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Abstract

In this paper, we consider an equilibrium problem for a bifunction defined
on a Hadamard space. Using the notion of resolvent for this bifunction, we
generate an iterative sequence of Halpern type and prove its convergence to a
solution of the problem.

1 Introduction

Let K be a metric space and  F a bifunction of  K\cross K to  \mathbb{R} . An equilibrium problem
for  F is defined as to find  z\in X such that  F(z, y)\geq 0 for all  y\in K . This problem
has been widely investigated by a large number of researchers in the case that  K is
a nonempty closed convex subset of a Banach space. In this theory, it is known that
the notion of resolvents for  F plays an important role.

Recently, Kimura and Kishi [7] proposed the notion of resolvent for  F in the setting
of Hadamard spaces. They also study several basic properties of this operator.

In this paper, we apply the resolvent for  F to generate an iterative sequence ap‐
proximating a solution to the equilibrium problem for  F defined on a Hadamard
space. We adopt the Halpern type scheme for an approximating sequence and prove
its convergence.

2 Preliminarles

Let  X be a metric space with a metric  d . For  x,  y\in X , a mapping  c:[0, l]arrow X is
called a geodesic with endpoints  x,  y if  c(0)=x,  c(l)=y , and  d(c(s), c(t))=|s-t|
for all  s,  t\in[0, l] , where  l=d(x, y) . We say that  X is a geodesic space if there exists
a geodesic for any two endpoints in  X . In what follows, we assume that a geodesic
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is uniquely determined for every  x,  y\in X . The image of the geodesic with endpoints
 x,  y\in X is denoted by  [x, y] . A subset  C of  X is said to be convex if  [x, y]\subset C for
any  x,  y\in C . For  x,  y\in X and  t\in[0,1] , there exists a unique point  z\in[x, y] such
that  d(x, z)=(1-t)d(x, y) and  d(z, y)=td(x, y) . We denote it by  tx\oplus(1-t)y.
Therefore, the following hold by definition.

 d (x, tx \oplus(1-t)y)=(1-t)d(x, y) ,

 d(tx\oplus(1-t)y, y)=td(x, y) .

A Hadamard space  X can be characterized by a complete geodesic space satisfying
the following inequality for every  x,  y,  z\in X and every  t\in[0,1] :

 d (z, tx \oplus(1-t)y)^{2}\leq td(z, x)^{2}+(1-t)d(z, y)^{2}-t(1-t)d(x, y)^{2}.

For the exact definition of a Hadamard space and more details, see [1, 3] for instance.
A mapping  T:Xarrow X is said to be firmly nonspreading if

 2d (  Tx , Ty)2  \leq d(x, Ty)^{2}+d(Tx, y)^{2}-d(  x , Tx)2—d (y, Ty)^{2}

for every  x,  y\in X . We know that the inequality

 d(x, u)^{2}+d(v, y)^{2}-d(x, v)^{2}-d(y, u)^{2}\leq 2d(x, y)d(v, u)

holds for any  x,  y,  u,  v\in X in a Hadamard space  X . Therefore, if  T is firmly non‐
spreading, then we have

 2d (  Tx , Ty)2  \leq d(x, Ty)^{2}+d(Tx, y)^{2}-d(  x , Tx)2—d (y, Ty)^{2}
 \leq 2d(x, y)d (  Tx , Ty)

and thus  T is nonexpansive;  d  (Tx, Ty)\leq d(x, y) for any  x,  y\in X . We say that  T is
nonspreading if

 2d  (Tx ,  Ty)  2\leq d(x, Ty)^{2}+d(Tx, y)^{2}

for every  x,  y\in X . We denote by Fix  T the set of all fixed points of  T . A mapping  T

is said to be quasinonexpansive if Fix   T\neq\emptyset and

 d(Tx, z)\leq d(x, z)

for every  x\in X and   z\in Fix  T . It is obvious that every firmly nonspreading mapping
is nonspreading, and every nonspreading mapping and every nonexpansive mapping
is quasinonexpansive if Fix  T\neq\emptyset.

Let  C be a nonempty closed convex subset of a Hadamard space  X . Then for
each  x\in X , there exists a unique point  y_{x}\in C such that  d(x, y_{x})= \inf_{y\in C}d(x, y) .
Using this fact, we define a mapping  P_{C} :  Xarrow C by  P_{C}x=y_{x} for every  x\in X.

This mapping  P_{C} is called a metric projection onto  C . We know that  P_{C} is firmly
nonspreading and therefore it is nonexpansive and nonspreading.
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For a bounded sequence  \{x_{n}\} in  X , we say that  \{x_{n}\} is  \triangle‐convergent to  x_{0}\in X if

  \lim\sup d(x_{n_{i}}, x_{0})= inf\lim\sup d(x_{n_{i}}, y)
  iarrow\infty y\in Xiarrow\infty

for every subsequence  \{x_{n_{\dot{i}}}\} of  \{x_{n}\}.
It is proved in [6] that if  \{x_{n}\} is  A‐convergent to  x_{0} , it follows that   d(u, x_{0})\leq

  \lim\inf_{narrow\infty}d(u, x_{n}) for any  u\in X . We also know that every bounded sequence  \{x_{n}\}
in a Hadamard space has a  \triangle‐convergent subsequence; see [5, 9].

A mapping  T :  Xarrow X is said to be  A‐demiclosed if   x_{0}\in Fix  T whenever a
sequence  \{x_{n}\} in  X is  A‐convergent to  x_{0}\in X and  \{d(x_{n}, Tx_{n})\} converges to  0.

For a subset  C of  X , we denote by clco  C a closed convex hull of  C , that is, clco  C

is the intersection of all closed convex subsets of  X including  C . A Hadamard space
 X has the convex hull finite property [12] if for every finite subset  E of  X , every
continuous selfmapping on clco  E has a fixed point.

In the end of this section, we show the following lemma proved in [11]; see also
[8, 10].

Lemma 1 (Saejung and Yotkaew [11]). Let  \{s_{n}\},  \{t_{n}\} , and  \{\alpha_{n}\} be real sequences
such that  s_{n}\geq 0 and  0<\alpha_{n}\leq 1 for all  n\in \mathbb{N} . Suppose that   \sum_{n=1}^{\infty}\alpha_{n}=\infty and that
  \lim\sup_{iarrow\infty}t_{n_{i}}\leq 0 whenever  \{n_{i}\} is a subsequence of  \mathbb{N} satisfying   \lim\inf_{iarrow\infty}(s_{n_{i}+1}-
 s_{n_{i}})\leq 0 . If

 s_{n+1}\leq(1-\alpha_{n})s_{n}+\alpha_{n}t_{n}

for all  n\in \mathbb{N} , then   \lim_{narrow\infty}s_{n}=0.

3 Equilibrium problems and a convergence theorem
Let  X be a Hadamard space and  K a nonempty closed convex subset of  X . Suppose
that a bifunction  F:K\cross Karrow \mathbb{R} satisfies the following conditions:

(E1)  F(x, x)=0 for all  x\in K ;
(E2)  F(x, y)+F(y, x)\leq 0 for all  x,  y\in K ;
(E3) for every  x\in K,  F(x, \cdot) :  Karrow \mathbb{R} is lower semicontinuous and convex;
(E4) for every  y\in K,  F(\cdot, y) :  Karrow \mathbb{R} is upper hemicontinuous; for any  x,  y,  z\in X,

the inequality  F(x, y) \geq\lim\sup_{tarrow 0^{+}}F((1-t)x\oplus tz, y) holds.

We denote the set of solutions to the equilibrium problem for  F by  S ;

 S= {  z\in K :  F(z, y)\geq 0 for all  y\in K}.

A typical example satisfying the conditions above is  F(x, y)=f(y)-f(x) for
 x,  y\in K , where  f :  Karrow \mathbb{R} is a lower semicontinuous convex function on  K . In this
case, the solutions to the equilibrium problem for  F coincides with the minimizers
of  f . For other examples, see [2].

121



122

We define a resolvent  J_{F} of bifunction  F :  K\cross Karrow \mathbb{R} by

 J_{F}x= {  z \in K:F(z, y)+\frac{1}{2}(d(x, y)^{2}-d(x, z)^{2}-d(y, z)^{2})\geq 0 for all  y\in K }
for  x\in X . As an analogous result of Combettes and Hirstoaga [4], Kimura and
Kishi [7] obtain the following fundamental properties of  J_{F}.

Theorem 1 (Kimura and Kishi [7]). Let  X be a Hadamard space satisfying the convex
hull finite property, and  K a nonempty closed convex subset of X. Let  F:K\cross Karrow \mathbb{R}

and  S the set of solutions of the equilibrium problem for F. Suppose that  F satisfies
the conditions (E1)  -(E4) . Then,

(i)  J_{F} is single‐valued mapping of  X into itself;
(ii)  J_{F} is firmly nonspreading and  \Delta ‐demiclosed;

(iii) Fix  J_{F}=S ;
(iv)  S is closed and convex.

Now we show a convergence theorem of an iterative sequence approximating a
solution to the equilibrium problem on a Hadamard space.

Theorem 2. Let  X be a Hadamard space satisfying the convex hull finite property,
and  K a nonempty closed convex subset of X. Let  F :  K\cross Karrow \mathbb{R} be a bifunction
satisfying the conditions (E1)  -(E4) and suppose that the set  S of the solutions to the
equilibrium problem for  F is nonempty. Let  \{\alpha_{n}\} and  \{\lambda_{n}\} be positive real sequences
such that  0<\alpha_{n}<1 for all  n\in \mathbb{N},  \alpha_{n}arrow 0 as  narrow\infty,   \sum_{n=1}^{\infty}=\infty , and   \inf_{n\in \mathbb{N}}\lambda_{n}>
 0 . For  n\in \mathbb{N} , let  J_{\lambda_{n}F} be a resolvent of  \lambda_{n}F . Let  \{u_{n}\} be a sequence in  X converging
to  u\in X . For given  x_{1}\in X , generate an iterative sequence  \{x_{n}\} by

 x_{n+1}=\alpha_{n}u_{n}\oplus(1-\alpha_{n})J_{\lambda_{n}F}x_{n}

for  n\in \mathbb{N} . Then  \{x_{n}\} converges to  P_{S}u\in S , where  P_{S} is the metric projection of  X

onto  S.

Proof. Let  q\in S . Since  \{u_{n}\} is convergent, we have

 M= \max\{\sup_{n\in \mathbb{N}}d(u_{n}, q)^{2}, d(x_{1}, q)^{2}\}<\infty.
We will show that  d(x_{n}, q)^{2}\leq M for all  n\in \mathbb{N} by induction. It is trivial that
 d(x_{1}, q)^{2}\leq M . Suppose that  d(x_{n}, q)\leq M for some  n\in \mathbb{N} . Then, since  J_{\lambda_{n}F} is
quasinonexpansive, it follows that

 d(x_{n+1}, q)^{2}=d(\alpha_{n}u_{n}\oplus(1-\alpha_{n})J_{\lambda_{n}F}x_{n}, 
q)^{2}
 \leq\alpha_{n}d(u_{n}, q)^{2}+(1-\alpha_{n})d(J_{\lambda_{n}F}x_{n}, q)^{2}
 \leq\alpha_{n}d(u_{n}, q)^{2}+(1-\alpha_{n})d(x_{n}, q)^{2}
 \leq\alpha_{n}M+(1-\alpha_{n})M\leq M.
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Therefore  d(x_{n}, q)^{2}\leq M for all  n\in \mathbb{N} and thus  \{x_{n}\} is bounded. Then, since
 q\in S= Fix  J_{\lambda_{n}F} and  d(J_{\lambda_{n}F}x_{n}, q)\leq d(x_{n}, q) for all  n\in \mathbb{N},  \{J_{\lambda_{n}F}x_{n}\} is also

bounded.

Let  s_{n}=d(x_{n}, P_{S}u)^{2} and  t.  =d(u_{n}, P_{S}u)^{2}-(1-\alpha_{n})d(u_{n}, J_{\lambda_{n}F}x_{n})^{2} for each

 n\in \mathbb{N} . Then we have

 s_{n+1}=d(x_{n+1}, P_{S}u)^{2}
 =d(\alpha_{n}u_{n}\oplus(1-\alpha_{n})J_{\lambda_{n}F}x_{n}, P_{S}u)^{2}
 =\alpha_{n}d(u_{n}, P_{S}u)^{2}+(1-\alpha_{n})d(J_{\lambda_{n}F}x_{n}, P_{S}u)^
{2}-\alpha_{n}(1-\alpha_{n})d(u_{n}, J_{\lambda_{n}F}x_{n})^{2}
 \leq(1-\alpha_{n})d(x_{n}, P_{S}u)^{2}+\alpha_{n}(d(u_{n}, P_{S}u)^{2}-(1-
\alpha_{n})d(u_{n}, J_{\lambda_{n}F}x_{n})^{2})
 \leq(1-\alpha_{n})s_{n}+\alpha_{n}t_{n}

for any  n\in \mathbb{N} . We also have

 s_{n}-s_{n+1}=d(x_{n}, P_{S}u)^{2}-d(x_{n+1}, P_{S}u)^{2}

 =d(x_{n}, P_{S}u)^{2}-d(\alpha_{n}x_{n}\oplus(1-\alpha_{n})J_{\lambda_{n}F}
x_{n}, P_{S}u)^{2}
 \geq d(x_{n}, P_{S}u)^{2}-(\alpha_{n}d(x_{n}, P_{S}u)^{2}+(1-\alpha_{n})
d(J_{\lambda_{n}F}x_{n}, P_{S}u)^{2})
 =(1-\alpha_{n})  (d(x_{n}, P_{S}u)^{2}-d(J_{\lambda_{n}F^{X}}鴨,  P_{S}u)^{2} )

 \geq(1-\alpha_{n})d(x_{n}, J_{\lambda_{n}F}x_{n})^{2}

for  n\in \mathbb{N}.

We will apply Lemma 1 to show that  s_{n}=d(x_{n}, P_{S}u)^{2} converges to  0 as  narrow\infty.

To verify the assumptions in this lemma, let  \{n_{i}\} be a subsequence of  \mathbb{N} such that

  \lim\inf(s_{n_{i}+1}iarrow\infty-s_{n_{i}})\geq 0.
Then, since  \alpha_{n_{i}}arrow 0 , it follows that

 0 \leq\lim_{narrow}\inf_{\infty}d(x_{n_{\dot{i}}}, J_{\lambda_{n_{i}}F}x_{n_{i}
})^{2}
  \leq\lim_{narrow}\sup_{\infty}d(x_{n_{i}}, J_{\lambda_{n_{i}}F}x_{n_{i}})^{2}
 = \lim_{narrow}\sup_{\infty}(1-\alpha_{n_{i}})d(x_{n_{i}}, J_{\lambda_{n_{i}}F}
x_{n_{i}})^{2}
  \leq\lim_{narrow}\sup_{\infty}(s_{n_{i}}-s_{n_{i}+1})
 =- \lim_{narrow}\inf_{\infty}(s_{n_{\dot{i}}+1}-s_{n_{\dot{i}}})\leq 0,

and thus   \lim_{iarrow\infty}d(x_{n_{\dot{i}}}, J_{\lambda_{n_{i}}F}x_{n_{i}})^{2}=0 . Since  \{J_{\lambda_{n}F}x_{n_{i}}\} is bounded, there exists a
subsequence  \{y_{j}\} of  \{J_{\lambda_{n_{i}}F}x_{n_{i}}\} such that

 j arrow\infty 1\dot{{\imath}}md(u, y_{j})=1\dot{{\imath}}m\inf_{\dot{i}
arrow\infty}d(u, J_{\lambda_{n_{i}}F}x_{n_{i}})
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and that {yj}  \triangle‐converges to some  p\in X , where  y_{j}=J_{\lambda_{n_{i}}}j、  F^{X}n_{i_{j}} for all  j\in \mathbb{N} . From
the definition of the resolvent  J_{\lambda_{n_{i_{j}}F}} , we have

  \lambda_{n_{i_{j}}}F(y_{j}, y)+\frac{1}{2}(d(x_{n_{i_{j}}}, y)^{2}-
d(x_{n_{i_{j}}}, y_{j})^{2}-d(y, y_{j})^{2})\geq 0
for all  y\in K . In particular, letting  y=J_{F}p , we have

 d(x_{n_{i_{j}}}, J_{F}p)^{2}-d(x_{n_{i_{j}}}, y_{j})^{2}-d(J_{F}p, y_{j})^{2}
\geq-2\lambda_{n_{i_{j}}}F (  y_{j} , JFp).

Similarly, from the definition of  J_{F} , we have

 d(p, y_{j})^{2}-d(p, J_{F}p)^{2}-d(y_{j}, J_{F}p)^{2}\geq-2F(J_{F}p, y_{j}) .

Since  F(y_{j}, J_{F}p)+F(J_{F}p, y_{j})\leq 0 , we obtain

 d(x_{n_{i_{j}}}, J_{F}p)^{2}-d(x_{n_{i_{j}}}, y_{j})^{2}-d(J_{F}p, y_{j})^{2}
 +\lambda_{n_{\dot{i}}}d(p, y_{j})^{2}-\lambda_{n_{\dot{i}}}d(p, J_{F}p)^{2}-
\lambda_{n_{i_{j}}}d(y_{j}, J_{F}p)^{2}jj\geq 0,

and hence

 (1+\lambda_{n_{i_{j}}})d(y_{j}, J_{F}p)^{2}
 \leq d(x_{n_{i_{j}i_{jj}}}, J_{F}p)^{2}-d(x_{n}, y_{j})^{2}+\lambda_{n_{i}}、  d(p, y_{j})^{2}-\lambda_{n_{i_{j}}}d(p, J_{F}p)^{2}
 \leq d(x_{n_{i_{j}}}, J_{F}p)^{2}+\lambda 鴨  i_{j}d(p, y_{j})^{2}.

It follows that

 d(y_{j}, J_{F}p)^{2} \leq\frac{1}{\lambda_{n_{i_{j}}}}(d(x_{n_{i_{j}}}, J_{F}p)
^{2}-d(y_{j}, J_{F}p)^{2})+d(y_{j},p)^{2}
  \leq\frac{1}{\lambda_{n_{\dot{i}}j}}d(x_{n_{i_{j}}}, y_{j})(d(x_{n_{i_{j}}}, 
J_{F}p)-d(y_{j}, J_{F}p))+d(y_{j},p)^{2}

for all  j\in \mathbb{N} and consequently we obtain

  \lim\sup d(y_{j}, J_{F}p)^{2}\leq\lim\sup d(y_{j},p)^{2}.
  jarrow\infty jarrow\infty

Since the asymptotic center of  \{y_{j}\} is a unique point  p , we have  p=J_{F}p , that is,
 p\in S . Using the assumption that   \lim_{narrow\infty}u_{n}=u , we get

  \lim_{\prime,larrow}\sup_{\infty}t_{n_{i}}=\lim_{\dot{i}arrow}\sup_{\infty}
(d(u_{n_{i}}, P_{S}u)^{2}-(1-\alpha_{n_{i}})d(u_{n_{i}}, J_{\lambda_{n_{i}}F}
x_{n_{i}})^{2})
 =d(u, P_{S}u)^{2}-1\dot{{\imath}}_{iarrow\infty}m\dot{{\imath}}nfd(u, 
J_{\lambda_{n_{i}}F}x_{n_{i}})^{2}
 =d(u, P_{S}u)^{2}- \lim_{iarrow\infty}d(u, y_{j})^{2}
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 \leq d(u, P_{S}u)^{2}-d(u,p)^{2}\leq 0.

This shows that all the assumptions in Lemma 1 is verified. Thus we have

  \lim_{narrow\infty}d(x_{n}, P_{S}u)^{2}=\lim_{narrow\infty}s_{n}=0
and hence  \{x_{n}\} converges to  P_{S}u , which is the desired result.  \square 
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