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FIXED POINT THEOREMS FOR MIXED MONOTONE
MAPPINGS IN ORDERED METRIC SPACES

TOSHIKAZU WATANABE

1. INTRODUCTION

A coupled fixed point theorem is a combination between fixed point results
for contractive type mappings and the monotone iterative method proposed
by Bhaskar and Lakshmikantham [4]. Several authors investigated it, see
[2, 12, 15] and the reference there in. In this paper we consider product
of metric spaces with the partial order and give a fixed point theorem for
them. As an application, we give a solution for the following cantilever beam
equations with fully nonlinear terms in Section 4:

{U””(t) = [t u(t), ' (1), " (1), u" (1)),

(L) u(0) = A,/ (0) = B,u"(1) = C,u"(1) = D,

where f is a continuous mapping of [0,1] x R* into R. The solution of this
problem was already given by the method of contraction principle, method of
order reduction [9], and the theory of the fixed point index in cones [7]. We
give a solution using a fixed point theorem in metric spaces with order. As the
merit of this method, under the existence of lower solution or upper solution,
we have a fixed point and also we can fixed point when the space satisfies the
regularity. In this case the mapping is not necessary continuous. Moreover,
under the setting we can give a unique fixed point, and multiple fixed point,
see [12] and the examples there in.

2. FIXED POINT THEOREM

First of all, we cited the following definitions and preliminary results will
be useful later. Let (X, d) be a metric space endowed with a partial order <.
We say that a mapping F': X — X is nondecreasing if for any z,y € X,

rXy=Fz =X Fy.
Let @ denote the set of all functions ¢ : [0,00) — [0, 00) satisfying
(a) ¢ is continuous and nondecreasing;

(b) ¢~ ({0}) = {0}.
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Let ¥ denote the set of all functions ¢ : [0,00) — [0, 00) satisfying

(c) limy—y,4 ¢(t) > 0 (and finite) for all r > 0;

() limyop () = 0.
Let © denote the set of all functions 6 : [0, 00) x [0,00) X [0,00) X [0,00) —
[0, 00) satisfying

(e) 6 is continuous;

(f) 0(sl,s2,s3,s4) = 0 if and only if s152s3s4 = 0.

Examples of functions ¢ of ¥ are given in [10]; see also [2, 13]. Examples of
functions 6 in © are given in [5].

In [5, Theorem 3.1, 3.2], the following fixed point theorem is obtained. We
require an additional assumption to the metric space X with a partial order
=<: We say that (X,d, <) is regular if {a,} is a nondecreasing sequence in X
with respect to = such that a, — a € X as n — oo, then a,, = a for all n.

Theorem 2.1. Let (X,d) be a complete metric space endowed with a partial
order X and I : X — X a nondecreasing mapping such that there exist ¢ € P,
€W and 0 € © such that for any v,y € X with x = vy,

opy SR S gldr0) - ¥(dy)
' +0(d(x, Fx),d(y, Fy), d(z, Fy), d(y, Fr)).
Suppose also that the following (i) or (ii) hold.

(i) F' is continuous

(i) (X,d, <) is regular.
Also supose that there exists xo € X such that o < Fxq (or xg = Fxy). Then
F admits a fized point, that is, there exists T € X such that T = F7Z.

3. FIXED POINT THEOREM FOR MONOTONE MAPPING

Definition 3.1. We say that a mapping F' of X* into X has mixed monotone
property, if it satisfies the following, see [6]: for any x,y, z,w € X,

x1, 09 € X, 21 = X9, = F(x1,y, 2,w) = F(x9,y, z,w),
Y1, Y2 S X7y1 i y%j F(x7y1727w) t F(3373/2727w)7
21,29 € X, 21 = 29,= F(x,y,21,w) = F(x,y, 2, w),
wy, we € X, wy X we,= F(x,y,z,w) X F(x,y, 2, ws).

Let (X, d) be a metric space. Let Fy, Iy, F3 and Fy be mappings of X* into
X. We also consider the mapping A of X* into [0, c0) defined by

- A ) Z Ay, FU) | d(z FyD) Z d(w, FiU')

U: (3773/72710) €X4u
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and the mapping B of X® into [0, 00) defined by

d($1,F1V) + d(y17F2V> + d(zl,F3V) + d(w17F4V)
4 4 '
U= (21,91, 21,w1),V = (2,2, 20, w2) € X",

B(U,V) =

We consider the mapping 7" from X* into X* defined by
(3.1) TU = (WU, ByU, F3U, F,U), U = (z,y,2,w) € Y.
In this case, we consider the metric 7 for the product set X* defined by

d(x1, x2) + d(y1, y2) + d(21, 22) + d(wy, wo)
4 y
U= ($17y17217w1)7v = (:1;27y27227w2) € Y.

nU, V) =

Note that if (X, d) is complete, then clearly (X% n) is also complete. Also if
Fy, Iy, F3 and Fy are continuous, then T is also continuous in (X%, 7).
Next we consider the partial order < in X* defined by

(:1;273/27227“}2) < (mlvyla 217“)1) < T = T2,Y1 = Y2, 21 = 22, W1 = wa

for any (z1,y1, 21, w1), (T2, Y2, 22,w2) € Y.

Under the above settings, we consider the following inequality ; there exist
w € ¢, ¢ € U and 0 € O such that for any x1,y1, 21, Wi, To, Yo, 22, we € X
with &1 = x9, Y1 = Y2, 21 = 2o and wy = ws, the following holds:

0 (d(FlUl, F1U2) + d(FQUl, FQUQ) d(F3U1, F3U2) + Cl(F4U1, F4U2)>

4 + 4

d(z1,z9) + d(y1, y2) + d(21, 22) + d(wy, wy)
(32) =7 < i )

4

. <d($1, ) + d(y1, y2) + d(z1, 22) + d(wl,w2)>

where U1 = (ml,yl,zl,wl), U2 = (.’E27’y27227’l,U2) If each mappmg Fl, FQ, Fg
and F), satisfies that there exist a,b,c,d € X such that a = Fi(a,b,c,d),
b= Fy(a,b,c,d), c = F3(a,b,c,d) and d = Fy(a,b,c,d), then (a,b,c,d) € X*
is a fixed point of the mapping T'.

Motivated by [5, Theorem 3.4], we have the following theorems for the
mapping 7.

Theorem 3.2. Let (X,d) be a complete metric space endowed with a partial
order =, mappings Iy, Fy, F3 and Fy of X* into X continuous mized monotone
mappings. We assume that there exist ¢ € @, v € U and 0 € © such that
for any x1,y1, 21, w1, T, Yo, 22, wWe € X with Ty = To, Y1 = Y2, 21 = 29 and



T. WATANABE

wy <X we, the inequality (3.2) holds: If there exist xq, yo, 20, wo € X such that

zo = F1 (20, Yo, 20, Wo), Yo = Fo(x0, Yo, 20, Wo),

3.3

(3:3) 20 = F3(x0, Yo, 20, wo), wo = Fiu(xo, 4o, 20, o),
or

(3 4) X i F1($07y07207w0)790 t F2(l’07’y07207w0)7

2o = F5(x0, Yo, 20, wo), wo = Fy(xo, Yo, 20, wo),

then the mapping T defined by (3.1) has fived point, that is, there exists
(a,b,c,d) € X* such that (a,b,c,d) =T(a,b,c,d).

The previous results, Theorem 3.2 is still valid for mixed monotone map-
pings I, F5, I3 and Fy, and I}, F5 and Fj3, which are not necessarily contin-
uous, respectively. Instead, we require additional assumptions to the metric
space X with a partial order <:

Definition 3.3. Let (X, d) be a complete metric space endowed with a partial
order =. We say that

(i) (X,d, =) is nondecreasing-regular (f-regular) if a nondecreasing sequence
{z,} C X converges to z, then x, < x for all n;

(ii) (X,d, %) is nonincreasing-regular (}-regular) if a nonincreasing sequence
{z,} C X converges to z, then x, = x for all n.

Motivated by [5, Theorem 3.5], we have the following result.

Theorem 3.4. Let (X,d) be a complete metric space endowed with a partial
order =, and mappings Iy, F», Fy and Fy of X* into X mized monotone
mappings. We assume that there exist ¢ € ®, ¢ € U and 0 € © such that for
any Ti,Y1, 21, Wi, T2, Yo, 22, w2 € X with £y = Ta, y1 = Yo, 21 = 22 and wy =
wy, the inequality (3.2) holds. We also assume that (X, d, =) is nondecreasing-
reqular and nonincreasing-reqular (1)-reqular), and there exist xq,yo, 20, Wo €
X such that (3.3) or (3.4) hold, then the mapping T defined by (3.1) has fized
point, that is, there exists (a,b,c,d) € X* such that (a,b,c,d) = T(a,b,c,d).

4. APPLICATION

In this section, as applications of Theorem 3.4, we study the existence of
solutions of two types fourth-order two-point boundary value problems. First
of all, we study the existence of solutions of the following fourth-order two-
point boundary value problem (1.1). Let € be a set of functions w of [0, c0)
into [0, 0o) satisfying
(i) w is nondecreasing;

(ii) there exists ¢» € ¥ such that w(r) = § —(5) for all r € [0, 00).
For examples of such functions, see [10]. Next we consider the following as-

sumptions (A1) and (A2).
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(A1) There exists w € § such that for all ¢ € [ and for all
a1, az, az, aq, by, ba, by, by € R, with ag > by, ap > ba, ag > by and ay < by,

0 S f(ta ay, a27a37a4) - f(ty bl7b27 b37 b4)

(4.1) <w(a; — b)) + wlag — be) +wlag — b3) + w(by — ay).

(A2) There exist a, 3,7, € C(I,R) which are solutions of

a(t) < Bt+ A — /HQts)(C' D + Ds)ds

/ G(t,s)f(s,a(s),B(s),v(s),0(s))ds,t € I,

+ | G0 (5,009, 8(3).9().8(s)ds. € 1

v({t) < -C+ D — Df—l—/ Hy(t,s)f(s,a(s), (s),v(s),0(s))ds, t € 1,

y>—D— / 8H1 (s,a(s), B(s),7(s),0(s))ds, t € I,
where the Green functions GG and H; are defined by
§5°(3t — <s<t<l1
@)  Gw=qoh o DEesrs)
st (3s —1), (0<t<s<1),

<s<t<l1

(4.4) Hy(t,s)= 4" O<s<t<),

s — t7 (O S S S S 1)7
It is easy to see that

1
(4.5) 0<G(ts) < 57%25 for all ¢,s € I,
oG

(4.6) 0< E(t’ s)<tsforallt,sel,
(4.7) 0 < Hy(t,s) < min{s,t} for all t,s € I.

Now we have the following theorem.

Theorem 4.1. Under the assumptions (A1) and (A2), the fourth-order two-
point boundary value problem (1.1) has a solution.
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