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Abstract
In this paper, we consider an equilibrium problem for a bifunction defined
on a Hadamard space. Using the notion of resolvent for this bifunction, we
generate an iterative sequence of Halpern type and prove its convergence to a
solution of the problem.

1 Introduction

Let K be a metric space and F' a bifunction of K x K to R. An equilibrium problem
for F is defined as to find z € X such that F(z,y) > 0 for all y € K. This problem
has been widely investigated by a large number of researchers in the case that K is
a nonempty closed convex subset of a Banach space. In this theory, it is known that
the notion of resolvents for F' plays an important role.

Recently, Kimura and Kishi [7] proposed the notion of resolvent for F in the setting
of Hadamard spaces. They also study several basic properties of this operator.

In this paper, we apply the resolvent for F' to generate an iterative sequence ap-
proximating a solution to the equilibrium problem for F' defined on a Hadamard
space. We adopt the Halpern type scheme for an approximating sequence and prove
its convergence.

2 Preliminaries

Let X be a metric space with a metric d. For x,y € X, a mapping ¢ : [0,]] = X is
called a geodesic with endpoints z,y if ¢(0) = z, ¢(l) = y, and d(c(s),c(t)) = |s — ¢
for all s,t € [0,1], where | = d(x,y). We say that X is a geodesic space if there exists
a geodesic for any two endpoints in X. In what follows, we assume that a geodesic
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is uniquely determined for every x,y € X. The image of the geodesic with endpoints
x,y € X is denoted by [z,y]. A subset C of X is said to be convex if [x,y] C C for
any z,y € C. For z,y € X and t € [0, 1], there exists a unique point z € [z, y] such
that d(z,z) = (1 — t)d(z,y) and d(z,y) = td(z,y). We denote it by tz & (1 — t)y.
Therefore, the following hold by definition.

d(z,te ® (1 —t)y) = (1 — t)d(z,y),
ditz @ (1 —t)y,y) = td(z,y).

A Hadamard space X can be characterized by a complete geodesic space satisfying
the following inequality for every z,y,z € X and every t € [0,1]:

d(z,tx @ (1 —t)y)* < td(z,2)? + (1 —t)d(z,9)* — t(1 — t)d(z, y)*.

For the exact definition of a Hadamard space and more details, see [1, 3] for instance.
A mapping T : X — X is said to be firmly nonspreading if

2d(Tx, Ty)? < d(x, Ty)? +d(Tz,y)* — d(z, Tz)?* — d(y, Ty)*
for every x,y € X. We know that the inequality
d(l‘, ’LL)2 + d(’l), y)2 - d(l‘, U)2 - d(ya U)2 < 2d(l‘, y)d(’l}, u)

holds for any z,y,u,v € X in a Hadamard space X. Therefore, if T is firmly non-
spreading, then we have

2d(Tz, Ty)* < d(z,Ty)* + d(Tz,y)* — d(z, Tz)* — d(y, Ty)*
< 2d(x,y)d(Tz, Ty)

and thus T is nonexpansive; d(Tz, Ty) < d(x,y) for any z,y € X. We say that T is
nonspreading if
2d(Tx, Ty)* < d(z,Ty)* + d(Tx,y)?

for every x,y € X. We denote by FixT the set of all fixed points of T. A mapping T’
is said to be quasinonexpansive if FixT # 0 and

d(Tz, z) < d(zx, 2)

for every x € X and z € FixT. It is obvious that every firmnly nonspreading mapping
is nonspreading, and every nonspreading mapping and every nonexpansive mapping
is quasinonexpansive if Fix T # {).

Let C be a nonempty closed convex subset of a Hadamard space X. Then for
each x € X, there exists a unique point y, € C such that d(z,y,) = infycc d(z,y).
Using this fact, we define a mapping Po : X — C by Pox = y, for every x € X.
This mapping P¢ is called a metric projection onto C. We know that Pg is firmly
nonspreading and therefore it is nonexpansive and nonspreading.
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For a bounded sequence {z,} in X, we say that {z,} is A-convergent to xo € X if

limsup d(z,,;,zo) = inf limsupd(x,,,y)
i—00 yeX 500

for every subsequence {x,,} of {z,}.

It is proved in [6] that if {x,} is A-convergent to z, it follows that d(u,zq) <
liminf,, o d(u, x,) for any u € X. We also know that every bounded sequence {z,,}
in a Hadamard space has a A-convergent subsequence; see [5, 9].

A mapping T : X — X is said to be A-demiclosed if xy € FixT whenever a
sequence {z,} in X is A-convergent to zg € X and {d(z,,Tx,)} converges to 0.

For a subset C' of X, we denote by clcoC a closed convex hull of C, that is, clcoC
is the intersection of all closed convex subsets of X including C. A Hadamard space
X has the convex hull finite property [12] if for every finite subset E of X, every
continuous selfmapping on clco E has a fixed point.

In the end of this section, we show the following lemma proved in [11]; see also
[8, 10].

Lemma 1 (Saejung and Yotkaew [11]). Let {s,}, {tn}, and {an} be real sequences
such that s, > 0 and 0 < a,, <1 for all n € N. Suppose that > -, a,, = 00 and that
lim sup;_, o tn; < 0 whenever {n;} is a subsequence of N satisfying iminf; oo (Spn,+1—
$n) < 0. If
Sn+1 < (1 - an)sn + anty

for all n € N, then lim,_, o, s, = 0.

3 Equilibrium problems and a convergence theorem

Let X be a Hadamard space and K a nonempty closed convex subset of X. Suppose
that a bifunction F': K x K — R satisfies the following conditions:

(E1) F(z,z) =0 for all z € K;

(E2) F(z,y)+ F(y,z) <0 for all z,y € K;

(E3) for every z € K, F(z,-) : K — R is lower semicontinuous and convex;

(E4) for every y € K, F(-,y) : K — R is upper hemicontinuous; for any z,y,z € X,
the inequality F(x, y) > limsup,_,o+ F((1 —t)z @ tz,y) holds.

We denote the set of solutions to the equilibrium problem for F' by S;
S={z€K:F(z,y) >0forally € K}.

A typical example satisfying the conditions above is F(z,y) = f(y) — f(x) for
z,y € K, where f: K — R is a lower semicontinuous convex function on K. In this
case, the solutions to the equilibrium problem for F' coincides with the minimizers
of f. For other examples, see [2].
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We define a resolvent Jp of bifunction F': K x K — R by
1
Jrpx = {z eK:F(z,y)+ i(d(x,y)2 —d(z,2)? —d(y,2)*) >0 for all y € K}

for x € X. As an analogous result of Combettes and Hirstoaga [4], Kimura and
Kishi [7] obtain the following fundamental properties of Jp.

Theorem 1 (Kimura and Kishi [7]). Let X be a Hadamard space satisfying the convex
hull finite property, and K a nonempty closed convex subset of X. Let F': K x K — R
and S the set of solutions of the equilibrium problem for F. Suppose that F satisfies
the conditions (E1)—(E4). Then,

(i) Jr is single-valued mapping of X into itself;
(ii) Jg s firmly nonspreading and A-demiclosed;
(iii) Fix.Jp = S;

(iv) S is closed and convez.

Now we show a convergence theorem of an iterative sequence approximating a
solution to the equilibrium problem on a Hadamard space.

Theorem 2. Let X be a Hadamard space satisfying the convex hull finite property,
and K a nonempty closed convex subset of X. Let ' : K x K — R be a bifunction
satisfying the conditions (E1)—(E4) and suppose that the set S of the solutions to the
equilibrium problem for F is nonempty. Let {ca,} and {\,} be positive real sequences
such that 0 < oy, < 1 for allm € N, a,, = 0 asn — oo, fo:l = 00, and inf,en Ay >
0. Forn € N, let Jy,F be a resolvent of A, F'. Let {uy,} be a sequence in X converging
touw € X. For given x1 € X, generate an iterative sequence {x,} by

Tn+1 = QplUp ©® (1 - an)J)\nF‘xn

forn € N. Then {x,} converges to Psu € S, where Ps is the metric projection of X
onto S.

Proof. Let q € S. Since {u,} is convergent, we have

M = max {sup d(un,q)Q,d(m»Q)Z} < 0.
neN

We will show that d(z,,q)> < M for all n € N by induction. It is trivial that
d(z1,q)> < M. Suppose that d(z,,q) < M for some n € N. Then, since Jy, r is
quasinonexpansive, it follows that

d(Zni1,9)% = d(anun ® (1 — o)y, Fon, q)?
< and(una Q)Q + (1 - an)d(JAn,an,Q)2

S an,d(una q>2 + (1 - an)d(xna q)2
<a,M+(1—a,)M <M.



Therefore d(z,,q)> < M for all n € N and thus {x,} is bounded. Then, since
g € S = FixJy,r and d(Jx, pTn,q) < d(zn,q) for all n € N, {Jy, rz,} is also
bounded.

Let s, = d(x,, Psu)? and t, = d(un, Psu)? — (1 — ay,)d(up, Jx, pry)? for each
n € N. Then we have

Spt1 = d(Tpy1, Psu)?
= d(anu, © (1 — an)Jdr, p2y, Psu)?
= and(tn, Psu)® 4+ (1 — o) d(Jx, pn, Psu)? — an(1 — an)d(un, Jy, pan)?
< (1= ap)d(zy, Psu)? + o (d(tn, Psu)? — (1 — ap)d(un, Jx, p2n)?)
< (1= an)$n + anty

for any n € N. We also have

Sn — Sna1 = d(Ty, Psu)2 — d(zpy1, Psu)2
= d(zn, Psu)? — d(anzn @ (1 — o)y, pon, Psu)?
> d(2y, Psu)? — (and(z,, Psu)® + (1 — ay,)d(Jx, ptn, Psu)?)
= (1 — ap)(d(zy, Psu)? — d(Jx, pn, Psu)?)
> (1 — ap)d(zpn, Jr, ran)?
for n € N.

We will apply Lemma 1 to show that s,, = d(z,, Psu)? converges to 0 as n — oo.
To verify the assumptions in this lemma, let {n;} be a subsequence of N such that

liminf(s,, 11 — $n,) > 0.

71— 00

Then, since a,,; — 0, it follows that

0 < liminf d(x,,, J)\nipzrm)2

n—00

<limsupd(z,,, J\, ritn,)?
n—oo *

= limsup(l — ay, )d(xy,, J,\nipxm)2
n—oo

< lim Sup(sm - SniJrl)
n—oo

= — liminf(sp,+1 — $pn,;) <0,
n—oo
and thus lim;_, o d(x,,, J,\MF:L"M.)2 = 0. Since {anipxm} is bounded, there exists a
subsequence {y;} of {J), ran,} such that

lim d(u,y;) = liminf d(u, Jy, ran,)
j—o0 1—00 B
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and that {y;} A-converges to some p € X, where y; = Jy,, Fn, forall j € N. From
i

the definition of the resolvent Jy, ., we have
i
1
M F(y50) + 5 (A, 9)? = (a5 — d(y,3,)%) > 0

for all y € K. In particular, letting y = Jpp, we have
d(@n,,, Jrp)? — d(ﬂﬁnij7yj)2 — d(Jrp,y;)* > —2An,, F(y;, Jrp).
Similarly, from the definition of Jr, we have

d(pa yj)2 - d(pa JFP)2 - d(yja JFP)2 Z _2F(JFpa y])

Since F(y;, Jrp) + F(Jrp,y;) < 0, we obtain

d(wn, Jrp)® = d(xn, ,y;)* = d(Jrp,y;)®
+ A, d(py5)? = May d(p, Jrp)® — A, d(y;, Trp)* > 0,
and hence
(14 An,, )d(y;. Jrp)?
< d(@n,,, Jrp)? — d(@n,,,y5)? + Any, d(p,y5)? = Ani d(p, Jrp)?
< d(@n,, Jrp)* + Any d(p,y5)*.

It follows that

1
d(yj, Jrp)® < 3 (d(wn, , Jrp)* = d(y;, Jep)*) + d(y;,p)°
1
< v any,, y;)(d(@n,, , Jrp) — d(y;, Jrp)) +d(y;,p)?

J

for all j € N and consequently we obtain

limsup d(y;, Jrp)? < limsupd(y;,p)?.
j—oo j—o0
Since the asymptotic center of {y;} is a unique point p, we have p = Jpp, that is,
p € S. Using the assumption that lim,,_, . u, = u, we get

limsupt,, = limsup(d(uy,, Psu)? — (1 — a,)d(un,, Jr, rTn,)?)
1—00 1—00 ¢
= d(u, Psu)? — liminf d(u, J)\nipxm)Q

1—00

= d(u, Psu)2 — lim d(u,yj)2
11— 00



< d(u, Psu)* — d(u,p)* < 0.
This shows that all the assumptions in Lemma 1 is verified. Thus we have

lim d(x,, Psu)® = lim s, =0
n—oo n—oo

and hence {x,,} converges to Psu, which is the desired result. O
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