FIXED POINT THEOREMS FOR MIXED MONOTONE MAPPINGS IN ORDERED METRIC SPACES

TOSHIKAZU WATANABE

1. INTRODUCTION

A coupled fixed point theorem is a combination between fixed point results for contractive type mappings and the monotone iterative method proposed by Bhaskar and Lakshmikantham [4]. Several authors investigated it, see [2, 12, 15] and the reference there in. In this paper we consider product of metric spaces with the partial order and give a fixed point theorem for them. As an application, we give a solution for the following cantilever beam equations with fully nonlinear terms in Section 4:

(1.1)
$$\begin{cases} u''''(t) = f(t, u(t), u'(t), u''(t), u'''(t)), \\ u(0) = A, u'(0) = B, u''(1) = C, u'''(1) = D, \end{cases}$$

where f is a continuous mapping of $[0,1] \times \mathbb{R}^4$ into \mathbb{R} . The solution of this problem was already given by the method of contraction principle, method of order reduction [9], and the theory of the fixed point index in cones [7]. We give a solution using a fixed point theorem in metric spaces with order. As the merit of this method, under the existence of lower solution or upper solution, we have a fixed point and also we can fixed point when the space satisfies the regularity. In this case the mapping is not necessary continuous. Moreover, under the setting we can give a unique fixed point, and multiple fixed point, see [12] and the examples there in.

2. Fixed point theorem

First of all, we cited the following definitions and preliminary results will be useful later. Let (X, d) be a metric space endowed with a partial order \preceq . We say that a mapping $F: X \to X$ is nondecreasing if for any $x, y \in X$,

$$x \preceq y \Rightarrow Fx \preceq Fy.$$

Let Φ denote the set of all functions $\varphi: [0,\infty) \to [0,\infty)$ satisfying

- (a) φ is continuous and nondecreasing;
- (b) $\varphi^{-1}(\{0\}) = \{0\}.$

2010 Mathematics Subject Classification. Primary 34A08, 34B15, 47H10.

Key words and phrases. Fixed point theorem, fractional order, differential equations, boundary value problem.

Let Ψ denote the set of all functions $\psi : [0, \infty) \to [0, \infty)$ satisfying

- (c) $\lim_{t\to r+} \psi(t) > 0$ (and finite) for all r > 0;
- (d) $\lim_{t\to 0+} \psi(t) = 0.$

Let Θ denote the set of all functions $\theta : [0, \infty) \times [0, \infty) \times [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ satisfying

- (e) θ is continuous;
- (f) $\theta(s_1, s_2, s_3, s_4) = 0$ if and only if $s_1s_2s_3s_4 = 0$.

Examples of functions ψ of Ψ are given in [10]; see also [2, 13]. Examples of functions θ in Θ are given in [5].

In [5, Theorem 3.1, 3.2], the following fixed point theorem is obtained. We require an additional assumption to the metric space X with a partial order \leq : We say that (X, d, \leq) is regular if $\{a_n\}$ is a nondecreasing sequence in X with respect to \leq such that $a_n \rightarrow a \in X$ as $n \rightarrow \infty$, then $a_n \leq a$ for all n.

Theorem 2.1. Let (X, d) be a complete metric space endowed with a partial order \leq and $F : X \to X$ a nondecreasing mapping such that there exist $\varphi \in \Phi$, $\psi \in \Psi$ and $\theta \in \Theta$ such that for any $x, y \in X$ with $x \succeq y$,

(2.1)
$$\varphi(d(Fx, Fy)) \leq \varphi(d(x, y)) - \psi(d(x, y)) + \theta(d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)).$$

Suppose also that the following (i) or (ii) hold.

- (i) F is continuous
- (ii) (X, d, \leq) is regular.

Also suppose that there exists $x_0 \in X$ such that $x_0 \preceq Fx_0$ (or $x_0 \succeq Fx_0$). Then F admits a fixed point, that is, there exists $\overline{x} \in X$ such that $\overline{x} = F\overline{x}$.

3. Fixed point theorem for monotone mapping

Definition 3.1. We say that a mapping F of X^4 into X has mixed monotone property, if it satisfies the following, see [6]: for any $x, y, z, w \in X$,

$$\begin{cases} x_1, x_2 \in X, x_1 \succeq x_2, \Rightarrow F(x_1, y, z, w) \succeq F(x_2, y, z, w), \\ y_1, y_2 \in X, y_1 \succeq y_2, \Rightarrow F(x, y_1, z, w) \succeq F(x, y_2, z, w), \\ z_1, z_2 \in X, z_1 \succeq z_2, \Rightarrow F(x, y, z_1, w) \succeq F(x, y, z_2, w), \\ w_1, w_2 \in X, w_1 \preceq w_2, \Rightarrow F(x, y, z, w_1) \preceq F(x, y, z, w_2). \end{cases}$$

Let (X, d) be a metric space. Let F_1 , F_2 , F_3 and F_4 be mappings of X^4 into X. We also consider the mapping A of X^4 into $[0, \infty)$ defined by

$$AU = \frac{d(x, F_1U) + d(y, F_2U)}{4} + \frac{d(z, F_3U) + d(w, F_4U)}{4},$$
$$U = (x, y, z, w) \in X^4,$$

and the mapping B of X^8 into $[0,\infty)$ defined by

$$B(U,V) = \frac{d(x_1, F_1V) + d(y_1, F_2V)}{4} + \frac{d(z_1, F_3V) + d(w_1, F_4V)}{4},$$

$$U = (x_1, y_1, z_1, w_1), V = (x_2, y_2, z_2, w_2) \in X^4.$$

We consider the mapping T from X^4 into X^4 defined by

(3.1)
$$TU = (F_1U, F_2U, F_3U, F_4U), U = (x, y, z, w) \in Y.$$

In this case, we consider the metric η for the product set X^4 defined by

$$\eta(U,V) = \frac{d(x_1, x_2) + d(y_1, y_2) + d(z_1, z_2) + d(w_1, w_2)}{4},$$

$$U = (x_1, y_1, z_1, w_1), V = (x_2, y_2, z_2, w_2) \in Y.$$

Note that if (X, d) is complete, then clearly (X^4, η) is also complete. Also if F_1, F_2, F_3 and F_4 are continuous, then T is also continuous in (X^4, η) .

Next we consider the partial order \ll in X^4 defined by

$$(x_2, y_2, z_2, w_2) \ll (x_1, y_1, z_1, w_1) \Leftrightarrow x_1 \succeq x_2, y_1 \succeq y_2, z_1 \succeq z_2, w_1 \preceq w_2$$

for any $(x_1, y_1, z_1, w_1), (x_2, y_2, z_2, w_2) \in Y$.

Under the above settings, we consider the following inequality ; there exist $\varphi \in \Phi$, $\psi \in \Psi$ and $\theta \in \Theta$ such that for any $x_1, y_1, z_1, w_1, x_2, y_2, z_2, w_2 \in X$ with $x_1 \succeq x_2, y_1 \succeq y_2, z_1 \succeq z_2$ and $w_1 \preceq w_2$, the following holds:

$$\varphi\left(\frac{d(F_{1}U_{1}, F_{1}U_{2}) + d(F_{2}U_{1}, F_{2}U_{2})}{4} + \frac{d(F_{3}U_{1}, F_{3}U_{2}) + d(F_{4}U_{1}, F_{4}U_{2})}{4}\right)$$

$$(3.2) \quad \leq \varphi\left(\frac{d(x_{1}, x_{2}) + d(y_{1}, y_{2}) + d(z_{1}, z_{2}) + d(w_{1}, w_{2})}{4}\right)$$

$$-\psi\left(\frac{d(x_{1}, x_{2}) + d(y_{1}, y_{2}) + d(z_{1}, z_{2}) + d(w_{1}, w_{2})}{4}\right)$$

$$+\theta\left(A_{1}U_{1}, A_{1}U_{2}, B_{1}(U_{1}, U_{2}), B_{1}(U_{2}, U_{1})\right).$$

where $U_1 = (x_1, y_1, z_1, w_1)$, $U_2 = (x_2, y_2, z_2, w_2)$ If each mapping F_1 , F_2 , F_3 and F_4 satisfies that there exist $a, b, c, d \in X$ such that $a = F_1(a, b, c, d)$, $b = F_2(a, b, c, d)$, $c = F_3(a, b, c, d)$ and $d = F_4(a, b, c, d)$, then $(a, b, c, d) \in X^4$ is a fixed point of the mapping T.

Motivated by [5, Theorem 3.4], we have the following theorems for the mapping T.

Theorem 3.2. Let (X, d) be a complete metric space endowed with a partial order \preceq , mappings F_1 , F_2 , F_3 and F_4 of X^4 into X continuous mixed monotone mappings. We assume that there exist $\varphi \in \Phi$, $\psi \in \Psi$ and $\theta \in \Theta$ such that for any $x_1, y_1, z_1, w_1, x_2, y_2, z_2, w_2 \in X$ with $x_1 \succeq x_2, y_1 \succeq y_2, z_1 \succeq z_2$ and

T. WATANABE

 $w_1 \leq w_2$, the inequality (3.2) holds: If there exist $x_0, y_0, z_0, w_0 \in X$ such that

(3.3)
$$x_0 \preceq F_1(x_0, y_0, z_0, w_0), y_0 \preceq F_2(x_0, y_0, z_0, w_0),$$

$$z_0 \preceq F_3(x_0, y_0, z_0, w_0), w_0 \succeq F_4(x_0, y_0, z_0, w_0),$$

or

(3 4)
$$x_0 \succeq F_1(x_0, y_0, z_0, w_0), y_0 \succeq F_2(x_0, y_0, z_0, w_0),$$

$$z_0 \succeq F_3(x_0, y_0, z_0, w_0), w_0 \preceq F_4(x_0, y_0, z_0, w_0),$$

then the mapping T defined by (3.1) has fixed point, that is, there exists $(a, b, c, d) \in X^4$ such that (a, b, c, d) = T(a, b, c, d).

The previous results, Theorem 3.2 is still valid for mixed monotone mappings F_1, F_2, F_3 and F_4 , and F_1, F_2 and F_3 , which are not necessarily continuous, respectively. Instead, we require additional assumptions to the metric space X with a partial order \leq :

Definition 3.3. Let (X, d) be a complete metric space endowed with a partial order \leq . We say that

(i) (X, d, \preceq) is nondecreasing-regular (\uparrow -regular) if a nondecreasing sequence $\{x_n\} \subset X$ converges to x, then $x_n \preceq x$ for all n;

(ii) (X, d, \preceq) is nonincreasing-regular (\downarrow -regular) if a nonincreasing sequence $\{x_n\} \subset X$ converges to x, then $x_n \succeq x$ for all n.

Motivated by [5, Theorem 3.5], we have the following result.

Theorem 3.4. Let (X, d) be a complete metric space endowed with a partial order \preceq , and mappings F_1 , F_2 , F_3 and F_4 of X^4 into X mixed monotone mappings. We assume that there exist $\varphi \in \Phi$, $\psi \in \Psi$ and $\theta \in \Theta$ such that for any $x_1, y_1, z_1, w_1, x_2, y_2, z_2, w_2 \in X$ with $x_1 \succeq x_2, y_1 \succeq y_2, z_1 \succeq z_2$ and $w_1 \preceq$ w_2 , the inequality (3.2) holds. We also assume that (X, d, \preceq) is nondecreasingregular and nonincreasing-regular ($\uparrow \downarrow$ -regular), and there exist $x_0, y_0, z_0, w_0 \in$ X such that (3.3) or (3.4) hold, then the mapping T defined by (3.1) has fixed point, that is, there exists $(a, b, c, d) \in X^4$ such that (a, b, c, d) = T(a, b, c, d).

4. Application

In this section, as applications of Theorem 3.4, we study the existence of solutions of two types fourth-order two-point boundary value problems. First of all, we study the existence of solutions of the following fourth-order two-point boundary value problem (1.1). Let Ω be a set of functions ω of $[0, \infty)$ into $[0, \infty)$ satisfying

(i) ω is nondecreasing;

(ii) there exists $\psi \in \Psi$ such that $\omega(r) = \frac{r}{2} - \psi(\frac{r}{2})$ for all $r \in [0, \infty)$.

For examples of such functions, see [10]. Next we consider the following assumptions (A1) and (A2).

(A1) There exists $\omega \in \Omega$ such that for all $t \in I$ and for all $a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4 \in \mathbb{R}$, with $a_1 \geq b_1, a_2 \geq b_2, a_3 \geq b_3$ and $a_4 \leq b_4$,

(4.1)
$$0 \le f(t, a_1, a_2, a_3, a_4) - f(t, b_1, b_2, b_3, b_4) \\ \le \omega(a_1 - b_1) + \omega(a_2 - b_2) + \omega(a_3 - b_3) + \omega(b_4 - a_4).$$

(A2) There exist $\alpha, \beta, \gamma, \delta \in C(I, \mathbb{R})$ which are solutions of

$$\begin{aligned} \alpha(t) &\leq Bt + A - \int_0^1 H_2(t,s)(C - D + Ds)ds \\ &+ \int_0^1 G(t,s)f(s,\alpha(s),\beta(s),\gamma(s),\delta(s))ds, t \in I, \\ \beta(t) &\leq B - \int_0^t (C - D + Ds)ds \\ &+ \int_0^1 \frac{\partial G}{\partial t}(t,s)f(s,\alpha(s),\beta(s),\gamma(s),\delta(s))ds, t \in I, \\ \gamma(t) &\leq -C + D - Dt + \int_0^1 H_1(t,s)f(s,\alpha(s),\beta(s),\gamma(s),\delta(s))ds, t \in I, \\ \delta(t) &\geq -D - \int_0^1 \frac{\partial H_1}{\partial t}(t,s)f(s,\alpha(s),\beta(s),\gamma(s),\delta(s))ds, t \in I, \end{aligned}$$

where the Green functions G and H_1 are defined by

(4.3)
$$G(t,s) = \begin{cases} \frac{1}{6}s^2(3t-s), & (0 \le s \le t \le 1), \\ \frac{1}{6}t^2(3s-t), & (0 \le t \le s \le 1), \end{cases}$$

(4.4)
$$H_1(t,s) = \begin{cases} 0, & (0 \le s \le t \le 1), \\ s-t, & (0 \le t \le s \le 1), \end{cases}$$

It is easy to see that

(4.5)
$$0 \le G(t,s) \le \frac{1}{2}t^2s \text{ for all } t, s \in I,$$

(4.6)
$$0 \le \frac{\partial G}{\partial t}(t,s) \le ts \text{ for all } t,s \in I,$$

(4.7)
$$0 \le H_1(t,s) \le \min\{s,t\} \text{ for all } t,s \in I.$$

Now we have the following theorem.

Theorem 4.1. Under the assumptions (A1) and (A2), the fourth-order twopoint boundary value problem (1.1) has a solution.

T. WATANABE

References

- V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74(15) (2011) 4889–4897.
- [2] V. Berinde, Coupled fixed point theorems for Φ-contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 75 (2012) 3218–3228.
- [3] V. Berinde M. Borcut, Tripled coincidence theorems of contractive type mappings in partially ordered metric spaces, Appl. Math. Comput. 218 (10) 5929–5936.
- [4] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393.
- [5] M. Jleli, V. Čojbašíc Rajíc, B. Samet and C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. 12 (2012) 175–192.
- [6] E. Karapinar and N. V. Luongb, Quadruple fixed point theorems for nonlinear contractions, Computers and Mathematics with Applications 64 (2012) 1839–1848
- [7] Y. Li, Existence of positive solutions for the cantilever beam equations with fully nonlinear terms, Nonlinear Anal.: Real World Applications 27 (2016) 221–237.
- [8] X. Liu, Quadruple fixed point theorems in partially ordered metric spaces with mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:147.
- [9] Y. Zoua, Y. Cuib, Uniqueness result for the cantilever beam equation with fully nonlinear term, J. Nonlinear Sci. Appl., 10 (2017), 4734–4740.
- [10] N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011) 983–992.
- [11] R. Ma, Existence of positive solutions of a fourth order boundary value problem, Appl. Math. Comput. 168 (2005) 1219–1231.
- [12] J. J. Nieto and R. R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (2005) 223–239.
- [13] I. A. Rus, A. Petruşel and G. Petruşel, *Fixed Point Theory*. Cluj University Press, Cluj-Napoca, 2008.
- [14] B. Samet and C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011) 4260–4268.
- [15] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012) 2154–2165.
- [16] R. A. Usmani, A uniqueness theorem for a boundary value problems, Proc. Amer. Math. Soc. 77 (1979) 329–335.
- [17] T. Watanabe, Fixed point theorems in ordered metric spaces and applications to nonlinear boundary value problems, fixed point theory, to appear.
- [18] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc. 104 (1988) 175–180.

SCHOOL OF INTERDISCIPLINARY MATHEMATICAL SCIENCES, MEIJI UNIVERSITY *Email address*: twatana@edu.tuis.ac.jp