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Remark on skew m‐complex symmetric operators

by

Muneo Chō, Eungil Ko, and Ji Eun Lee

Abstract

In this paper we study skew  m‐complex symmetric operators. In particular, we prove
that if  T\in \mathcal{L}(\mathcal{H}) is a skew  m‐complex symmetric operator with a conjugation  C , then
 e^{itT},  e^{-itT} , and  e^{-itT^{*}} are  (m, C) ‐isometric for every  t\in \mathbb{R} . Moreover, we investigate
some conditions for skew  m‐complex symmetric operators to be skew  (m-1)‐complex
symmetric.

1 Introduction

The results in this paper will be appeared in other journals. Let  \mathcal{L}(\mathcal{H}) be the algebra of
all bounded linear operators on a separable complex Hilbert space  \mathcal{H}.

Definition 1.1 An operator  C is said to be a conjugation on  \mathcal{H} if the following conditions
hold:

(i)  C is antilinear;  C(ax+by)=\overline{a}Cx+\overline{b}Cy for all  a,  b\in \mathbb{C} and  x,  y\in \mathcal{H},
(ii)  C is isometric;  \langle Cx,  Cy\rangle=\{y, x\} for all  x,  y\in \mathcal{H} , and
(iii)  C is involutivej  C^{2}=I.

Moreover, if  C is a conjugation on  \mathcal{H} , then  \Vert C\Vert=1 , (CTC)
 *

 =CT^{*}C and  (CTC)^{k}=
 CT^{k}C for every positive integer  k . For any conjugation  C , there is an orthonormal basis
 \{e_{n}\}_{n=0}^{\infty} for  \mathcal{H} such that  Ce_{n}=e_{n} for all  n (see [11] for more details). We first consider
the following examples for conjugations.

Example 1.2 Let’s define an operator  C as follows:
(i)  C(x_{1}, x_{2}, x_{3}, \cdots , x_{n})=(\overline{x_{1}},\overline{x_{2}}, 
\overline{x_{3}}, \cdots , \overline{x_{n}}) on  \mathbb{C}^{n}.

(ii)  C(x_{1}, x_{2}, x_{3}, \cdots , x_{n})=(\overline{x_{n}}, \overline{x_{n-1}}, 
\overline{x_{n-2}}, \cdots , \overline{x_{1}}) on  \mathbb{C}^{n}.

(iii)  [Cf](x)=\overline{f(x)} on  \mathcal{L}^{2}(\mathcal{X}, \mu) .
(iv)  [Cf](x)=f(1-x) on  L^{2}([0,1]) .
(v)  [Cf](x)=\overline{f(-x)} on  L^{2}(\mathbb{R}^{n}) .
(vi)  Cf(z)=\overline{zf(z)}u(z)\in \mathcal{K}_{u}^{2} for all  f\in \mathcal{K}_{u}^{2} where  u is inner function and  \mathcal{K}_{u}^{2}=H^{2}\Theta uH^{2}
is Model space.
Then each  C in  (i)-(vi) is a conjugation.
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In 1970, J. W. Helton [15] initiated the study of operators  T\in \mathcal{L}(\mathcal{H}) which satisfy an
identity of the form;

  \sum_{j=0}^{m}(-1)^{m-j}  (\begin{array}{l}
m
\dot{j}
\end{array})  T^{*j}T^{m-j}=0 . (1)

Using the identity (1) and a conjugation operator, we define skew  m‐complex symmet‐
ric operators as follows; an operator  T\in \mathcal{L}(\mathcal{H}) is said to be a skew  m ‐complex symmetric
operator if there exists some conjugation  C such that

  \sum_{j=0}^{m}  (\begin{array}{l}
m
\dot{j}
\end{array})  T^{*j}CT^{m-j}C=0

for some positive integer  m . In this case, we say that  T is skew  m‐complex symmetric
with conjugation  C . In particular, if  m=1 , then  T is said to be skew complex symmetric,

i.e.,  T=-CT^{*}C . Set  \Gamma_{m}(T;C)  := \sum_{j=0}^{m}  (\begin{array}{l}
m
j
\end{array})  T^{*j}CT^{m-j}C . Then  T is a skew  m‐complex

symmetric operator with conjugation  C if and only if  \Gamma_{m}(T;C)=0 . Note that

 T^{*}\Gamma_{m}(T;C)+\Gamma_{m}(T;C) (CTC)  =\Gamma_{m+1}(T;C) . (2)

From (2), if  T is skew  m‐complex symmetric with conjugation  C , then  T is skew n‐
complex symmetric with conjugation  C for  n\geq m . In general, skew  m‐complex symmetric
operators are not skew  (m-1) ‐complex symmetric.

Example 1.3 Let  Cx=(_{\overline{\frac{x_{2}}{x_{1}}}}) for  x=(\begin{array}{l}
x_{1}
x_{2}
\end{array}) and  T=(\begin{array}{ll}
0   1
0   0
\end{array}) on  \mathbb{C}^{2} . Then  T^{*}=CTC  =

 (\begin{array}{ll}
0   0
1   0
\end{array}) and so  CT^{2}C+2T^{*}CTC+T^{*2}=0 . But,  CTC+T^{*}=2  (\begin{array}{ll}
0   0
1   0
\end{array})\neq 0 . Hence

 T is a skew 2‐complex symmetric operator which is not skew complex symmetric (see [3]).

In 1995, Agler and Stankus ([1]) studied the following operator. For a fixed  m\in \mathbb{N},
an operator  T\in \mathcal{L}(\mathcal{H}) is said to be an  m ‐isometric operator if it satisfies an identity;

  \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
j
\end{array})  T^{*m-j}T^{m-j}=0 . (3)

Using the identity (3) and a conjugation  C , the authors of [9] define the following operator;
An operator  T\in \mathcal{L}(\mathcal{H}) is said to be an  (m, C) ‐isometric operator if there exists some
conjugation  C such that

  \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  T^{*m-j}CT^{m-j}C=0 (4)

for some  m\in \mathbb{N} . In particular, if  T=CTC, then  T is an  m‐isometric operator. Put
 \Lambda_{m}(T)  := \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
j
\end{array})  T^{*m-j}CT^{m-j}C . Thus  T is an  (m, C) ‐isometric operator if and
only if  \Lambda_{m}(T)=0 . Note that

 T^{*}\Lambda_{m}(T)(CTC)-\Lambda_{m}(T)=\Lambda_{m+1}(T) . (5)

2



3

From (5), if  \Lambda_{m}(T)=0 , then  \Lambda_{n}(T)=0 for all  n\geq m . Moreover,  T is an  (m, C) ‐isometry
if and only if CTC is an  (m, C)‐isometry (see [9]).

Next, we provide several examples of  (m, C) ‐isometric operators with a conjugation
 C.

Example 1.4 ([9]) Let  C be the canonical conjugation on  \mathcal{H} given by

 C( \sum_{n=0}^{\infty}x_{n}e_{n})=\sum_{n=0}^{\infty}\overline{x_{n}}e_{n}
where  \{e_{n}\} is an orthonormal basis of  \mathcal{H} with  Ce_{n}=e_{n} for all  n . Assume that  W is

the weighted shift given by  We_{n}=\alpha_{n}e_{n+1} where  \alpha_{n}=\sqrt{\frac{n+\alpha}{n+1}} for  \alpha>0 . If  \alpha=1,

then  W=S is the unilateral shift. Hence  S is  ( 1,  C) ‐isometry. If  \alpha=2 , then, since
 W=CWC , it holds that

 I-2W^{*}CWC+W^{*2}CW^{2}C=0.

Therefore,  W is an  ( 2,  C) ‐isometric operator which is called the Dirichlet shift. On the
other hand, if  \alpha=m , then, since  W=CWC , it holds that

  \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  W^{*m-j}CW^{m-j}C=0.

So,  W is an  (m, C) ‐isometric operator.

Example 1.5 ([9]) Let  C be a conjugation defined by Cf(z)  =\overline{f(\overline{z})} and let  \{e_{n}\}_{n=0}^{\infty} be
an orthonormal basis of  H^{2} . Set  C=C\oplus C . Then  C is clearly a conjugation on  H^{2}\oplus H^{2}.
Assume that

 T=(\begin{array}{ll}
S   e_{0}\otimes e_{0}
0   I
\end{array}) \in \mathcal{L}(H^{2}\oplus H^{2})
where  S is the unilateral shift on  H^{2} . Then

 \Lambda_{2}(T) = T^{*}(T^{*}CTC-I)CTC-(T^{*}CTC-I)
 =  (\begin{array}{ll}
0   0
0   e_{0}\otimes e_{0}
\end{array})  -  (\begin{array}{ll}
0   0
0   e_{0}\otimes e_{0}
\end{array})=0.

Hence  T is an  ( 2,  C) ‐isometric operator. If  R=S+e_{0}\otimes e_{0} , then

 CRC=CSC+C(e_{0}\otimes e_{0})C=S+e_{0}\otimes e_{0}.

Since  S^{*}e_{0}=0 , it follows that  R^{*}CRC=(S^{*}+e_{0}\otimes e_{0})(S+e_{0}\otimes e_{0})=I+e_{0}\otimes e_{0} and so

 \Lambda_{2}(R) = R^{*}(R^{*}CRC-I)CRC-(R^{*}CRC-I)
 = (S^{*}+e_{0}\otimes e_{0})(e_{0}\otimes e_{0})(S+e_{0}\otimes e_{0})-e_{0}
\otimes e_{0}=0.

Therefore,  R is an  ( 2,  C) ‐isometric operator.
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2  (m, C)‐isometric operators

In this section, we state properties of  (m, C) ‐isometric operators which are the known
results in [9].

Theorem 2.1 Let  T\in \mathcal{L}(\mathcal{H}) and let  C be a conjugation on  \mathcal{H} . Then the following state‐
ments hold.

(i) If  T is an invertible, then  T is an  (m, C) ‐isometric operator if and only if  T^{-1} is an
 (m, C) ‐isometry.
(ii) If  T is an  (m, C) ‐isometric operator with the conjugation  C and  T is complex symmet‐
ric, i. e.,  T=CT^{*}C , then  T is an algebraic operator of order at most  2m . (iii) If  \{T_{k}\} is
a sequence of  (m, C) ‐isometric operators with conjugation  C such that   \lim_{karrow\infty}\Vert T_{k}-T\Vert=0,
then  T is also an  (m, C) ‐isometric operator.
(iv) If  T is an  (m, C) ‐isometric operator, then  T^{n} is also an  (m, C) ‐isometric operator
for any  n\in \mathbb{N}.

If  T\in \mathcal{L}(\mathcal{H}) , we write  \sigma(T),  \sigma_{p}(T) and  \sigma_{a}(T) for the spectrum, the point spectrum
and the approximate point spectrum of  T , respectively.

Lemma 2.2 Let  T\in \mathcal{L}(\mathcal{H}) be an  (m, C) ‐isometric operator where  C is a conjugation on
 \mathcal{H} . Then  0\not\in\sigma_{a}(T) .

We observe from Lemma that both ran(T) and  ker(T) are closed complemented sub‐
spaces. If ran  (T)=\mathcal{H} , then  T is invertible. Otherwise, ran (T) is a nontrivial invariant
subspace of  T . Hence the representation of  T with respect to the Hilbert space decompo‐
sition ran  (T)\oplus ker(T^{*})=\mathcal{H} is the upper triangular matrices

 (\begin{array}{ll}
T_{l}   T_{2}
0   0
\end{array}) : ran  (T)\oplus ker(T^{*})arrow ran(T)\oplus ker(T^{*})

where  T_{1}=T|_{ran(T)} , and  T_{2} is an operator mapping  ker(T^{*}) into ran(T) and  ker(T^{*}) ,
respectively.

Theorem 2.3 Let  T\in \mathcal{L}(\mathcal{H}) be an  (m, C) ‐isometric operator where  C is a conjugation

on  \mathcal{H} . If  \lambda\in\sigma_{a}(T) , then   \frac{1}{\overline{\lambda}}\in\sigma_{a}(T^{*}) . In particular, if  \lambda is an eigenvalue of  T , then   \frac{1}{\overline{\lambda}}
is an eigenvalue of  T^{*}

Theorem 2.4 Let  T\in \mathcal{L}(\mathcal{H}) be an  (m, C) ‐isometric operator where  C is a conjugation
on  \mathcal{H} . Let  \lambda,  \mu\in \mathbb{C} with  \lambda\mu\neq 1 . If  \{x_{n}\} and  \{y_{n}\} are sequences of unit vectors such

 that_{narrow\infty}1\dot{{\imath}}m(T-\lambda)x_{n}=0 and   \lim_{narrow\infty}(T-\mu)y_{n}=0 , then  narrow\infty 1\dot{{\imath}}m\{Cx_{n}, y_{n}\}=0 . In particular, if

 (T-\lambda)x=0 and  (T-\mu)y=0 , then {Cx,  y\rangle=0.

Corollary 2.5 Let  C be a conjugation on  \mathcal{H} . If  T\in \mathcal{L}(\mathcal{H}) is an  (m, C) ‐isometric operator

with a conjugation  C , then   ker(T-\lambda)\subseteq Cker((T^{*}-\frac{1}{\overline{\lambda}})^{m}) .
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3 Skew  m‐complex symmetric operators

In this section, we study properties of skew  m‐complex symmetric operators. In [7], if  T

is an  m‐complex symmetric operator, then  T^{n} is also  m‐complex symmetric for some  n.

Unlike an  m‐complex symmetric operator (see [7] and [9]), the power of a skew  m‐complex
symmetric operator is not skew  m‐complex symmetric.

Example 3.1 If  T=(\begin{array}{ll}
1   0a
0   0a
0   0-1
\end{array}) for  a\in \mathbb{C} , then  T is skew complex symmetry with

the conjugation  C(z_{1}, z_{2}, z_{3})=(-\overline{z_{3}}, \overline{z_{2}}, -\overline{z_{1}}) from [18]. A simple calculation shows that

 T^{2}=(\begin{array}{lll}
1   a   a^{2}
0   0   -a
0   0   1
\end{array}) and  -CT^{2}C=(\begin{array}{lll}
-1   0   0
-a   0   0
-a^{2}   a   -1
\end{array})
Hence  T^{2} is not skew complex symmetric with the conjugation  C.

Example 3.2 Let  C be a conjugation given by  C(z_{1}, z_{2}, z_{3})=(\overline{z_{3}}, \overline{z_{2}}, \overline{z_{1}}) on  \mathbb{C}^{3} . If  T=

 (\begin{array}{lll}
0   1   0
0   0   2
0   0   0
\end{array}) on  \mathbb{C}^{3} , then  T^{*}\neq CTC  =(\begin{array}{lll}
0   0   0
2   0   0
0   1   0
\end{array}) and  T^{*2}=CT^{2}C=(\begin{array}{lll}
0   0   0
0   0   0
2   0   0
\end{array}) . Hence

 T^{2} is a 1‐complex symmetric operator but  T is not a 1‐complex symmetric operator with
conjugation  C.

Now we will introduce exponential operators  T  :=e^{-iA} which act on a wave function
to move it in time and space (see [1]). Note that  T is a function of an operator  f(A)
which is defined its expansion in a Taylor series

 T=exp(-iA)= \sum_{n=0}^{\infty}\frac{(-iA)^{n}}{n!}=1-iA+\frac{(-iA)^{2}}{2!}+
The most common one is the time‐propagator or time‐evolution operator  U which is the
Hamiltonian function and propagates the wave function forward in time;

  U=exp( \frac{-iHt}{h})=1+\frac{-\dot{i}Ht}{h}+\frac{1}{2!}(\frac{-iHt}{h})^{2}
+\cdots
For an operator  T\in \mathcal{L}(\mathcal{H}) , if  t\in \mathbb{R} , then

 e^{itT}=I+itT+ \frac{(it)^{2}}{2!}T^{2}+\frac{(it)^{3}}{3!}T^{3}+ (6)

Theorem 3.3 If  T\in \mathcal{L}(\mathcal{H}) is a skew  m ‐complex symmetric operator with a conjugation
 C , then  e^{itT},  e^{-itT} , and  e^{-itT^{*}} are  (m, C) ‐isometric for every  t\in \mathbb{R}.
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In general, the converse of the previous theorem may not be hold. But, if  e^{itT} is  ( 1,  C) ‐
isometric operator and  T is a skew 2‐complex symmetric operator with the conjugation
 C , then  T is a skew complex symmetric operator.

Corollary 3.4 Let  T\in \mathcal{L}(\mathcal{H}) . Then the following statements hold:
(i) Assume that  T is skew  m ‐complex symmetric with a conjugation C. If  \lambda\in\sigma_{a}(e^{itT}) ,

then   \frac{1}{\overline{\lambda}}\in\sigma_{a}(e^{-itT^{*}}) . In particular, if  \lambda\in\sigma_{p}(e^{itT}) , then   \frac{1}{\overline{\lambda}}\in\sigma_{p}(e^{-itT^{*}}) .

(ii) If  T is skew  m ‐complex symmetric with a conjugation  C , then  e^{itnT} is an  (m, C) ‐
isometric operator for any  n\in \mathbb{N}.

(iii) Let  \{T_{k}\} be a sequence of skew  m ‐complex symmetric operators with a conjugation  C

such that   \lim_{karrow\infty}\Vert e^{itT_{k}}-e^{itT}\Vert=0 . Then  e^{itT} is an  (m, C) ‐isometric operator.

Recall that

  \cos(tT)=\frac{e^{itT}+e^{-itT}}{2} and   \sin(tT)=\frac{e^{itT}-e^{-itT}}{2i}
for every  t\in \mathbb{R}.

Corollary 3.5 Let  T\in \mathcal{L}(\mathcal{H}) be skew complex symmetric with a conjugation  C and let
 t\in \mathbb{R} . Then the following statements hold.
(i)  \cos(tT) is  a(1, C) ‐isometric operator if and only if  \cos(2tT^{*})=I.
(ii)  \sin(tT) is  a(1, C) ‐isometric operator if and only if  \cos(2tT^{*})=-I.

A closed subspace  \mathcal{M}\subset \mathcal{H} is invariant for  T if  T\mathcal{M}\subset \mathcal{M}.

Corollary 3.6 If  T\in \mathcal{L}(\mathcal{H}) is skew  m ‐complex symmetric and complex symmetric with
a conjugation  C , i. e.,  T^{*}=CTC , then the following statements hold:
(i)  e^{itT} is an algebraic operator of order at most  2m.

(ii)  Cker(\Gamma_{m-1}(e^{itT};C)) is invariant for  e^{itT}.

Corollary 3.7 If  T\in \mathcal{L}(\mathcal{H}) is skew  m ‐complex symmetric and complex symmetric with
a conjugation  C , then the following statements hold.
(i)  e^{itT} is unitarily equivalent to a finite operator matrix of the form:

 (\begin{array}{llllll}
\alpha_{l}   A_{12}   \cdots   \cdots   \cdots   A_{1,2m}
0               A_{2,2m}
0   0            \vdots
 0   0   \cdots   \cdots      \vdots
 0   0            A_{2m-l,2m}
0   0            \alpha_{2m}
\end{array})
where  a_{j} are the roots of the polynomial  p(z) of degree at most  2m.

(ii) The dimension of  \{(e^{itT})^{k}x\} is less than or equals to  2m.
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It is known from [15] that if  T is  m‐symmetric and  m is even, then  T is  (m-1)‐
symmetric. In 2012, M. Cho, S. Ôta, K. Tanahashi, and A. Uchiyama proved that if  T is
an invertible  m‐isometric operator and  m is even, then  T is an  (m-1) ‐isometric operator
(see [6] for more details). In view of these results, we will consider the following question;
if  T\in \mathcal{L}(\mathcal{H}) is skew  m ‐complex symmetric with a conjugation  C and  m is even, is it
skew  (m-1) ‐complex symmetric 2 In the next theorem, we give a partial solution for the
previous question.

Theorem 3.8 Let  T\in \mathcal{L}(\mathcal{H}) and let  C be a conjugation on  \mathcal{H} . Suppose that  A_{m-1}(e^{itT};C)
and  ((e^{itT})^{*})^{m-1}\Lambda_{m-1}(e^{-itT};C)C(e^{itT})^{m-1}C are nonnegative. If  T is a skew  m ‐complex
symmetric operator with the conjugation  C where  m is even, then  T is skew  (m-1) ‐
complex symmetric and  e^{itT} is an  (m-1, C) ‐isometric operator for all  t\in \mathbb{R}.

Corollary 3.9 If  T\in \mathcal{L}(\mathcal{H}) is skew  m ‐complex symmetric with a conjugation  C,  m is
even, and  [T, C]=0 , then  T is skew  (m-1) ‐complex symmetric.

4 On an operator  T commuting with CTC

In this section, we focus on an operator  T commuting with CTC. Given  T\in \mathcal{L}(\mathcal{H}) and
a conjugation  C on  \mathcal{H} , let

 C_{C}(T)  :=\{S\in \mathcal{L}(\mathcal{H})| [CTC,  S]=0\}

where  [R, S]  :=RS-SR . In this section, we study the case when

 T\in C_{C}(T) , that is, [CTC,  T]  =0.

We observe that  C_{C}(T) need not contain complex symmetric operators.

Example 4.1 Let  \mathcal{H}=\ell^{2} , let  \{e_{n}\} be an orthonormal basis of  \mathcal{H} and let  C :  \mathcal{H}arrow \mathcal{H}

be the conjugation given by  C( \sum_{n=0}^{\infty}x_{n}e_{n})=\sum_{n=0}^{\infty}\overline{x_{n}}e_{n} where  \{x_{n}\} is a sequence in  \mathbb{C}

with   \sum_{n=0}^{\infty}|x_{n}|^{2}<\infty and  Ce_{n}=e_{n} for all  n . If  W\in \mathcal{L}(\mathcal{H}) is the weighted shift given
by  We_{n}=\alpha_{n}e_{n+1} for all  n\geq 1 , then it is easy to compute  WCWCe_{n}=CWCWe_{n} for
all  n . Hence  W\in C_{C}(W) . In particular, if  \alpha_{n}=1 for all  n , then  W=S is the unilateral
shift and so  S\in C_{C}(S) . However,  S is not complex symmetric.

Recall that an operator  T\in \mathcal{L}(\mathcal{H}) is said to be normal if  T^{*}T=TT^{*} and binormal
if  T^{*}T and  TT^{*} commute where  T^{*} is the adjoint of  T . Note that every normal operator
is binormal.

Example 4.2 Let  \mathcal{H}=\mathbb{C}^{2} and let  C be a conjugation on  \mathcal{H} given by  C(x, y)=(\overline{y},\overline{x}) .

Assume that  R=  (\begin{array}{l}
1\dot{i}
1-i
\end{array}) on  \mathcal{H} . Then  CRC=  (\begin{array}{l}
1i
1-i
\end{array})  =R . Hence  R\in C_{C}(R) .

However,  R is not normal, but binormal.
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Example 4.3 Let  C and  J be conjugations on  \mathcal{H} . Assume that  T=  (\begin{array}{ll}
0   CJ
I   0
\end{array}) and

 \mathcal{J}=  (\begin{array}{ll}
0   J
J   0
\end{array}) on  \mathcal{H}\oplus \mathcal{H} . Then  \mathcal{J}T\mathcal{J}T=T\mathcal{J}T\mathcal{J}=  (\begin{array}{ll}
I   0
0   I
\end{array}) . Hence  T\in C_{\mathcal{J}}(T) is

normal.

In the next example, we know that there exists  T such that  T\not\in C_{C}(T) , in general.

Example 4.4 Let  \mathcal{H}=\mathbb{C}^{n} and  C  (z_{1}, z_{2}, z_{3}, \cdots , z_{n})=(\overline{z_{n}}, \cdots , 
\overline{z_{3}}, \overline{z_{2}}, \overline{z_{1}}) . If

 T=(\begin{array}{llllll}
               
               
               
               
               
               
\end{array}) and  e_{1}=(\begin{array}{l}
1
0
\vdots

 0
\end{array})
for all  \lambda_{j}\neq 0 , then  0=(CTC)Te_{1}\neq T(CTC)e_{1}=\lambda_{1}\cdot\overline{\lambda_{n-1}}\cdot 
e_{1} . Hence  T\not\in C_{C}(T) . But,
it is clear that  T is binormal.

Theorem 4.5 If  T\in \mathcal{L}(\mathcal{H}) is a normal operator, then  T\in C_{C}(T) for some conjugation
 C.

Note that every normal operator is complex symmetric (see [11]).

Proposition 4.6 Let  T\in C_{C}(T) for some conjugation C. Then the following statements
hold.

(i)  T^{*}\in C_{C}(T^{*}) .
(ii)  p(T)\in C_{C}(p(T)) for every polynomial  p.

(iii) If  T is invertible, then  T^{-1}\in C_{C}(T^{-1}) .
(iv) If  X\in \mathcal{L}(\mathcal{H}) is invertible with  [X, C]=0 , then  X^{-1}TX\in C_{C}(X^{-1}TX) .
(v) If  R\in \mathcal{L}(\mathcal{H}) is unitarily equivalent to  T , i. e.,  R=UTU^{*} , then  R\in C_{D}(R) for a
conjugation  D=UCU^{*}

(vi)  [T^{m}, CT^{n}C]=0 for all  n,  m\in \mathbb{N}.

(vii) The class of operators which satisfy  T\in C_{C}(T) is norm closed.

Proposition 4.7 Let  C,  C_{1},  C_{2} be conjugations on  \mathcal{H} . Then the following statements
hold.

(i) If  T_{\dot{i}}\in \mathcal{L}(\mathcal{H}_{i}) be such that  T_{i}\in C(T_{i}) for conjugations  C_{i} with  i=1,2 , respectively,
then  T_{1}\oplus T_{2}\in C_{C_{1}\oplus C_{2}}(T_{1}\oplus T_{2}) for a conjugation  C_{1}\oplus C_{2}.

(ii) Let  T\in C_{C}(T) and  S\in C_{C}(S) . If  [T, S]=0 and [CTC,  S ]  =0 , then  T+S\in C_{C}(T+S)
and  TS\in C_{C}(TS) for a conjugation  C.

(iii) If  T\in C_{C_{1}}(T) and  S\in C_{C_{2}}(S) for conjugations  C_{1} and  C_{2} , respectively, then   T\otimes S\in

 C_{C_{1}\otimes C_{2}}(T\otimes S) for a conjugation  C_{1}\otimes C_{2}.
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In [11], if  T is complex symmetric, then  ReT and  ImT are complex symmetric.

Proposition 4.8 Let  T\in C_{C}(T) . Then the following statements hold:

(i) Let  R= \frac{T+CTC}{2} and  S= \frac{T-CTC}{2i} . Then  R and  S belong to  C_{C}(T) such that
 T=R+iS and  [R, S]=0,  [R, C]=0 , and  [S, C]=0 hold.
(ii) If  T is normal, then  {\rm Re} T\in C_{C}({\rm Re} T) and  {\rm Im} T\in C_{C}({\rm Im} T) .

Lemma 4.9 ([17]) Let  T\in \mathcal{L}(\mathcal{H}) and let  C be a conjugation on  \mathcal{H} . Then  \sigma(CTC)=
 \sigma(T)^{*} and  \sigma_{a}(CTC)=\sigma_{a}(T)^{*}

Therefore, if  T satisfies  [T, C]=0 , then  \sigma(T)=\sigma(T)^{*} , that is,  \sigma(T) is a symmetric set
with the real line. For a commuting pair  (T, S)\in \mathcal{L}(\mathcal{H})^{2},  \sigma_{T}(T, S) and  \sigma_{ja}(T, S) denote
the Taylor spectrum and the joint approximate point spectrum of  (T, S) , respectively (see
[2] and [19] for more details).

Corollary 4.10 Let  T\in C_{C}(T) . Then there exist commuting operators  R and  S such
that the following statements hold:
(i)  T=R+iS and  (T, R, S) is a commuting 3‐tuple.
(ii)  \sigma(R) and  \sigma(S) are symmetric sets with the real line.
(iii) If  \lambda\in\sigma(T) , then there exist  \alpha\in\sigma(R) and  \beta\in\sigma(S) such that  \lambda=\alpha+i\beta.
(iv) If  \alpha\in\sigma(R) , then there exist  \lambda\in\sigma(T) and  \beta\in\sigma(S) such that  \lambda=\alpha+i\beta.
(v) If  \beta\in\sigma(S) , then there exist  \lambda\in\sigma(T) and  \alpha\in\sigma(R) such that  \lambda=\alpha+i\beta.

Remark that the statements (iii), (iv) and (v) hold for the approximate point spectra
 \sigma_{a}(T),  \sigma_{a}(R) and  \sigma_{a}(S) . Please see [2] for the spectral mapping theorem for the joint
approximate point spectrum.

For an operator  T\in \mathcal{L}(\mathcal{H}) and a conjugation  C , we define the operator  \alpha_{m}(T;C) by

  \alpha_{m}(T;C)=\sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
j
\end{array})  CT^{m-j}C\cdot T^{j}.

An operator  T\in \mathcal{L}(\mathcal{H}) is said to be an  [m, C] ‐symmetric operator if  \alpha_{m}(T;C)=0 (see
[5]).

Theorem 4.11 If  T\in \mathcal{C}_{C}(T) is an  [m, C] ‐symmetric operator, then CTC—T is m‐
nilpotent, i. e.,  (CTC-T)^{m}=0.

Corollary 4.12 If  T\in C_{C}(T) is an  [m, C] ‐symmetric operator, then

 \sigma_{T} (CTC,  T )  =\{(\lambda, \lambda) : \lambda\in\sigma(T)\}.

In this case, it holds  \sigma(CTC)=\sigma(T)=\sigma(T)^{*} Moreover, it holds  \sigma_{ja}(CTC, T)=
 \{(\lambda, \lambda):\lambda\in\sigma_{a}(T)\}.
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For an operator  T\in \mathcal{L}(\mathcal{H}),  T is said to be normaloid if   r(T)=\Vert T\Vert , where  r(T) is the
spectral radius of  T.

Corollary 4.13 Let  T\in C_{C}(T) be an  [m, C] ‐symmetric operator. If CTC—T is nor‐
maloid, then CTC—T  =0.

For an operator  T\in \mathcal{L}(\mathcal{H}) and a conjugation  C , we define the operator  \lambda_{m}(T;C) by

  \lambda_{m}(T;C)=\sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  CT^{m-j}C\cdot T^{m-j}.

An operator  T\in \mathcal{L}(\mathcal{H}) is said to be an  [m, C] ‐isometric operator if  \lambda_{m}(T;C)=0 . See [4]
for properties of  [m, C] ‐isometric operators.

Theorem 4.14 If  T\in C_{C}(T) is an  [m, C] ‐isometric operator, then CTC  T-I is m‐
nilpotent, i. e.,  ( CTC  T-I)^{m}=0.

Corollary 4.15 If  T\in C_{C}(T) is an  [m, C] ‐isometric operator, then  \sigma_{T}(CTC, T)=

  \{(\frac{1}{\lambda}, \lambda) : \lambda\in\sigma(T)\} . In this case, it holds  \sigma(CTC)=   \{\frac{1}{\lambda} : \lambda\in\sigma(T)\} . Moreover,  it

holds   \sigma_{ja}(CTC, T)=\{(\frac{1}{\lambda}, \lambda) : \lambda\in\sigma_{a}(T)\}
.

Theorem 4.16 Let  T\in \mathcal{L}(\mathcal{H}) be complex symmetric with a conjugation C. Suppose that
 T=U|T| is the polar decomposition of  T where  U=CJ and  J is a partial conjugation
supported on ran  (|T|) , which commutes with  |T| . Then the following statements are
equivalent.
(i)  T is binormal.
(ii)  |T|\in C_{C}(|T|) .
(iii)  [|\overline{T}^{D}|, |T|]=0 where  \overline{T}^{D}  :=|T|U is the Duggal transform of  T.

Corollary 4.17 Let  T\in \mathcal{L}(\mathcal{H}) be such that  T^{2} is normal. Then  |T|\in C_{C}(|T|) .

Example 4.18 Let  T=(\begin{array}{ll}
1   2
0   1
\end{array}) on  \mathbb{C}^{2} . Then  T is complex symmetric with the conju‐

gation  C defined by  C(z_{1}, z_{2})=(\overline{z_{2}}, \overline{z_{1}}) for  z_{1},  z_{2}\in \mathbb{C} . Since  |T|= \frac{1}{\sqrt{2}}  (\begin{array}{ll}
1   1
1   3
\end{array}) , it follows

that

 C|T|C|T|=(\begin{array}{ll}
2   3
1   2
\end{array}) and  |T|C|T|C=(\begin{array}{ll}
2   1
3   2
\end{array}) .

Hence  T is not binormal by Theorem 4.16.
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Example 4.19 Let  \mathcal{H}=\ell^{2} and let  C be the canonical conjugation given by  C( \sum_{n=0}^{\infty}x_{n}e_{n})=

  \sum_{n=0}^{\infty}\overline{x_{n}}e_{n} with  Ce_{n}=e_{n} for all  n . Assume that  T=(\begin{array}{ll}
S^{*}   I
0   S
\end{array}) on  \mathcal{H}\oplus \mathcal{H} , where  S\in \mathcal{L}(\mathcal{H})

is the unilateral shift. Then  S and  S^{*} commute with the conjugation  C . Denote the con‐

jugation  C given by  C=(\begin{array}{ll}
0   C
C   0
\end{array}). Then we obtain that

 CT^{*}-TC=(\begin{array}{ll}
C   CS^{*}
CS   0
\end{array}) - (\begin{array}{ll}
C   S^{*}C
SC   0
\end{array})=0.
Hence  T is a complex symmetric operator (cf.[14]). Moreover, since  T=  (\begin{array}{ll}
S^{*}   I
0   S
\end{array}) ,

it follows that  T^{*}T=  (\begin{array}{ll}
SS^{*}   S
S^{*}   2I
\end{array}) and  TT^{*}=  (\begin{array}{ll}
2I   S^{*}
S   SS^{*}
\end{array}) . So, we have  TT^{*}T^{*}T=

 (\begin{array}{lll}
2SS^{*}+S^{*2}   2S   +2S^{*}
S^{2}S^{*}+SS^{*2}   S^{2}+2SS^{*}   
\end{array}) and  T^{*}TTT^{*}=  (\begin{array}{ll}
S^{2}+2SS^{*}   SS^{*2}+S^{2}S^{*}
2S+2S^{*}   S^{*2}+2SS^{*}
\end{array}) . Hence  T is

not binormal. On the other hand, if  S is the unilateral shift on  \mathcal{H} , then  T=S^{*}\oplus S is
binormal and complex symmetric.
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