$. Therefore, the following hold by definition.

$$d(x, tx \oplus (1-t)y) = (1-t)d(x,y),$$

$$d(tx \oplus (1-t)y, y) = td(x,y).$$

A Hadamard space X can be characterized by a complete geodesic space satisfying the following inequality for every $x, y, z \in X$ and every $t \in [0, 1]$:

$$d(z, tx \oplus (1-t)y)^2 \le td(z, x)^2 + (1-t)d(z, y)^2 - t(1-t)d(x, y)^2.$$

For the exact definition of a Hadamard space and more details, see [1, 3] for instance. A mapping $T: X \to X$ is said to be firmly nonspreading if

$$2d(Tx,Ty)^{2} \leq d(x,Ty)^{2} + d(Tx,y)^{2} - d(x,Tx)^{2} - d(y,Ty)^{2}$$

for every $x, y \in X$. We know that the inequality

$$d(x,u)^{2} + d(v,y)^{2} - d(x,v)^{2} - d(y,u)^{2} \le 2d(x,y)d(v,u)$$

holds for any $x, y, u, v \in X$ in a Hadamard space X. Therefore, if T is firmly non-spreading, then we have

$$2d(Tx,Ty)^{2} \leq d(x,Ty)^{2} + d(Tx,y)^{2} - d(x,Tx)^{2} - d(y,Ty)^{2}$$

$$\leq 2d(x,y)d(Tx,Ty)$$

and thus T is nonexpansive; $d(Tx,Ty) \leq d(x,y)$ for any $x,y \in X$. We say that T is nonspreading if

$$2d(Tx,Ty)^2 \le d(x,Ty)^2 + d(Tx,y)^2$$

for every $x, y \in X$. We denote by Fix T the set of all fixed points of T. A mapping T is said to be quasinonexpansive if Fix $T \neq \emptyset$ and

$$d(Tx, z) \le d(x, z)$$

for every $x \in X$ and $z \in \text{Fix } T$. It is obvious that every firmly nonspreading mapping is nonspreading, and every nonspreading mapping and every nonexpansive mapping is quasinonexpansive if $\text{Fix } T \neq \emptyset$.

Let C be a nonempty closed convex subset of a Hadamard space X. Then for each $x \in X$, there exists a unique point $y_x \in C$ such that $d(x, y_x) = \inf_{y \in C} d(x, y)$. Using this fact, we define a mapping $P_C : X \to C$ by $P_C x = y_x$ for every $x \in X$. This mapping P_C is called a metric projection onto C. We know that P_C is firmly nonspreading and therefore it is nonexpansive and nonspreading. For a bounded sequence $\{x_n\}$ in X, we say that $\{x_n\}$ is Δ -convergent to $x_0 \in X$ if

$$\limsup_{i \to \infty} d(x_{n_i}, x_0) = \inf_{y \in X} \limsup_{i \to \infty} d(x_{n_i}, y)$$

for every subsequence $\{x_{n_i}\}$ of $\{x_n\}$.

It is proved in [6] that if $\{x_n\}$ is Δ -convergent to x_0 , it follows that $d(u, x_0) \leq \lim \inf_{n \to \infty} d(u, x_n)$ for any $u \in X$. We also know that every bounded sequence $\{x_n\}$ in a Hadamard space has a Δ -convergent subsequence; see [5, 9].

A mapping $T : X \to X$ is said to be Δ -demiclosed if $x_0 \in \text{Fix } T$ whenever a sequence $\{x_n\}$ in X is Δ -convergent to $x_0 \in X$ and $\{d(x_n, Tx_n)\}$ converges to 0.

For a subset C of X, we denote by clco C a closed convex hull of C, that is, clco C is the intersection of all closed convex subsets of X including C. A Hadamard space X has the convex hull finite property [12] if for every finite subset E of X, every continuous selfmapping on clco E has a fixed point.

In the end of this section, we show the following lemma proved in [11]; see also [8, 10].

Lemma 1 (Saejung and Yotkaew [11]). Let $\{s_n\}$, $\{t_n\}$, and $\{\alpha_n\}$ be real sequences such that $s_n \geq 0$ and $0 < \alpha_n \leq 1$ for all $n \in \mathbb{N}$. Suppose that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and that $\limsup_{i\to\infty} t_{n_i} \leq 0$ whenever $\{n_i\}$ is a subsequence of \mathbb{N} satisfying $\liminf_{i\to\infty} (s_{n_i+1} - s_{n_i}) \leq 0$. If

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n t_n$$

for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} s_n = 0$.

3 Equilibrium problems and a convergence theorem

Let X be a Hadamard space and K a nonempty closed convex subset of X. Suppose that a bifunction $F: K \times K \to \mathbb{R}$ satisfies the following conditions:

- (E1) F(x, x) = 0 for all $x \in K$;
- (E2) $F(x,y) + F(y,x) \le 0$ for all $x, y \in K$;
- (E3) for every $x \in K$, $F(x, \cdot) : K \to \mathbb{R}$ is lower semicontinuous and convex;
- (E4) for every $y \in K$, $F(\cdot, y) : K \to \mathbb{R}$ is upper hemicontinuous; for any $x, y, z \in X$, the inequality $F(x, y) \ge \limsup_{t\to 0^+} F((1-t)x \oplus tz, y)$ holds.

We denote the set of solutions to the equilibrium problem for F by S;

$$S = \{ z \in K : F(z, y) \ge 0 \text{ for all } y \in K \}.$$

A typical example satisfying the conditions above is F(x,y) = f(y) - f(x) for $x, y \in K$, where $f: K \to \mathbb{R}$ is a lower semicontinuous convex function on K. In this case, the solutions to the equilibrium problem for F coincides with the minimizers of f. For other examples, see [2].

We define a resolvent J_F of bifunction $F: K \times K \to \mathbb{R}$ by

$$J_F x = \left\{ z \in K : F(z, y) + \frac{1}{2} (d(x, y)^2 - d(x, z)^2 - d(y, z)^2) \ge 0 \text{ for all } y \in K \right\}$$

for $x \in X$. As an analogous result of Combettes and Hirstoaga [4], Kimura and Kishi [7] obtain the following fundamental properties of J_F .

Theorem 1 (Kimura and Kishi [7]). Let X be a Hadamard space satisfying the convex hull finite property, and K a nonempty closed convex subset of X. Let $F: K \times K \to \mathbb{R}$ and S the set of solutions of the equilibrium problem for F. Suppose that F satisfies the conditions (E1)–(E4). Then,

- (i) J_F is single-valued mapping of X into itself;
- (ii) J_F is firmly nonspreading and Δ -demiclosed;
- (iii) Fix $J_F = S$;
- (iv) S is closed and convex.

Now we show a convergence theorem of an iterative sequence approximating a solution to the equilibrium problem on a Hadamard space.

Theorem 2. Let X be a Hadamard space satisfying the convex hull finite property, and K a nonempty closed convex subset of X. Let $F : K \times K \to \mathbb{R}$ be a bifunction satisfying the conditions (E1)–(E4) and suppose that the set S of the solutions to the equilibrium problem for F is nonempty. Let $\{\alpha_n\}$ and $\{\lambda_n\}$ be positive real sequences such that $0 < \alpha_n < 1$ for all $n \in \mathbb{N}$, $\alpha_n \to 0$ as $n \to \infty$, $\sum_{n=1}^{\infty} = \infty$, and $\inf_{n \in \mathbb{N}} \lambda_n >$ 0. For $n \in \mathbb{N}$, let $J_{\lambda_n F}$ be a resolvent of $\lambda_n F$. Let $\{u_n\}$ be a sequence in X converging to $u \in X$. For given $x_1 \in X$, generate an iterative sequence $\{x_n\}$ by

$$x_{n+1} = \alpha_n u_n \oplus (1 - \alpha_n) J_{\lambda_n F} x_n$$

for $n \in \mathbb{N}$. Then $\{x_n\}$ converges to $P_S u \in S$, where P_S is the metric projection of X onto S.

Proof. Let $q \in S$. Since $\{u_n\}$ is convergent, we have

$$M = \max\left\{\sup_{n \in \mathbb{N}} d(u_n, q)^2, d(x_1, q)^2\right\} < \infty.$$

We will show that $d(x_n, q)^2 \leq M$ for all $n \in \mathbb{N}$ by induction. It is trivial that $d(x_1, q)^2 \leq M$. Suppose that $d(x_n, q) \leq M$ for some $n \in \mathbb{N}$. Then, since $J_{\lambda_n F}$ is quasinonexpansive, it follows that

$$d(x_{n+1},q)^2 = d(\alpha_n u_n \oplus (1-\alpha_n)J_{\lambda_n F}x_n,q)^2$$

$$\leq \alpha_n d(u_n,q)^2 + (1-\alpha_n)d(J_{\lambda_n F}x_n,q)^2$$

$$\leq \alpha_n d(u_n,q)^2 + (1-\alpha_n)d(x_n,q)^2$$

$$\leq \alpha_n M + (1-\alpha_n)M \leq M.$$

Therefore $d(x_n, q)^2 \leq M$ for all $n \in \mathbb{N}$ and thus $\{x_n\}$ is bounded. Then, since $q \in S = \operatorname{Fix} J_{\lambda_n F}$ and $d(J_{\lambda_n F} x_n, q) \leq d(x_n, q)$ for all $n \in \mathbb{N}$, $\{J_{\lambda_n F} x_n\}$ is also bounded.

Let $s_n = d(x_n, P_S u)^2$ and $t_n = d(u_n, P_S u)^2 - (1 - \alpha_n)d(u_n, J_{\lambda_n F} x_n)^2$ for each $n \in \mathbb{N}$. Then we have

$$s_{n+1} = d(x_{n+1}, P_S u)^2$$

= $d(\alpha_n u_n \oplus (1 - \alpha_n) J_{\lambda_n F} x_n, P_S u)^2$
= $\alpha_n d(u_n, P_S u)^2 + (1 - \alpha_n) d(J_{\lambda_n F} x_n, P_S u)^2 - \alpha_n (1 - \alpha_n) d(u_n, J_{\lambda_n F} x_n)^2$
 $\leq (1 - \alpha_n) d(x_n, P_S u)^2 + \alpha_n (d(u_n, P_S u)^2 - (1 - \alpha_n) d(u_n, J_{\lambda_n F} x_n)^2)$
 $\leq (1 - \alpha_n) s_n + \alpha_n t_n$

for any $n \in \mathbb{N}$. We also have

$$s_n - s_{n+1} = d(x_n, P_S u)^2 - d(x_{n+1}, P_S u)^2$$

= $d(x_n, P_S u)^2 - d(\alpha_n x_n \oplus (1 - \alpha_n) J_{\lambda_n F} x_n, P_S u)^2$
 $\geq d(x_n, P_S u)^2 - (\alpha_n d(x_n, P_S u)^2 + (1 - \alpha_n) d(J_{\lambda_n F} x_n, P_S u)^2)$
= $(1 - \alpha_n) (d(x_n, P_S u)^2 - d(J_{\lambda_n F} x_n, P_S u)^2)$
 $\geq (1 - \alpha_n) d(x_n, J_{\lambda_n F} x_n)^2$

for $n \in \mathbb{N}$.

We will apply Lemma 1 to show that $s_n = d(x_n, P_S u)^2$ converges to 0 as $n \to \infty$. To verify the assumptions in this lemma, let $\{n_i\}$ be a subsequence of \mathbb{N} such that

$$\liminf_{i \to \infty} (s_{n_i+1} - s_{n_i}) \ge 0.$$

Then, since $\alpha_{n_i} \to 0$, it follows that

$$0 \leq \liminf_{n \to \infty} d(x_{n_i}, J_{\lambda_{n_i}F} x_{n_i})^2$$

$$\leq \limsup_{n \to \infty} d(x_{n_i}, J_{\lambda_{n_i}F} x_{n_i})^2$$

$$= \limsup_{n \to \infty} (1 - \alpha_{n_i}) d(x_{n_i}, J_{\lambda_{n_i}F} x_{n_i})^2$$

$$\leq \limsup_{n \to \infty} (s_{n_i} - s_{n_i+1})$$

$$= -\liminf_{n \to \infty} (s_{n_i+1} - s_{n_i}) \leq 0,$$

and thus $\lim_{i\to\infty} d(x_{n_i}, J_{\lambda_{n_i}F}x_{n_i})^2 = 0$. Since $\{J_{\lambda_{n_i}F}x_{n_i}\}$ is bounded, there exists a subsequence $\{y_j\}$ of $\{J_{\lambda_{n_i}F}x_{n_i}\}$ such that

$$\lim_{j \to \infty} d(u, y_j) = \liminf_{i \to \infty} d(u, J_{\lambda_{n_i}F} x_{n_i})$$

and that $\{y_j\}$ Δ -converges to some $p \in X$, where $y_j = J_{\lambda_{n_{i_j}}F} x_{n_{i_j}}$ for all $j \in \mathbb{N}$. From the definition of the resolvent $J_{\lambda_{n_{i_j}F}}$, we have

$$\lambda_{n_{i_j}} F(y_j, y) + \frac{1}{2} (d(x_{n_{i_j}}, y)^2 - d(x_{n_{i_j}}, y_j)^2 - d(y, y_j)^2) \ge 0$$

for all $y \in K$. In particular, letting $y = J_F p$, we have

$$d(x_{n_{i_j}}, J_F p)^2 - d(x_{n_{i_j}}, y_j)^2 - d(J_F p, y_j)^2 \ge -2\lambda_{n_{i_j}} F(y_j, J_F p).$$

Similarly, from the definition of J_F , we have

$$d(p, y_j)^2 - d(p, J_F p)^2 - d(y_j, J_F p)^2 \ge -2F(J_F p, y_j).$$

Since $F(y_j, J_F p) + F(J_F p, y_j) \le 0$, we obtain

$$\begin{aligned} d(x_{n_{i_j}}, J_F p)^2 &- d(x_{n_{i_j}}, y_j)^2 - d(J_F p, y_j)^2 \\ &+ \lambda_{n_{i_j}} d(p, y_j)^2 - \lambda_{n_{i_j}} d(p, J_F p)^2 - \lambda_{n_{i_j}} d(y_j, J_F p)^2 \ge 0, \end{aligned}$$

and hence

$$(1 + \lambda_{n_{i_j}}) d(y_j, J_F p)^2 \leq d(x_{n_{i_j}}, J_F p)^2 - d(x_{n_{i_j}}, y_j)^2 + \lambda_{n_{i_j}} d(p, y_j)^2 - \lambda_{n_{i_j}} d(p, J_F p)^2 \leq d(x_{n_{i_j}}, J_F p)^2 + \lambda_{n_{i_j}} d(p, y_j)^2.$$

It follows that

$$d(y_j, J_F p)^2 \le \frac{1}{\lambda_{n_{i_j}}} (d(x_{n_{i_j}}, J_F p)^2 - d(y_j, J_F p)^2) + d(y_j, p)^2$$
$$\le \frac{1}{\lambda_{n_{i_j}}} d(x_{n_{i_j}}, y_j) (d(x_{n_{i_j}}, J_F p) - d(y_j, J_F p)) + d(y_j, p)^2$$

for all $j \in \mathbb{N}$ and consequently we obtain

$$\limsup_{j \to \infty} d(y_j, J_F p)^2 \le \limsup_{j \to \infty} d(y_j, p)^2.$$

Since the asymptotic center of $\{y_j\}$ is a unique point p, we have $p = J_F p$, that is, $p \in S$. Using the assumption that $\lim_{n\to\infty} u_n = u$, we get

$$\begin{split} \limsup_{i \to \infty} t_{n_i} &= \limsup_{i \to \infty} (d(u_{n_i}, P_S u)^2 - (1 - \alpha_{n_i}) d(u_{n_i}, J_{\lambda_{n_i} F} x_{n_i})^2) \\ &= d(u, P_S u)^2 - \liminf_{i \to \infty} d(u, J_{\lambda_{n_i} F} x_{n_i})^2 \\ &= d(u, P_S u)^2 - \lim_{i \to \infty} d(u, y_j)^2 \end{split}$$

$$\leq d(u, P_S u)^2 - d(u, p)^2 \leq 0.$$

This shows that all the assumptions in Lemma 1 is verified. Thus we have

$$\lim_{n \to \infty} d(x_n, P_S u)^2 = \lim_{n \to \infty} s_n = 0$$

and hence $\{x_n\}$ converges to $P_S u$, which is the desired result.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 15K05007.

References

- [1] M. Bačák, *Convex analysis and optimization in Hadamard spaces*, De Gruyter Series in Nonlinear Analysis and Applications, vol. 22, De Gruyter, Berlin, 2014.
- [2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [3] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.
- [4] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- [5] K. Goebel and W. A. Kirk, *Topics in metric fixed point theory*, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
- [6] J. S. He, D. H. Fang, G. López, and C. Li, Mann's algorithm for nonexpansive mappings in CAT(κ) spaces, Nonlinear Anal. 75 (2012), 445–452.
- [7] Y. Kimura and Y. Kishi, Equilibrium problems and their resolvents in hadamard spaces, Proceedings of the Fifth Asian Conference on Nonlinear Analysis and Optimization (Niigata, Japan, 2016), to appear.
- [8] Y. Kimura and S. Saejung, Strong convergence for a common fixed point of two different generalizations of cutter operators, Linear Nonlinear Anal. 1 (2015), 53–65.
- [9] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689–3696.
- [10] P.-E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899–912.
- [11] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal. 75 (2012), 742–750.
- [12] S. Shabanian and S. M. Vaezpour, A minimax inequality and its applications to fixed point theorems in CAT(0) spaces, Fixed Point Theory Appl. (2011), 2011:61, 9.