Remark on skew *m*-complex symmetric operators

by

Muneo Chō, Eungil Ko, and Ji Eun Lee

Abstract

In this paper we study skew *m*-complex symmetric operators. In particular, we prove that if $T \in \mathcal{L}(\mathcal{H})$ is a skew *m*-complex symmetric operator with a conjugation C, then e^{itT} , e^{-itT} , and e^{-itT^*} are (m, C)-isometric for every $t \in \mathbb{R}$. Moreover, we investigate some conditions for skew *m*-complex symmetric operators to be skew (m - 1)-complex symmetric.

1 Introduction

The results in this paper will be appeared in other journals. Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H} .

Definition 1.1 An operator C is said to be a conjugation on \mathcal{H} if the following conditions hold:

(i) C is antilinear; $C(ax + by) = \overline{a}Cx + \overline{b}Cy$ for all $a, b \in \mathbb{C}$ and $x, y \in \mathcal{H}$,

(ii) C is isometric; $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$, and

(iii) C is involutive; $C^2 = I$.

Moreover, if C is a conjugation on \mathcal{H} , then ||C|| = 1, $(CTC)^* = CT^*C$ and $(CTC)^k = CT^kC$ for every positive integer k. For any conjugation C, there is an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ for \mathcal{H} such that $Ce_n = e_n$ for all n (see [11] for more details). We first consider the following examples for conjugations.

Example 1.2 Let's define an operator C as follows:

(i) $C(x_1, x_2, x_3, \dots, x_n) = (\overline{x_1}, \overline{x_2}, \overline{x_3}, \dots, \overline{x_n})$ on \mathbb{C}^n . (ii) $C(x_1, x_2, x_3, \dots, x_n) = (\overline{x_n}, \overline{x_{n-1}}, \overline{x_{n-2}}, \dots, \overline{x_1})$ on \mathbb{C}^n . (iii) $[Cf](x) = \overline{f(x)}$ on $\mathcal{L}^2(\mathcal{X}, \mu)$. (iv) $[Cf](x) = \overline{f(1-x)}$ on $L^2([0, 1])$. (v) $[Cf](x) = \overline{f(-x)}$ on $L^2(\mathbb{R}^n)$. (vi) $Cf(z) = \overline{zf(z)}u(z) \in \mathcal{K}_u^2$ for all $f \in \mathcal{K}_u^2$ where u is inner function and $\mathcal{K}_u^2 = H^2 \odot u H^2$ is Model space. Then each C in (i)-(vi) is a conjugation.

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

In 1970, J. W. Helton [15] initiated the study of operators $T \in \mathcal{L}(\mathcal{H})$ which satisfy an identity of the form;

$$\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T^{*j} T^{m-j} = 0.$$
(1)

Using the identity (1) and a conjugation operator, we define skew *m*-complex symmetric operators as follows; an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be a *skew m*-complex symmetric operator if there exists some conjugation C such that

$$\sum_{j=0}^{m} \binom{m}{j} T^{*j} C T^{m-j} C = 0$$

for some positive integer m. In this case, we say that T is skew m-complex symmetric with conjugation C. In particular, if m = 1, then T is said to be *skew complex symmetric*, i.e., $T = -CT^*C$. Set $\Gamma_m(T;C) := \sum_{j=0}^m \binom{m}{j} T^{*j}CT^{m-j}C$. Then T is a skew m-complex symmetric operator with conjugation C if and only if $\Gamma_m(T;C) = 0$. Note that

$$T^*\Gamma_m(T;C) + \Gamma_m(T;C)(CTC) = \Gamma_{m+1}(T;C).$$
(2)

From (2), if T is skew m-complex symmetric with conjugation C, then T is skew n-complex symmetric with conjugation C for $n \ge m$. In general, skew m-complex symmetric operators are not skew (m-1)-complex symmetric.

Example 1.3 Let $Cx = \begin{pmatrix} \overline{x_2} \\ \overline{x_1} \end{pmatrix}$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2 . Then $T^* = CTC = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and so $CT^2C + 2T^*CTC + T^{*2} = 0$. But, $CTC + T^* = 2\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq 0$. Hence T is a skew 2-complex symmetric operator which is not skew complex symmetric (see [3]).

In 1995, Agler and Stankus ([1]) studied the following operator. For a fixed $m \in \mathbb{N}$, an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an *m*-isometric operator if it satisfies an identity;

$$\sum_{j=0}^{m} (-1)^j \binom{m}{j} T^{*m-j} T^{m-j} = 0.$$
(3)

Using the identity (3) and a conjugation C, the authors of [9] define the following operator; An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an (m, C)-isometric operator if there exists some conjugation C such that

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} T^{*m-j} C T^{m-j} C = 0$$
(4)

for some $m \in \mathbb{N}$. In particular, if T = CTC, then T is an m-isometric operator. Put $\Lambda_m(T) := \sum_{j=0}^m (-1)^j {m \choose j} T^{*m-j} C T^{m-j} C$. Thus T is an (m, C)-isometric operator if and only if $\Lambda_m(T) = 0$. Note that

$$T^*\Lambda_m(T)(CTC) - \Lambda_m(T) = \Lambda_{m+1}(T).$$
(5)

From (5), if $\Lambda_m(T) = 0$, then $\Lambda_n(T) = 0$ for all $n \ge m$. Moreover, T is an (m, C)-isometry if and only if CTC is an (m, C)-isometry (see [9]).

Next, we provide several examples of (m, C)-isometric operators with a conjugation C.

Example 1.4 ([9]) Let C be the canonical conjugation on \mathcal{H} given by

$$C(\sum_{n=0}^{\infty} x_n e_n) = \sum_{n=0}^{\infty} \overline{x_n} e_n$$

where $\{e_n\}$ is an orthonormal basis of \mathcal{H} with $Ce_n = e_n$ for all n. Assume that W is the weighted shift given by $We_n = \alpha_n e_{n+1}$ where $\alpha_n = \sqrt{\frac{n+\alpha}{n+1}}$ for $\alpha > 0$. If $\alpha = 1$, then W = S is the unilateral shift. Hence S is (1, C)-isometry. If $\alpha = 2$, then, since W = CWC, it holds that

$$I - 2W^*CWC + W^{*2}CW^2C = 0.$$

Therefore, W is an (2, C)-isometric operator which is called the Dirichlet shift. On the other hand, if $\alpha = m$, then, since W = CWC, it holds that

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} W^{*m-j} C W^{m-j} C = 0.$$

So, W is an (m, C)-isometric operator.

Example 1.5 ([9]) Let C be a conjugation defined by $Cf(z) = \overline{f(\overline{z})}$ and let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis of H^2 . Set $\mathcal{C} = C \oplus C$. Then \mathcal{C} is clearly a conjugation on $H^2 \oplus H^2$. Assume that

$$T = \begin{pmatrix} S & e_0 \otimes e_0 \\ 0 & I \end{pmatrix} \in \mathcal{L}(H^2 \oplus H^2)$$

where S is the unilateral shift on H^2 . Then

$$\Lambda_2(T) = T^*(T^*\mathcal{C}T\mathcal{C} - I)\mathcal{C}T\mathcal{C} - (T^*\mathcal{C}T\mathcal{C} - I)$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & e_0 \otimes e_0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & e_0 \otimes e_0 \end{pmatrix} = 0.$$

Hence T is an $(2, \mathcal{C})$ -isometric operator. If $R = S + e_0 \otimes e_0$, then

$$CRC = CSC + C(e_0 \otimes e_0)C = S + e_0 \otimes e_0.$$

Since $S^*e_0 = 0$, it follows that $R^*CRC = (S^* + e_0 \otimes e_0)(S + e_0 \otimes e_0) = I + e_0 \otimes e_0$ and so

$$\Lambda_2(R) = R^* (R^* CRC - I) CRC - (R^* CRC - I) = (S^* + e_0 \otimes e_0) (e_0 \otimes e_0) (S + e_0 \otimes e_0) - e_0 \otimes e_0 = 0.$$

Therefore, R is an (2, C)-isometric operator.

2 (m, C)-isometric operators

In this section, we state properties of (m, C)-isometric operators which are the known results in [9].

Theorem 2.1 Let $T \in \mathcal{L}(\mathcal{H})$ and let C be a conjugation on \mathcal{H} . Then the following statements hold.

(i) If T is an invertible, then T is an (m, C)-isometric operator if and only if T^{-1} is an (m, C)-isometry.

(ii) If T is an (m, C)-isometric operator with the conjugation C and T is complex symmetric, i.e., $T = CT^*C$, then T is an algebraic operator of order at most 2m. (iii) If $\{T_k\}$ is a sequence of (m, C)-isometric operators with conjugation C such that $\lim_{k \to \infty} ||T_k - T|| = 0$,

then T is also an (m, C)-isometric operator. (iv) If T is an (m, C)-isometric operator, then T^n is also an (m, C)-isometric operator for any $n \in \mathbb{N}$.

If $T \in \mathcal{L}(\mathcal{H})$, we write $\sigma(T)$, $\sigma_p(T)$ and $\sigma_a(T)$ for the spectrum, the point spectrum and the approximate point spectrum of T, respectively.

Lemma 2.2 Let $T \in \mathcal{L}(\mathcal{H})$ be an (m, C)-isometric operator where C is a conjugation on \mathcal{H} . Then $0 \notin \sigma_a(T)$.

We observe from Lemma that both ran(T) and ker(T) are closed complemented subspaces. If $ran(T) = \mathcal{H}$, then T is invertible. Otherwise, ran(T) is a nontrivial invariant subspace of T. Hence the representation of T with respect to the Hilbert space decomposition $ran(T) \oplus ker(T^*) = \mathcal{H}$ is the upper triangular matrices

$$\begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix} : ran(T) \oplus \ker(T^*) \to ran(T) \oplus \ker(T^*)$$

where $T_1 = T|_{ran(T)}$, and T_2 is an operator mapping ker (T^*) into ran(T) and ker (T^*) , respectively.

Theorem 2.3 Let $T \in \mathcal{L}(\mathcal{H})$ be an (m, C)-isometric operator where C is a conjugation on \mathcal{H} . If $\lambda \in \sigma_a(T)$, then $\frac{1}{\overline{\lambda}} \in \sigma_a(T^*)$. In particular, if λ is an eigenvalue of T, then $\frac{1}{\overline{\lambda}}$ is an eigenvalue of T^* .

Theorem 2.4 Let $T \in \mathcal{L}(\mathcal{H})$ be an (m, C)-isometric operator where C is a conjugation on \mathcal{H} . Let $\lambda, \mu \in \mathbb{C}$ with $\lambda \mu \neq 1$. If $\{x_n\}$ and $\{y_n\}$ are sequences of unit vectors such that $\lim_{n \to \infty} (T - \lambda)x_n = 0$ and $\lim_{n \to \infty} (T - \mu)y_n = 0$, then $\lim_{n \to \infty} \langle Cx_n, y_n \rangle = 0$. In particular, if $(T - \lambda)x = 0$ and $(T - \mu)y = 0$, then $\langle Cx, y \rangle = 0$.

Corollary 2.5 Let C be a conjugation on \mathcal{H} . If $T \in \mathcal{L}(\mathcal{H})$ is an (m, C)-isometric operator with a conjugation C, then $\ker(T - \lambda) \subseteq C \ker((T^* - \frac{1}{\overline{\lambda}})^m)$.

3 Skew *m*-complex symmetric operators

In this section, we study properties of skew *m*-complex symmetric operators. In [7], if T is an *m*-complex symmetric operator, then T^n is also *m*-complex symmetric for some *n*. Unlike an *m*-complex symmetric operator (see [7] and [9]), the power of a skew *m*-complex symmetric operator is not skew *m*-complex symmetric.

Example 3.1 If $T = \begin{pmatrix} 1 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & -1 \end{pmatrix}$ for $a \in \mathbb{C}$, then T is skew complex symmetry with the conjugation $C(z_1, z_2, z_3) = (-\overline{z_3}, \overline{z_2}, -\overline{z_1})$ from [18]. A simple calculation shows that

$$T^{2} = \begin{pmatrix} 1 & a & a^{2} \\ 0 & 0 & -a \\ 0 & 0 & 1 \end{pmatrix} \text{ and } -CT^{2}C = \begin{pmatrix} -1 & 0 & 0 \\ -a & 0 & 0 \\ -a^{2} & a & -1 \end{pmatrix}.$$

Hence T^2 is not skew complex symmetric with the conjugation C.

Example 3.2 Let *C* be a conjugation given by $C(z_1, z_2, z_3) = (\overline{z_3}, \overline{z_2}, \overline{z_1})$ on \mathbb{C}^3 . If $T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ on \mathbb{C}^3 , then $T^* \neq CTC = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and $T^{*2} = CT^2C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$. Hence T^2 is a 1-complex symmetric operator but *T* is not a 1-complex symmetric operator with conjugation *C*.

Now we will introduce exponential operators $T := e^{-iA}$ which act on a wave function to move it in time and space (see [1]). Note that T is a function of an operator f(A)which is defined its expansion in a Taylor series

$$T = exp(-iA) = \sum_{n=0}^{\infty} \frac{(-iA)^n}{n!} = 1 - iA + \frac{(-iA)^2}{2!} + \cdots$$

The most common one is the time-propagator or time-evolution operator U which is the Hamiltonian function and propagates the wave function forward in time;

$$U = exp(\frac{-iHt}{h}) = 1 + \frac{-iHt}{h} + \frac{1}{2!}(\frac{-iHt}{h})^2 + \cdots$$

For an operator $T \in \mathcal{L}(\mathcal{H})$, if $t \in \mathbb{R}$, then

$$e^{itT} = I + itT + \frac{(it)^2}{2!}T^2 + \frac{(it)^3}{3!}T^3 + \cdots$$
 (6)

Theorem 3.3 If $T \in \mathcal{L}(\mathcal{H})$ is a skew *m*-complex symmetric operator with a conjugation C, then e^{itT} , e^{-itT} , and e^{-itT^*} are (m, C)-isometric for every $t \in \mathbb{R}$.

In general, the converse of the previous theorem may not be hold. But, if e^{itT} is (1, C)isometric operator and T is a skew 2-complex symmetric operator with the conjugation C, then T is a skew complex symmetric operator.

Corollary 3.4 Let $T \in \mathcal{L}(\mathcal{H})$. Then the following statements hold: (i) Assume that T is skew m-complex symmetric with a conjugation C. If $\lambda \in \sigma_a(e^{itT})$, then $\frac{1}{\overline{\lambda}} \in \sigma_a(e^{-itT^*})$. In particular, if $\lambda \in \sigma_p(e^{itT})$, then $\frac{1}{\overline{\lambda}} \in \sigma_p(e^{-itT^*})$. (ii) If T is skew m-complex symmetric with a conjugation C, then e^{itnT} is an (m, C)isometric operator for any $n \in \mathbb{N}$.

(iii) Let $\{T_k\}$ be a sequence of skew m-complex symmetric operators with a conjugation C such that $\lim_{k\to\infty} ||e^{itT_k} - e^{itT}|| = 0$. Then e^{itT} is an (m, C)-isometric operator.

Recall that

$$\cos(tT) = \frac{e^{itT} + e^{-itT}}{2}$$
 and $\sin(tT) = \frac{e^{itT} - e^{-itT}}{2i}$

for every $t \in \mathbb{R}$.

Corollary 3.5 Let $T \in \mathcal{L}(\mathcal{H})$ be skew complex symmetric with a conjugation C and let $t \in \mathbb{R}$. Then the following statements hold.

(i) $\cos(tT)$ is a (1, C)-isometric operator if and only if $\cos(2tT^*) = I$.

(ii) $\sin(tT)$ is a (1, C)-isometric operator if and only if $\cos(2tT^*) = -I$.

A closed subspace $\mathcal{M} \subset \mathcal{H}$ is *invariant* for T if $T\mathcal{M} \subset \mathcal{M}$.

Corollary 3.6 If $T \in \mathcal{L}(\mathcal{H})$ is skew m-complex symmetric and complex symmetric with a conjugation C, i.e., $T^* = CTC$, then the following statements hold: (i) e^{itT} is an algebraic operator of order at most 2m. (ii) $C \ker(\Gamma_{m-1}(e^{itT}; C))$ is invariant for e^{itT} .

Corollary 3.7 If $T \in \mathcal{L}(\mathcal{H})$ is skew *m*-complex symmetric and complex symmetric with a conjugation C, then the following statements hold.

(i) e^{itT} is unitarily equivalent to a finite operator matrix of the form:

α_1	A_{12}	• • •	• • •	• • •	$A_{1,2m}$
0	α_2	A_{23}	• • •	• • •	$A_{2,2m}$
0	0	α_3	·	÷	:
0	0		۰.	•••	:
0	0		• • •	· · .	$A_{2m-1,2m}$
$\int 0$	0	• • •	• • •	•••	α_{2m} /

where α_j are the roots of the polynomial p(z) of degree at most 2m. (ii) The dimension of $\bigvee_{k=0}^{\infty} \{(e^{itT})^k x\}$ is less than or equals to 2m. It is known from [15] that if T is m-symmetric and m is even, then T is (m-1)-symmetric. In 2012, M. Chō, S. Ôta, K. Tanahashi, and A. Uchiyama proved that if T is an invertible m-isometric operator and m is even, then T is an (m-1)-isometric operator (see [6] for more details). In view of these results, we will consider the following question; if $T \in \mathcal{L}(\mathcal{H})$ is skew m-complex symmetric with a conjugation C and m is even, is it skew (m-1)-complex symmetric? In the next theorem, we give a partial solution for the previous question.

Theorem 3.8 Let $T \in \mathcal{L}(\mathcal{H})$ and let C be a conjugation on \mathcal{H} . Suppose that $\Lambda_{m-1}(e^{itT}; C)$ and $((e^{itT})^*)^{m-1}\Lambda_{m-1}(e^{-itT}; C)C(e^{itT})^{m-1}C$ are nonnegative. If T is a skew m-complex symmetric operator with the conjugation C where m is even, then T is skew (m-1)complex symmetric and e^{itT} is an (m-1, C)-isometric operator for all $t \in \mathbb{R}$.

Corollary 3.9 If $T \in \mathcal{L}(\mathcal{H})$ is skew m-complex symmetric with a conjugation C, m is even, and [T, C] = 0, then T is skew (m - 1)-complex symmetric.

4 On an operator T commuting with CTC

In this section, we focus on an operator T commuting with CTC. Given $T \in \mathcal{L}(\mathcal{H})$ and a conjugation C on \mathcal{H} , let

$$\mathcal{C}_C(T) := \{ S \in \mathcal{L}(\mathcal{H}) \mid [CTC, S] = 0 \}$$

where [R, S] := RS - SR. In this section, we study the case when

$$T \in \mathcal{C}_C(T)$$
, that is, $[CTC, T] = 0$.

We observe that $\mathcal{C}_C(T)$ need not contain complex symmetric operators.

Example 4.1 Let $\mathcal{H} = \ell^2$, let $\{e_n\}$ be an orthonormal basis of \mathcal{H} and let $C : \mathcal{H} \to \mathcal{H}$ be the conjugation given by $C(\sum_{n=0}^{\infty} x_n e_n) = \sum_{n=0}^{\infty} \overline{x_n} e_n$ where $\{x_n\}$ is a sequence in \mathbb{C} with $\sum_{n=0}^{\infty} |x_n|^2 < \infty$ and $Ce_n = e_n$ for all n. If $W \in \mathcal{L}(\mathcal{H})$ is the weighted shift given by $We_n = \alpha_n e_{n+1}$ for all $n \geq 1$, then it is easy to compute $WCWCe_n = CWCWe_n$ for all n. Hence $W \in \mathcal{C}_C(W)$. In particular, if $\alpha_n = 1$ for all n, then W = S is the unilateral shift and so $S \in \mathcal{C}_C(S)$. However, S is not complex symmetric.

Recall that an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *normal* if $T^*T = TT^*$ and *binormal* if T^*T and TT^* commute where T^* is the adjoint of T. Note that every normal operator is binormal.

Example 4.2 Let $\mathcal{H} = \mathbb{C}^2$ and let C be a conjugation on \mathcal{H} given by $C(x, y) = (\overline{y}, \overline{x})$. Assume that $R = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$ on \mathcal{H} . Then $CRC = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix} = R$. Hence $R \in \mathcal{C}_C(R)$. However, R is not normal, but binormal. **Example 4.3** Let *C* and *J* be conjugations on \mathcal{H} . Assume that $T = \begin{pmatrix} 0 & CJ \\ I & 0 \end{pmatrix}$ and $\mathcal{J} = \begin{pmatrix} 0 & J \\ J & 0 \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{H}$. Then $\mathcal{J}T\mathcal{J}T = T\mathcal{J}T\mathcal{J} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$. Hence $T \in \mathcal{C}_{\mathcal{J}}(T)$ is normal.

In the next example, we know that there exists T such that $T \notin C_C(T)$, in general. **Example 4.4** Let $\mathcal{H} = \mathbb{C}^n$ and $C(z_1, z_2, z_3, \cdots, z_n) = (\overline{z_n}, \cdots, \overline{z_3}, \overline{z_2}, \overline{z_1})$. If

$$T = \begin{pmatrix} 0 & \lambda_1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \dots & 0 \\ \vdots & \vdots & \ddots & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & 0 & \lambda_{n-1} \\ 0 & 0 & \ddots & \ddots & \dots & 0 \end{pmatrix} \text{ and } e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

for all $\lambda_j \neq 0$, then $0 = (CTC)T e_1 \neq T(CTC) e_1 = \lambda_1 \cdot \overline{\lambda_{n-1}} \cdot e_1$. Hence $T \notin \mathcal{C}_C(T)$. But, it is clear that T is binormal.

Theorem 4.5 If $T \in \mathcal{L}(\mathcal{H})$ is a normal operator, then $T \in \mathcal{C}_C(T)$ for some conjugation C.

Note that every normal operator is complex symmetric (see [11]).

Proposition 4.6 Let $T \in C_C(T)$ for some conjugation C. Then the following statements hold.

(i) T* ∈ C_C(T*).
(ii) p(T) ∈ C_C(p(T)) for every polynomial p.
(iii) If T is invertible, then T⁻¹ ∈ C_C(T⁻¹).
(iv) If X ∈ L(H) is invertible with [X, C] = 0, then X⁻¹TX ∈ C_C(X⁻¹TX).
(v) If R ∈ L(H) is unitarily equivalent to T, i.e., R = UTU*, then R ∈ C_D(R) for a conjugation D = UCU*.
(vi) [T^m, CTⁿC] = 0 for all n, m ∈ N.
(vii) The class of operators which satisfy T ∈ C_C(T) is norm closed.

Proposition 4.7 Let C, C_1, C_2 be conjugations on \mathcal{H} . Then the following statements hold.

(i) If $T_i \in \mathcal{L}(\mathcal{H}_i)$ be such that $T_i \in \mathcal{C}(T_i)$ for conjugations C_i with i = 1, 2, respectively, then $T_1 \oplus T_2 \in \mathcal{C}_{C_1 \oplus C_2}(T_1 \oplus T_2)$ for a conjugation $C_1 \oplus C_2$.

(ii) Let $T \in \mathcal{C}_C(T)$ and $S \in \mathcal{C}_C(S)$. If [T, S] = 0 and [CTC, S] = 0, then $T+S \in \mathcal{C}_C(T+S)$ and $TS \in \mathcal{C}_C(TS)$ for a conjugation C.

(iii) If $T \in \mathcal{C}_{C_1}(T)$ and $S \in \mathcal{C}_{C_2}(S)$ for conjugations C_1 and C_2 , respectively, then $T \otimes S \in \mathcal{C}_{C_1 \otimes C_2}(T \otimes S)$ for a conjugation $C_1 \otimes C_2$.

In [11], if T is complex symmetric, then ReT and ImT are complex symmetric.

Proposition 4.8 Let $T \in \mathcal{C}_C(T)$. Then the following statements hold: (i) Let $R = \frac{T + CTC}{2}$ and $S = \frac{T - CTC}{2i}$. Then R and S belong to $\mathcal{C}_C(T)$ such that T = R + iS and [R, S] = 0, [R, C] = 0, and [S, C] = 0 hold. (ii) If T is normal, then Re $T \in \mathcal{C}_C(\text{Re } T)$ and Im $T \in \mathcal{C}_C(\text{Im } T)$.

Lemma 4.9 ([17]) Let $T \in \mathcal{L}(\mathcal{H})$ and let C be a conjugation on \mathcal{H} . Then $\sigma(CTC) = \sigma(T)^*$ and $\sigma_a(CTC) = \sigma_a(T)^*$.

Therefore, if T satisfies [T, C] = 0, then $\sigma(T) = \sigma(T)^*$, that is, $\sigma(T)$ is a symmetric set with the real line. For a commuting pair $(T, S) \in \mathcal{L}(\mathcal{H})^2$, $\sigma_T(T, S)$ and $\sigma_{ja}(T, S)$ denote the *Taylor spectrum* and the *joint approximate point spectrum* of (T, S), respectively (see [2] and [19] for more details).

Corollary 4.10 Let $T \in C_C(T)$. Then there exist commuting operators R and S such that the following statements hold:

(i) T = R + iS and (T, R, S) is a commuting 3-tuple.

(ii) $\sigma(R)$ and $\sigma(S)$ are symmetric sets with the real line.

(iii) If $\lambda \in \sigma(T)$, then there exist $\alpha \in \sigma(R)$ and $\beta \in \sigma(S)$ such that $\lambda = \alpha + i\beta$.

(iv) If $\alpha \in \sigma(R)$, then there exist $\lambda \in \sigma(T)$ and $\beta \in \sigma(S)$ such that $\lambda = \alpha + i\beta$.

(v) If $\beta \in \sigma(S)$, then there exist $\lambda \in \sigma(T)$ and $\alpha \in \sigma(R)$ such that $\lambda = \alpha + i\beta$.

Remark that the statements (iii), (iv) and (v) hold for the approximate point spectra $\sigma_a(T), \sigma_a(R)$ and $\sigma_a(S)$. Please see [2] for the spectral mapping theorem for the joint approximate point spectrum.

For an operator $T \in \mathcal{L}(\mathcal{H})$ and a conjugation C, we define the operator $\alpha_m(T; C)$ by

$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^j.$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an [m, C]-symmetric operator if $\alpha_m(T; C) = 0$ (see [5]).

Theorem 4.11 If $T \in C_C(T)$ is an [m, C]-symmetric operator, then CTC - T is mnilpotent, i.e., $(CTC - T)^m = 0$.

Corollary 4.12 If $T \in C_C(T)$ is an [m, C]-symmetric operator, then

$$\sigma_T(CTC,T) = \{(\lambda,\lambda) : \lambda \in \sigma(T)\}.$$

In this case, it holds $\sigma(CTC) = \sigma(T) = \sigma(T)^*$. Moreover, it holds $\sigma_{ja}(CTC, T) = \{(\lambda, \lambda) : \lambda \in \sigma_a(T)\}.$

For an operator $T \in \mathcal{L}(\mathcal{H})$, T is said to be *normaloid* if r(T) = ||T||, where r(T) is the spectral radius of T.

Corollary 4.13 Let $T \in C_C(T)$ be an [m, C]-symmetric operator. If CTC - T is normaloid, then CTC - T = 0.

For an operator $T \in \mathcal{L}(\mathcal{H})$ and a conjugation C, we define the operator $\lambda_m(T;C)$ by

$$\lambda_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^{m-j}.$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an [m, C]-isometric operator if $\lambda_m(T; C) = 0$. See [4] for properties of [m, C]-isometric operators.

Theorem 4.14 If $T \in C_C(T)$ is an [m, C]-isometric operator, then CTCT - I is mnilpotent, i.e., $(CTCT - I)^m = 0$.

Corollary 4.15 If $T \in C_C(T)$ is an [m, C]-isometric operator, then $\sigma_T(CTC, T) = \{(\frac{1}{\lambda}, \lambda) : \lambda \in \sigma(T)\}$. In this case, it holds $\sigma(CTC) = \{\frac{1}{\lambda} : \lambda \in \sigma(T)\}$. Moreover, it holds $\sigma_{ja}(CTC, T) = \{(\frac{1}{\lambda}, \lambda) : \lambda \in \sigma_a(T)\}$.

Theorem 4.16 Let $T \in \mathcal{L}(\mathcal{H})$ be complex symmetric with a conjugation C. Suppose that T = U|T| is the polar decomposition of T where U = CJ and J is a partial conjugation supported on ran(|T|), which commutes with |T|. Then the following statements are equivalent.

(i) T is binormal.
(ii) |T| ∈ C_C(|T|).
(iii) [|T̃^D|, |T|] = 0 where T̃^D := |T|U is the Duggal transform of T.

Corollary 4.17 Let $T \in \mathcal{L}(\mathcal{H})$ be such that T^2 is normal. Then $|T| \in \mathcal{C}_C(|T|)$.

Example 4.18 Let $T = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ on \mathbb{C}^2 . Then T is complex symmetric with the conjugation C defined by $C(z_1, z_2) = (\overline{z_2}, \overline{z_1})$ for $z_1, z_2 \in \mathbb{C}$. Since $|T| = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$, it follows that

$$C|T|C|T| = \begin{pmatrix} 2 & 3\\ 1 & 2 \end{pmatrix}$$
 and $|T|C|T|C = \begin{pmatrix} 2 & 1\\ 3 & 2 \end{pmatrix}$

Hence T is not binormal by Theorem 4.16.

Example 4.19 Let $\mathcal{H} = \ell^2$ and let C be the canonical conjugation given by $C(\sum_{n=0}^{\infty} x_n e_n) = \sum_{n=0}^{\infty} \overline{x_n} e_n$ with $Ce_n = e_n$ for all n. Assume that $T = \begin{pmatrix} S^* & I \\ 0 & S \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{H}$, where $S \in \mathcal{L}(\mathcal{H})$ is the unilateral shift. Then S and S^* commute with the conjugation C. Denote the conjugation \mathcal{C} given by $\mathcal{C} = \begin{pmatrix} 0 & C \\ C & 0 \end{pmatrix}$. Then we obtain that

$$\mathcal{C}T^* - T\mathcal{C} = \begin{pmatrix} C & CS^* \\ CS & 0 \end{pmatrix} - \begin{pmatrix} C & S^*C \\ SC & 0 \end{pmatrix} = 0.$$

Hence T is a complex symmetric operator (cf.[14]). Moreover, since $T = \begin{pmatrix} S^* & I \\ 0 & S \end{pmatrix}$, it follows that $T^*T = \begin{pmatrix} SS^* & S \\ S^* & 2I \end{pmatrix}$ and $TT^* = \begin{pmatrix} 2I & S^* \\ S & SS^* \end{pmatrix}$. So, we have $TT^*T^*T = \begin{pmatrix} 2SS^* + S^{*2} & 2S + 2S^* \\ S^2S^* + SS^{*2} & S^2 + 2SS^* \end{pmatrix}$ and $T^*TTT^* = \begin{pmatrix} S^2 + 2SS^* & SS^{*2} + S^2S^* \\ 2S + 2S^* & S^{*2} + 2SS^* \end{pmatrix}$. Hence T is not binormal. On the other hand, if S is the unilateral shift on \mathcal{H} , then $T = S^* \oplus S$ is binormal and complex symmetric.

References

- J. Agler and M. Stankus, *m-Isometric transformations of Hilbert space I*, Int. Eq. Op. Th, 21(1995), 383-429.
- [2] J. W. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57(1984), 21-30.
- [3] C. Benhida, M. Chō, E. Ko, and J. E. Lee, On symmetric and skew-symmetric operators, Filomat, 32:1(2018), 293-303.
- [4] M. Chō, J. E. Lee and H. Motoyoshi, On [m, C]-isometric operators, Filomat 31:7(2017), 2073-2080.
- [5] M. Chō, J. E. Lee, K. Tanahashi and J. Tomiyama, On [m, C]-symmetric operators, Kyungpook Math. J. to appear.
- [6] M. Chō, S. Ota, K. Tanahashi, and A. Uchiyama, Spectral properties of m-isometric operators, Functional Analysis, Application and Computation 4:2 (2012), 33-39.
- [7] M. Chō, E. Ko and J. E. Lee, On m-complex symmetric operators, Mediterranean J. Math., 13(2016), 2025-2038.
- [8] _____, On m-complex symmetric operators II, Mediterranean J. Math., 13(2016), 3255-3264.

- [9] _____, On(m, C)-isometric operators, Complex Analysis and Operator Theory, 10(8), (2016), 1679-1694..
- [10] _____, Properties of m-complex symmetric operators, Studia UBB Math. 62(2017) No 2, 233-248.
- [11] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
- [12] _____, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. **359**(2007), 3913-3931.
- [13] S. R. Garcia, E. Prodan, and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Gen. 47 (2014), 353001.
- [14] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362(2010), 6065-6077.
- [15] J. W. Helton, Operators with a representation as multiplication by x on a Sobolev space, Colloquia Math. Soc. Janos Bolyai 5, Hilbert Space Operators, Tihany, Hungary (1970), 279-287.
- [16] S. Jung, E. Ko, M. Lee, and J. E. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379(2011), 325-333.
- [17] S. Jung, E. Ko, and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl. 406(2013), 373-385.
- [18] E. Ko, Eunjeoung Ko, and J. E. Lee, Skew complex symmetric operator and Weyl type theorems, Bull. Kor. Math. Soc. 52(4)(2015), 1269-1283.
- [19] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6(1970), 172-191.

Muneo Chō

Department of Mathematics, Kanagawa University, Hiratuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Eungil Ko

Department of Mathematics, Ewha Womans University, Seoul 120-750, Korea e-mail: eiko@ewha.ac.kr

Ji Eun Lee

Department of Mathematics and Statistics, Sejong University, Seoul 143-747, Korea e-mail: jieunlee7@sejong.ac.kr; jieun7@ewhain.net