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FIXED POINT THEOREMS FOR MIXED MONOTONE

MAPPINGS IN ORDERED METRIC SPACES

TOSHIKAZU WATANABE

1. INTRODUCTION

A coupled fixed point theorem is a combination between fixed point results
for contractive type mappings and the monotone iterative method proposed
by Bhaskar and Lakshmikantham [4]. Several authors investigated it, see
[2, 12, 15] and the reference there in. In this paper we consider product
of metric spaces with the partial order and give a fixed point theorem for
them. As an application, we give a solution for the following cantilever beam
equations with fully nonlinear terms in Section 4:

(1.1) \begin{array}{l}
u^{\prime\prime\prime\prime}(t)=f(t, u(t), u'(t), u"(t), u"'(t)) ,
u(0)=A, u'(0)=B, u"(1)=C, u"'(1)=D,
\end{array}
where  f is a continuous mapping of  [0,1]\cross \mathbb{R}^{4} into  \mathbb{R} . The solution of this
problem was already given by the method of contraction principle, method of
order reduction [9], and the theory of the fixed point index in cones [7]. We
give a solution using a fixed point theorem in metric spaces with order. As the
merit of this method, under the existence of lower solution or upper solution,
we have a fixed point and also we can fixed point when the space satisfies the
regularity. In this case the mapping is not necessary continuous. Moreover,
under the setting we can give a unique fixed point, and multiple fixed point,
see [12] and the examples there in.

2. FIXED POINT THEOREM

First of all, we cited the following definitions and preliminary results will
be useful later. Let (X, d) be a metric space endowed with a partial order  \preceq.

We say that a mapping  F :  Xarrow X is nondecreasing if for any  x,  y\in X,

 x\preceq y\Rightarrow Fx\preceq Fy.

Let  \Phi denote the set of all functions  \varphi :  [0, \infty )  arrow[0, \infty ) satisfying
(a)  \varphi is continuous and nondecreasing;
(b)  \varphi^{-1}(\{0\})=\{0\}.
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Let  \Psi denote the set of all functions  \psi :  [0, \infty )  arrow[0, \infty ) satisfying
(c)   \lim_{tarrow r+}\psi(t)>0 (and finite) for all  r>0 ;
(d)   \lim_{tarrow 0+}\psi(t)=0.

Let  \Theta denote the set of all functions  \theta :  [0, \infty )  \cross[0, \infty )  \cross[0, \infty )  \cross[0 , oo)  arrow

 [0, \infty) satisfying

(e)  \theta is continuous;
(f)  \theta (  s1 , s2, s3, s4)  =0 if and only if  s1s2s3s4=0.

Examples of functions  \psi of  \Psi are given in [10]; see also [2, 13]. Examples of
functions  \theta in  \Theta are given in [5].

In [5, Theorem 3.1, 3.2], the following fixed point theorem is obtained. We
require an additional assumption to the metric space  X with a partial order
 \preceq : We say that  (X, d, \preceq) is regular if  \{a_{n}\} is a nondecreasing sequence in  X

with respect to  \preceq such that  a_{n}arrow a\in X as   narrow\infty , then  a_{n}\preceq a for all  n.

Theorem 2.1. Let (X, d) be a complete metric space endowed with a partial
 order\preceq and  F :  Xarrow X a nondecreasing mapping such that there exist  \varphi\in\Phi,
 \psi\in\Psi and  \theta\in\Theta such that for any  x,  y\in X with  x\succeq y,

 \varphi (d (Fx, Fy)) \leq\varphi(d(x, y))-\psi(d(x, y))
(2.1)

 +\theta  (d (  x , Fx),  d(y , Fy),  d(x , Fy),  d(y , Fx)  ) .

Suppose also that the following (i) or (ii) hold.
(i)  F is continuous

(ii)  (X, d, \leq) is regular.
Also supose that there exists  x_{0}\in X such that  x_{0}\preceq Fx_{0}  (or x_{0}\succeq Fx_{0}) . Then
 F admits a fixed point, that is, there exists  \overline{x}\in X such that  \overline{x}=F\overline{x}.

3. FIXED POINT THEOREM FOR MONOTONE MAPPING

Definition 3.1. We say that a mapping  F of  X^{4} into  X has mixed monotone
property, if it satisfies the following, see [6]: for any  x,  y,  z,  w\in X,

 \{\begin{array}{l}
x_{1}, x_{2}\in X, x_{1}\succeq x_{2}, \Rightarrow F(x_{1}, y, z, w)\succeq F(x_
{2}, y, z, w) ,
y_{1}, y_{2}\in X, y_{1}\succeq y_{2}, \Rightarrow F(x, y_{1}, z, w)\succeq F(x,
y_{2}, z, w) ,
z_{1}, z_{2}\in X, z_{1}\succeq z_{2}, \Rightarrow F(x, y, z_{1}, w)\succeq F(x,
y, z_{2}, w) ,
w_{1}, w_{2}\in X, w_{1}\preceq w_{2}, \Rightarrow F(x, y, z, w_{1})\preceq F(x,
y, z, w_{2}) .
\end{array}
Let (X, d) be a metric space. Let  F_{1},  F_{2},  F_{3} and  F_{4} be mappings of  X^{4} into

X. We also consider the mapping  A of  X^{4} into  [0, \infty ) defined by

 AU= \frac{d(x,F_{1}U)+d(y,F_{2}U)}{4}+\frac{d(z,F_{3}U)+d(w,F_{4}U)}{4},
 U=(x, y, z, w)\in X^{4},
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and the mapping  B of  X^{8} into  [0, \infty ) defined by

 B(U, V)= \frac{d(x_{1},F_{1}V)+d(y_{1},F_{2}V)}{4}+\frac{d(z_{1},F_{3}V)+
d(w_{1},F_{4}V)}{4},
 U=(x_{1}, y_{1}, z_{1}, w_{1}), V=(x_{2}, y_{2}, z_{2}, w_{2})\in X^{4}

We consider the mapping  T from  X^{4} into  X^{4} defined by

(3.1)  TU=(F_{1}U, F_{2}U, F_{3}U, F_{4}U), U=(x, y, z, w)\in Y.

In this case, we consider the metric  \eta for the product set  X^{4} defined by

  \eta(U, V)=\frac{d(x_{1},x_{2})+d(y_{1},y_{2})+d(z_{1},z_{2})+d(w_{1},w_{2})}
{4},
 U=(x_{1}, y_{1}, z_{1}, w_{1}), V=(x_{2}, y_{2}, z_{2}, w_{2})\in Y.

Note that if (X, d) is complete, then clearly  (X^{4}, \eta) is also complete. Also if
 F_{1},  F_{2},  F_{3} and  F_{4} are continuous, then  T is also continuous in  (X^{4}, \eta) .

Next we consider the partial order  \ll inX^{4} defined by

 (x_{2}, y_{2}, z_{2}, w_{2})\ll(x_{1}, y_{1}, z_{1}, w_{1})\Leftrightarrow 
x_{1}\succeq x_{2},  y_{1}\succeq y_{2},  z_{1}\succeq z_{2},  w_{1}\preceq w_{2}

for any  (x_{1}, y_{1}, z_{1}, w_{1}),  (x_{2}, y_{2}, z_{2}, w_{2})\in Y.
Under the above settings, we consider the following inequality ; there exist

 \varphi\in\Phi,  \psi\in\Psi and  \theta\in\Theta such that for any  x_{1},  y_{1},  z_{1},  w_{1},  x_{2},  y_{2},  z_{2},  w_{2}\in X
with  x_{1}\succeq x_{2},  y_{1}\succeq y_{2},  z_{1}\succeq z_{2} and  w_{1}\preceq w_{2} , the following holds:

  \varphi(\frac{d(F_{1}U_{1},F_{1}U_{2})+d(F_{2}U_{1},F_{2}U_{2})}{4}+\frac{d(F_
{3}U_{1},F_{3}U_{2})+d(F_{4}U_{1},F_{4}U_{2})}{4})
(3.2)   \leq\varphi(\frac{d(x_{1},x_{2})+d(y_{1},y_{2})+d(z_{1},z_{2})+d(w_{1},w_{2})}
{4})

 - \psi(\frac{d(x_{1},x_{2})+d(y_{1},y_{2})+d(z_{1},z_{2})+d(w_{1},w_{2})}{4})
 +\theta(A_{1}U_{1}, A_{1}U_{2}, B_{1}(U_{1}, U_{2}), B_{1}(U_{2}, U_{1})) .

where  U_{1}=(x_{1}, y_{1}, z_{1}, w_{1}),  U_{2}=(x_{2}, y_{2}, z_{2}, w_{2}) If each mapping  F_{1},  F_{2},  F_{3}
and  F_{4} satisfies that there exist  a,  b,  c,  d\in X such that  a=F_{1}(a, b, c, d) ,
 b=F_{2}(a, b, c, d),  c=F_{3}(a, b, c, d) and  d=F_{4}(a, b, c, d) , then  (a, b, c, d)\in X^{4}
is a fixed point of the mapping  T.

Motivated by [5, Theorem 3.4], we have the following theorems for the
mapping  T.

Theorem 3.2. Let (X, d) be a complete metric space endowed with a partial
  order\preceq , mappings  F_{1},  F_{2},  F_{3} and  F_{4}ofX^{4} into  X continuous mixed monotone
mappings. We assume that there exist  \varphi\in\Phi,  \psi\in\Psi and  \theta\in\Theta such that
for any  x_{1},  y_{1},  z_{1},  w_{1},  x_{2},  y_{2},  z_{2},  w_{2}\in X with  x_{1}\succeq x_{2},  y_{1}\succeq y_{2},  z_{1}\succeq z_{2} and
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 w_{1}\preceq w_{2} , the inequality (3.2) holds: If there exist  x_{0},  y_{0},  z_{0},  w_{0}\in X such that

 x_{0}\preceq F_{1}(x_{0}, y_{0}, z_{0}, w_{0}), y_{0}\preceq F_{2}(x_{0}, y_{0}
, z_{0}, w_{0}) ,

(3.3)
 z_{0}\preceq F_{3}(x_{0}, y_{0}, z_{0}, w_{0}), w_{0}\succeq F_{4}(x_{0}, y_{0}
, z_{0}, w_{0}) ,

or

 x_{0}\succeq F_{1}(x_{0}, y_{0}, z_{0}, w_{0}), y_{0}\succeq F_{2}(x_{0}, y_{0}
, z_{0}, w_{0}) ,

(3.4)
 z_{0}\succeq F_{3}(x_{0}, y_{0}, z_{0}, w_{0}), w_{0}\preceq F_{4}(x_{0}, y_{0}
, z_{0}, w_{0}) ,

then the mapping  T defined by (3. 1) has fixed point, that is, there  exist_{\mathcal{S}}

 (a, b, c, d)\in X^{4} such that  (a, b, c, d)=T(a, b, c, d) .

The previous results, Theorem 3.2 is still valid for mixed monotone map‐
pings  F_{1},  F_{2},  F_{3} and  F_{4} , and  F_{1},  F_{2} and  F_{3} , which are not necessarily contin‐
uous, respectively. Instead, we require additional assumptions to the metric
space  X with a partial order  \preceq :

Definition 3.3. Let (X, d) be a complete metric space endowed with a partial
order  \preceq . We say that
(i)  (X, d, \preceq) is nondecreasing‐regular (  \uparrow‐regular) if a nondecreasing sequence
 \{x_{n}\}\subset X converges to  x , then  x_{n}\preceq x for all  n ;
(ii)  (X, d, \preceq) is nonincreasing‐regular (  \downarrow‐regular) if a nonincreasing sequence
 \{x_{n}\}\subset X converges to  x , then  x_{n}\succeq x for all  n.

Motivated by [5, Theorem 3.5], we have the following result.

Theorem 3.4. Let (X, d) be a complete metric space endowed with a partial
order  \preceq , and mappings  F_{1},  F_{2},  F_{3} and  F_{4} of  X^{4} into  X mixed monotone
mappings. We assume that there exist  \varphi\in\Phi,  \psi\in\Psi and  \theta\in\Theta such that for
any  x_{1},  y_{1},  z_{1},  w_{1},  x_{2},  y_{2},  z_{2},  w_{2}\in X with  x_{1}\succeq x_{2},  y_{1}\succeq y_{2},  z_{1}\succeq z_{2} and   w_{1}\preceq

 w_{2} , the inequality (3.2) holds. We also assume that  (X, d, \preceq) is nondecreasing‐
regular and nonincreasing‐regular ( \uparrow\downarrow ‐regular), and there exist  x_{0},  y_{0},  z_{0},   w_{0}\in
 X such that (3.3) or (3.4) hold, then the mapping  T defined by (3.1) has fixed
point, that is, there exists  (a, b, c, d)\in X^{4} such that  (a, b, c, d)=T(a, b, c, d) .

4. APPLICATION

In this section, as applications of Theorem 3.4, we study the existence of
solutions of two types fourth‐order two‐point boundary value problems. First
of all, we study the existence of solutions of the following fourth‐order two‐
point boundary value problem (1.1). Let  \Omega be a set of functions  \omega of  [0, \infty )
into  [0, \infty ) satisfying
(i)  \omega is nondecreasing;
(ii) there exists  \psi\in\Psi such that   \omega(r)=\frac{r}{2}-\psi(\frac{r}{2}) for all   r\in[0, \infty ).
For examples of such functions, see [10]. Next we consider the following as‐
sumptions (A1) and (A2).
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(A1) There exists  \omega  \in  \Omega such that for all  t  \in  I and for all
 a_{1},  a_{2},  a_{3},  a_{4},  b_{1},  b_{2},  b_{3},  b_{4}\in \mathbb{R} , with  a_{1}\geq b_{1},  a_{2}\geq b_{2},  a_{3}\geq b_{3} and  a_{4}\leq b_{4},

 0\leq f(t, a_{1}, a_{2}, a_{3}, a_{4})-f(t, b_{1}, b_{2}, b_{3}, b_{4})
(4.1)

 \leq\omega(a_{1}-b_{1})+\omega(a_{2}-b_{2})+\omega(a_{3}-b_{3})+\omega(b_{4}-a_
{4}) .

(A2) There exist  \alpha,  \beta,  \gamma,  \delta\in C(I, \mathbb{R}) which are solutions of

  \alpha(t)\leq Bt+A-\int_{0}^{1}H_{2}(t, s)(C-D+Ds)ds
 + \int_{0}^{1}G(t, s)f(s, \alpha(s), \beta(s), \gamma(s), \delta(s))ds, t\in I,

  \beta(t)\leq B-\int_{0}^{t}(C-D+Ds)ds
(4.2)

 + \int_{0}^{1}\frac{\partial G}{\partial t}(t, s)f(s, \alpha(s), \beta(s), 
\gamma(s), \delta(s))ds, t\in I,
  \gamma(t)\leq-C+D-Dt+\int_{0}^{1}H_{1}(t, s)f(s, \alpha(s), \beta(s), 
\gamma(s), \delta(s))ds, t\in I,
  \delta(t)\geq-D-\int_{0}^{1}\frac{\partial H_{1}}{\partial t}(t, s)f(s, \alpha
(s), \beta(s), \gamma(s), \delta(s))ds, t\in I,

where the Green functions  G and  H_{1} are defined by

(4.3)  G(t, s)=\{\begin{array}{ll}
\frac{1}{6}s^{2}(3t-s) ,   (0\leq s\leq t\leq 1) ,
\frac{1}{6}t^{2}(3s-t) ,   (0\leq t\leq s\leq 1) ,
\end{array}
(4.4)  H_{1}(t, s)=\{\begin{array}{ll}
0,   (0\leq s\leq t\leq 1) ,
s-t,   (0\leq t\leq s\leq 1) ,
\end{array}
It is easy to see that

(4.5)  0 \leq G(t, s)\leq\frac{1}{2}t^{2}s for all  t,  s\in I,

(4.6)  0 \leq\frac{\partial G}{\partial t}(t, s)\leq ts for all  t,  s\in I,

(4.7)  0 \leq H_{1}(t, s)\leq\min\{s, t\} for all  t,  s\in I.

Now we have the following theorem.

Theorem 4.1. Under the assumptions (A1) and (A2), the fourth‐order two‐
point boundary value problem (1.1) has a solution.
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