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Remark on skew m-complex symmetric operators
by

Muneo Cho, Eungil Ko, and Ji Eun Lee

Abstract

In this paper we study skew m-complex symmetric operators. In particular, we prove
that if T € L(H) is a skew m-complex symmetric operator with a conjugation C', then
et e and e are (m,C)-isometric for every t € R. Moreover, we investigate
some conditions for skew m-complex symmetric operators to be skew (m — 1)-complex
symmetric.

1 Introduction

The results in this paper will be appeared in other journals. Let L(H) be the algebra of
all bounded linear operators on a separable complex Hilbert space H.

Definition 1.1 An operator C' is said to be a conjugation on H if the following conditions
hold:

(i) C is antilinear; C(ax + by) = aCx + bCy for all a,b € C and x,y € H,

(i) C is isometric; (Cx,Cy) = (y,x) for all z,y € H, and

(iii) C is involutive; C? = 1.

Moreover, if C' is a conjugation on #, then |C|| = 1, (CTC)* = CT*C and (CTC’)k =
CT*C for every positive integer k. For any conjugation C, there is an orthonormal basis
{en}22, for H such that Ce, = e, for all n (see [11] for more details). We first consider
the following examples for conjugations.

Example 1.2 Let’s define an operator C' as follows:

(i) C(z1, w0, 23, -+ , ) = (T1,T2, T3, ,Tp) o0 C™.

(i) C(xy, 22,23, - ,&n) = (Tn, Tn_1, Tnz, -+ ,T1) on C".
(i) [Cf](x) = J(z) on £3(X, p).

(iv) [CF](x) =

(
(

—

(x
f(1 —z) on L2([0,1]).
v) [Cfl(z) = f(=x) on L*(R").
vi) Cf(z) = 2f(2)u(z) € K2 for all f € K2 where u is inner function and K2 = H?©OuH?
is Model space.
Then each C'in (i)-(vi) is a conjugation.
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In 1970, J. W. Helton [15] initiated the study of operators T € L(H) which satisfy an
identity of the form;
Z m 7 ( )T*]T'm J =0. (1)
j=

Using the identity (1) and a conjugation operator, we define skew m-complex symmet-
ric operators as follows; an operator T € L(H) is said to be a skew m-complex symmetric
operator if there exists some conjugation C' such that

3 (m> THCT™IC = 0

— \J

7=0

for some positive integer m. In this case, we say that T is skew m-complex symmetric

with conjugation C. In particular, if m = 1, then 7" is said to be skew complex symmetric,

ie, T =—CT*C. Set I,(T;C) := 377" <77> T*CT™=IC. Then T is a skew m-complex

symmetric operator with conjugation C' if and only if T',,(7; C') = 0. Note that
T*0(T5C) + (T3 C)(CTC) = T (T3 ). (2)

From (2), if T is skew m-complex symmetric with conjugation C, then T is skew n-
complex symmetric with conjugation C' for n > m. In general, skew m-complex symmetric
operators are not skew (m — 1)-complex symmetric.

01

Example 1.3 Let Cx = (z:f) forx = (2) and T = < 00

) on C2. Then T* = CTC =

( 00 ) and so CT?C +2T*CTC 4+ T** = 0. But, CTC +T* = 2 ( 00 # 0. Hence

10 10
T is a skew 2-complex symmetric operator which is not skew complex symmetric (see [3]).

In 1995, Agler and Stankus ([1]) studied the following operator. For a fixed m € N,
an operator T € L(H) is said to be an m-isometric operator if it satisfies an identity;

Xm: < )T*m iTm=i — . (3)

J=0

Using the identity (3) and a conjugation C, the authors of [9] define the following operator;
An operator T' € L(H) is said to be an (m, C)-isometric operator if there exists some
conjugation C' such that

Z ( )T JeTmic =0 (4)
J=

for some m € N. In particular, it 7 = CT'C, then T' is an m-isometric operator. Put
A (T) = 300 (—1) (TJ'.L)T*’"*]CT’"_J'C’. Thus T is an (m, C)-isometric operator if and
only if A,,(T) = 0. Note that

T* Ay (T)HCTC) = Au(T) = Agna(T). (5)



From (5), if Ay (T) = 0, then A,,(T') = 0 for all n > m. Moreover, T is an (m, C')-isometry
if and only if CTC is an (m, C')-isometry (see [9]).
Next, we provide several examples of (m, C)-isometric operators with a conjugation

C.

Example 1.4 ([9]) Let C be the canonical conjugation on #H given by

C(i xnen) = ifnen
n=0

n=0

where {e,} is an orthonormal basis of H with Ce, = e, for all n. Assume that W is
the weighted shift given by We, = ape,+1 where o, = W/TTE{ fora > 0. If a = 1,
then W = S is the unilateral shift. Hence S is (1, C)-isometry. If o = 2, then, since
W = CWC, it holds that

[ - 2W*CWC + W?CW?C = 0.
Therefore, W is an (2, C)-isometric operator which is called the Dirichlet shift. On the
other hand, if & = m, then, since W = CWC, it holds that

> (-1 <m> W ICW IO = 0.

=0

P J

So, W is an (m, C')-isometric operator.

Example 1.5 ([9]) Let C be a conjugation defined by Cf(z) = f(2) and let {e,}>°, be
an orthonormal basis of H2. Set C = C'@® C. Then C is clearly a conjugation on H? @ H?.
Assume that

T= (g 60?(30) € L(H? & H?)

where S is the unilateral shift on H2. Then
A (T) = TH(T*CTC —I)CTC — (T*CTC — 1)
(0 0y (o 0\ _,
N0 ey ®en 0 eg®ey)
Hence T is an (2,C)-isometric operator. If R = S + ¢y ® €g, then
CRC =CSC + C(eg X 60)0 =9 + ey X eg.
Since S*eq = 0, it follows that R*CRC = (5* 4+ g ® €9)(S + eg ® eg) = I + ¢g ® ¢g and so

Ay(R) = R*(R*CRC — I)CRC — (R*CRC — 1)
= (S* + € (024 60)(60 (24 60)(5 + €0 4] 60) — €p X €y = O

Therefore, R is an (2, C')-isometric operator.



2 (m,C)-isometric operators

In this section, we state properties of (m,C)-isometric operators which are the known
results in [9].

Theorem 2.1 Let T € L(H) and let C be a conjugation on H. Then the following state-
ments hold.

(i) If T is an invertible, then T is an (m, C)-isometric operator if and only if T~* is an
(m, C')-isometry.

(i) If T is an (m, C)-isometric operator with the conjugation C' and T is complex symmet-
ric, i.e., T = CT*C, then T is an algebraic operator of order at most 2m. (iii) If {T}} is
a sequence of (m, C)-isometric operators with conjugation C' such that ]}Lr& T, —T| =0,
then T is also an (m, C)-isometric operator.

(iv) If T is an (m, C)-isometric operator, then T™ is also an (m,C)-isometric operator
for any n € N.

If T € L(H), we write o(T), 0,(T") and o,(T") for the spectrum, the point spectrum
and the approximate point spectrum of T, respectively.

Lemma 2.2 Let T € L(H) be an (m, C)-isometric operator where C' is a conjugation on
H. Then 0 & o,(T).

We observe from Lemma that both ran(T) and ker(T') are closed complemented sub-
spaces. If ran(T) = H, then T is invertible. Otherwise, ran(7T') is a nontrivial invariant
subspace of T'. Hence the representation of 7" with respect to the Hilbert space decompo-
sition ran(T) & ker(T*) = H is the upper triangular matrices

(7(;1 7(;2) ran(T) O ker(T*) — ran(T) & ker(T™*)

where Ty = T'|,qn(r), and T, is an operator mapping ker(7™) into ran(7T") and ker(7T),

respectively.

Theorem 2.3 Let T € L(H) be an (m, C)-isometric operator where C' is a conjugation
1 1

onH. If X € 0,(T), then X € 0,(T"). In particular, if X is an eigenvalue of T, then <

is an eigenvalue of T*.

Theorem 2.4 Let T € L(H) be an (m, C)-isometric operator where C' is a conjugation

on H. Let \,pp € C with A\ # 1. If {x,} and {yn} are sequences of unit vectors such

that lim (T — Nz, = 0 and lim (T — p)y, = 0, then lim (Cx,,y,) = 0. In particular, if
n—oo n—oo n—o0

(T —Nax=0 and (T — )y =0, then (Cx,y) = 0.

Corollary 2.5 Let C be a conjugation on H. If T € L(
with a conjugation C, then ker(T — \) C C'ker((T™ —

x

) is an (m, C')-isometric operator

)")-

> —



3 Skew m-complex symmetric operators

In this section, we study properties of skew m-complex symmetric operators. In [7], if T'
is an m-complex symmetric operator, then T" is also m-complex symmetric for some n.
Unlike an m-complex symmetric operator (see [7] and [9]), the power of a skew m-complex
symmetric operator is not skew m-complex symmetric.

1 a 0
Example 3.1 7= 0 0 a for a € C, then T is skew complex symmetry with
00 —1
the conjugation C(z1, 22, 23) = (—Z3, Z2, —Z1) from [18]. A simple calculation shows that
1 a ad -1 0 0
T°=10 0 —a | and —CT?C = —a 0 0
00 1 —a* a —1

Hence T2 is not skew complex symmetric with the conjugation C.

Example 3.2 Let C be a conjugation given by C(z1, 29, 23) = (23,%,%1) on C3. If T' =

010 000 000
00 2|onC?thenT*#CTC =12 0 0]|andT**=CT?C =0 0 0] .Hence
000 010 200

T? is a 1-complex symmetric operator but 7" is not a 1-complex symmetric operator with
conjugation C.

Now we will introduce exponential operators T := e~*4 which act on a wave function
to move it in time and space (see [1]). Note that T is a function of an operator f(A)

which is defined its expansion in a Taylor series

[e'e] 714” 7'A2
T:erp(*iA):Z%:lfiA+( ;) o
n=0 : )

The most common one is the time-propagator or time-evolution operator U which is the
Hamiltonian function and propagates the wave function forward in time;

—iHt —iHt 1, —iHt
U= =14+ —— 4+ —(—)?
cop(— ) =l 5 g
For an operator T' € L(H), if t € R, then
; it)? it)?
eZtT:I+z'tT+(72—|)T2+%T3+---. (6)

Theorem 3.3 If T € L(H) is a skew m-complex symmelric operator with a conjugation
C, then e, e and e~ are (m, C)-isometric for every t € R.



In general, the converse of the previous theorem may not be hold. But, if €T is (1, C)-
isometric operator and 7' is a skew 2-complex symmetric operator with the conjugation
C, then T is a skew complex symmetric operator.

Corollary 3.4 Let T € L(H). Then the following statements hold:
(i) Assume that T is skew m-complex symmetric with a conjugation C. If X € o,(eT),
—itT™ ) T ) '

1 ) 1
then x € o,(e . In particular, if X € o,(e""), then 3 € oy(e

(ii) If T is skew m-complex symmetric with a conjugation C, then e

isometric operator for any n € N.
(iil) Let {Tx} be a sequence of skew m-complex symmetric operators with a conjugation C
such that limy_, ||e?Ts — €| = 0. Then e is an (m, C)-isometric operator.

is an (m,C)-

Recall that - ar o ar
cos(tT) = % and sin(tT) = %
i

for every t € R.

Corollary 3.5 Let T € L(H) be skew complex symmetric with a conjugation C' and let
t € R. Then the following statements hold.

(i) cos(tT) is a (1,C)-isometric operator if and only if cos(2tT*) = I.

(ii) sin(tT) is a (1, C)-isometric operator if and only if cos(2tT*) = —1.

A closed subspace M C H is invariant for T if TM C M.

Corollary 3.6 If T € L(H) is skew m-complex symmetric and complex symmetric with
a conjugation C, i.e., T* = CTC, then the following statements hold:

(i) €* is an algebraic operator of order at most 2m.

(ii) Cker(T,,—1(e"T;C)) s invariant for e*T.

Corollary 3.7 If T € L(H) is skew m-complex symmetric and complex symmetric with
a conjugation C, then the following statements hold.
(i) €™ is unitarily equivalent to a finite operator matriz of the form:

a; A - A1,2m
0 a Ay -+ o Agon
0 0 Q3

0 0

0 0 Ame 1,2m
0 0 Qo

where a; are the roots of the polynomial p(z) of degree at most 2m.
(ii) The dimension of \/3—o{(e"T)*z} is less than or equals to 2m.



It is known from [15] that if 7' is m-symmetric and m is even, then T is (m — 1)-
symmetric. In 2012, M. Cho, S. Ota, K. Tanahashi, and A. Uchiyama proved that if T is
an invertible m-isometric operator and m is even, then T is an (m — 1)-isometric operator
(see [6] for more details). In view of these results, we will consider the following question;
if T € L(H) is skew m-complex symmetric with a conjugation C' and m is even, is it
skew (m — 1)-complex symmetric? In the next theorem, we give a partial solution for the
previous question.

Theorem 3.8 Let T € L(H) and let C be a conjugation on H. Suppose that A, 1(e"T; C)
and (™))"=, 1 (e7*T;, C)C(e")"=1C are nonnegative. If T is a skew m-complex
symmetric operator with the conjugation C' where m is even, then T is skew (m — 1)-
complex symmetric and ¢*T is an (m — 1, C)-isometric operator for all t € R.

Corollary 3.9 If T € L(H) is skew m-complex symmetric with a conjugation C, m is
even, and [T,C] =0, then T is skew (m — 1)-complex symmetric.

4 On an operator 7' commuting with C'TC

In this section, we focus on an operator T' commuting with CTC'. Given T € L(H) and
a conjugation C' on H, let

Co(T):={S e LH)|[CTC,S] =0}
where [R, S| := RS — SR. In this section, we study the case when
T € Co(T), thatis, [CTC,T]=0.

We observe that Co(T') need not contain complex symmetric operators.

Example 4.1 Let # = (2, let {e,} be an orthonormal basis of H and let C : H — H
be the conjugation given by C'(3°7°  znen) = Y ooy Tn ey where {z,} is a sequence in C
with 07 |z,]* < 0o and Ce, = ¢, for all n. If W € L(H) is the weighted shift given
by We, = ape,iq for all n > 1, then it is easy to compute WCW Ce,, = CWCWe,, for
all n. Hence W € Co(W). In particular, if a,, = 1 for all n, then W = S is the unilateral
shift and so S € Co(S). However, S is not complex symmetric.

Recall that an operator 7' € £(#) is said to be normal if T*T = TT* and binormal
if T*T and TT* commute where T™ is the adjoint of T. Note that every normal operator
is binormal.

Example 4.2 Let H = C? and let C be a conjugation on H given by C(z,y) = (¥,T).

Assume that R = (© L on H. Then CRC = (Z 1.) = R. Hence R € Co(R).

1 — 1 —
However, R is not normal, but binormal.



Example 4.3 Let C' and J be conjugations on H. Assume that T = (? C(’)J) and
10

J = (0 J) on H @& H. Then JTIJT = TIJTT = (0 7

=17 0 > Hence T € C4(T) is

normal.

In the next example, we know that there exists T such that T & Co(7T), in general.

Example 4.4 Let H = C" and C(z1, 29,23, -, 2n) = (Zn, - - , 23, 22, 21). 1f

0 M O 0 1
00 X O 0 0
T=1" ' - 0 and e; =
0 . 0
. o0 At :
0 0 . R 0 0

for all A; # 0, then 0 = (CTC)T e1 # T(CTC)er = A - Mp—1-€1. Hence T & Cc(T'). But,
it is clear that 7" is binormal.

Theorem 4.5 If T € L(H) is a normal operator, then T € Co(T) for some conjugation
C.

Note that every normal operator is complex symmetric (see [11]).

Proposition 4.6 Let T € Co(T) for some conjugation C. Then the following statements
hold.

(i) T* € Ce(T™).

(it) p(T) € Co(p(T)) for every polynomial p.

(iii) If T is invertible, then T~ € Co(T™1).

(iv) If X € L(H) is invertible with [X,C] =0, then X 'TX € Co(X'TX).

(v) If R € L(H) is unitarily equivalent to T, i.e., R = UTU*, then R € Cp(R) for a
conjugation D = UCU*.

(vi) [T™,CT"C] =0 for all n,m € N.

(vii) The class of operators which satisfy T € Co(T) is norm closed.

Proposition 4.7 Let C,Cy,Cy be conjugations on H. Then the following statements
hold.

(i) If T; € L(H;) be such that T; € C(T;) for conjugations C; with i = 1,2, respectively,
then Ty ® Ty € Coyac, (Th ® Ts) for a conjugation Cy & Cs.

(i) Let T € Co(T) and S € Co(S). If[T,S] =0 and [CTC, S] =0, then T+S € Co(T+5S)
and T'S € Co(TS) for a conjugation C.

(ili) If T € Ce, (T) and S € Cey(S) for conjugations Cy and Cs, respectively, then T .S €
Covgo, (T ® S) for a conjugation Cy ® Cs.



In [11], if T is complex symmetric, then ReT and I'mT are complex symmetric.

Proposition 4.8 Let T € Co(T'). Then the following statements hold:

T T T—-CT
(i) Let R = # and S = % Then R and S belong to Co(T) such that

i
T=R+1S and [R,S] =0, [R,C] =0, and [S,C] =0 hold.
(i) If T is normal, then Re T € Cc(Re T) and Im T € Co(Im T).

Lemma 4.9 ([17]) Let T € L(H) and let C be a conjugation on H. Then o(CTC) =
o(T)* and o,(CTC) = o,(T)*.

Therefore, if T satisfies [T, C] = 0, then o(T) = o(T)*, that is, o(T) is a symmetric set
with the real line. For a commuting pair (T,S) € L(H)*, or(T,S) and 0,,(T,S) denote
the Taylor spectrum and the joint approzimate point spectrum of (T, S), respectively (see
[2] and [19] for more details).

Corollary 4.10 Let T € Co(T). Then there exist commuting operators R and S such
that the following statements hold:

(i) T=R+iS and (T, R,S) is a commuting 3-tuple.

(i) o(R) and o(S) are symmetric sets with the real line.

(iii) If A € o(T), then there exist « € o(R) and B € o(S) such that A = a4 if5.

(iv) If a € o(R), then there exist X € o(T) and 8 € o(S) such that A = a + 0.

(v) If B € 0(S), then there exist A € o(T) and o € o(R) such that X = o+ if3.

Remark that the statements (iii), (iv) and (v) hold for the approximate point spectra
04(T),04(R) and 0,(S). Please see [2] for the spectral mapping theorem for the joint
approximate point spectrum.

For an operator T' € L(H) and a conjugation C, we define the operator «,,(7;C) b

am(T;C) = zm:(—nj (T) cTmiC - v

J=0

An operator T' € L(H) is said to be an [m, C]-symmetric operator if o, (7;C) = 0 (see

[5])-

Theorem 4.11 If T € Co(T) is an [m, C)-symmetric operator, then CTC — T is m-
nilpotent, i.e., (CTC —T)™ = 0.

Corollary 4.12 If T € Cco(T) is an [m, Cl-symmetric operator, then
or(CTC,T)={(\ ) : Xeo(T)}.

In this case, it holds o(CTC) = o(T) = o(T)*. Moreover, it holds c;,(CTC,T) =
{A) © A e al(T)}.



10

For an operator T' € L(H), T is said to be normaloid if r(T) = ||T||, where r(T) is the
spectral radius of T

Corollary 4.13 Let T € Cco(T) be an [m, Cl-symmetric operator. If CTC — T is nor-
maloid, then CTC —T = 0.

For an operator T € L(H) and a conjugation C, we define the operator \,,,(T; C) by

An(T5C) = (~1) (m) cTmC . T
=0 J

An operator T' € L(H) is said to be an [m, Cl-isometric operator if A, (T;C) = 0. See [4]

for properties of [m, Cl-isometric operators.

Theorem 4.14 If T € Co(T) is an [m, C)-isometric operator, then CTCT — I is m-
nilpotent, i.e., (CTCT —I)™ = 0.

Corollary 4.15 If T € Cc(T) is an [m,C|-isometric operator, then op(CTC,T) =
1 1
{(X’/\) A€ a(T)}. In this case, it holds o(CTC) = {X A€ o(T)}. Moreover, it

holds 9,,(CTC, T) = {(%,)\) L\ € 0u(T)].

Theorem 4.16 Let T € L(H) be complex symmetric with a conjugation C. Suppose that
T = U|T| is the polar decomposition of T where U = CJ and J is a partial conjugation
supported on ran(|T|), which commutes with |T|. Then the following statements are
equivalent.

(i) T is binormal.

(i) [T]eco(T)).

(iii) [|TP|,|T|] = 0 where TP := |T|U is the Duggal transform of T.

Corollary 4.17 Let T € L(H) be such that T? is normal. Then |T| € Co(|T)).

Example 4.18 Let T = < 2) on C%. Then T is complex symmetric with the conju-

1
0 1
gation C' defined by C(z1,2,) = (%, 71) for 21,2 € C. Since |T| = G ;

7 > , it follows
that

2 3 21
C|T|C|T) = <1 2) and |T|C|T|C = <3 2).

Hence T is not binormal by Theorem 4.16.



Example 4.19 Let H = % and let C be the canonical conjugation given by C(3 0" z,e,) =
on HEH, where S € L(H)

S* I
0 S
is the unilateral shift. Then S and S* commute with the conjugation C'. Denote the con-

ZZO:O T,e, with Ce,, = e, for all n. Assume that T =

jugation C given by C = <g g) Then we obtain that
. [ C oSt c s\ _
er —TC(CS 0>_(SC 0)0.
. . ) S* I

Hence T is a complex symmetric operator (cf.[14]). Moreover, since T = 0 s
. o [SS* S « (21 57 e
it follows that 7T = g 91 and TT* = g g9+ ) So, we have TT*T*T =

255* + 82 284 25* X . [S*+285 SS** 4 §%s* .
(szs* 4592 §24ogg) AT = { 9g og g2 4ogg | Hence Ty

not binormal. On the other hand, if S is the unilateral shift on H, then T = S*®S is
binormal and complex symmetric.
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