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On n‐normal operators

by

M. Chō, B. Ji Eun Lee, Načevska Nastovska, K. Tanahashi and A. Uchiyama

Abstract

Let  T be a bounded linear operator on a complex Hilbert space.  T is said to be  n‐normal

if  T^{*}T^{n}=T^{n}T^{*} , where  T^{*} is the dual operator of  T . First we explain the study of n‐

normal of operators given by S.A. Alzuraiqi and A.B. Patel. Next we show our results of
 n‐normal operators.

1  n‐normal operator (Alzuraiqi and Patel’s results)
First we explain Alzuraiqi and Patel’s results of  n‐normal operators.

Definition 1.1 A bounded linear operator  T on a Hilbert space  \mathcal{H} is said to be
 n ‐normal if  T^{*}T^{n}=T^{n}T^{*}.

This definition, may be, first appeared in “S. A. Alzuraiqi and A. B. Patel, On  n ‐normal

operators, General Math. Notes, 1(2010), 61‐73”

Theorem 1.1 (Characterization)  T is  n ‐normal if and only if  T^{n} is normal.

Proof. Proof is clear from  T^{*n}T^{n}=T^{*n-1}T^{n}T^{*}=  =T^{n}T^{*n} and converse is from

Fuglede‐Putnam’s Theorem, i.e., since  T\cdot T^{n}=T^{n} . T.  T^{*}\cdot T^{n}=T^{n}\cdot T^{*}.

It’s clear that if  T satisfies  T^{n}=0 , then  T is  n‐normal, that is,  n‐nilpotent operator is
 n‐normal.

Theorem 1.2 (Fundamental results) Let  T be  n ‐normal. Then
(1)  T^{*} is  n ‐normal;
(2)  T^{m} is  n ‐normal for all  m\in \mathbb{N} ;
(3)  \exists\tau^{-1}\Rightarrow T^{-1} is  n ‐normal;
(4)  \mathcal{M} is reducing subspace of  T\Rightarrow T_{1\mathcal{M}} is  n ‐normal.

Proof. Proof is clear.
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Theorem 1.3  T-z is  n ‐normal for every  z\in \mathbb{C}  \vec{-}  T is normal.

Proof. For  z\neq 0 , since  (T-z)^{*}(T-z)^{n}-(T-z)^{n}(T-z)^{*}=0,

. .   \sum_{k=1}^{n-1}(-1)^{k}  (\begin{array}{l}
m
k
\end{array})  z^{k}(T^{*}T^{n-k}-T^{n-k}T^{*})=0.

 (-1)^{n-1}(T^{*}T-TT^{*})=- \sum_{k=1}^{n-2}(-1)^{k}-(\begin{array}{l}
m
k
\end{array})z^{n-1^{Z^{k}}}(T^{*}T^{n-k}-T^{n-k}T^{*}) .

Theorem 1.4  T is  n ‐normal and  (n+1)-normal  \Rightarrow T is  (n+2) ‐normal.

Proof. Since  T^{*}T^{n}=T^{n}T^{*} and  T^{*}T^{n+1}=T^{n+1}T^{*} , hence we have

 T\cdot T^{*}T^{n}\cdot T=T\cdot T^{n}T^{*}\cdot T,  T\cdot T^{*}T^{n+1}=T^{n+1}T^{*}\cdot T.

 T^{n+2}T^{*}=T^{*}T^{n+2}.

Theorem 1.5 Let  T be  n ‐normal and  (n+1) ‐normal.

Either  T or  T^{*} is injective  \Rightarrow T is normal.

Proof. Let  T be injective. Since

 T^{n}\cdot TT^{*}=T^{n+1}T^{*}=T^{*}T^{n+1}=T^{*}T^{n}\cdot T=T^{n}\cdot T^{*}T

and hence  T^{n}(TT^{*}-T^{*}T)=0 . Therefore,  T is normal.

It is similar in the case that  T^{*} is injective.

Theorem 1.6  T is  n ‐normal and quasinilpotent  \Rightarrow T^{n}=0.

Proof. Since  T^{n} is normal and  \sigma(T)=\{0\},  \Vert T^{n}\Vert=r(T^{n}) . Since  \sigma(T^{n})=\{0\},  T^{n}=0.

Theorem 1.7  T is  n ‐normal and  T is partial isometry,  \Rightarrow T is  (n+1) ‐normal.

Proof. Since  TT^{*}T=T , i.e.,  TT^{*}T^{n}=T^{n}=T^{n}T^{*}T  T^{n+1}T^{*}=T^{*}T^{n+1}.

Theorem 1.8 For  T , let  F=T^{n}+T^{*} and  G=T^{n}-T^{*} Then
 T :  n ‐normal  \Leftrightarrow FG=GF.

Proof. Proof is clear from  FG=T^{2n}+T^{*}T^{n}-T^{n}T^{*}-T^{*2},  GF=T^{2n}-T^{*}T^{n}+T^{n}T^{*}-T^{*2}.

 \bullet Next let  D be bounded open disk of  \mathbb{C},  L^{2}(D, \mathcal{H}) be Hilbert space,
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and  W^{2}(D, \mathcal{H}) be Sobolev space. Then, it holds  W^{2}(D, \mathcal{H})\subset L^{2}(D, \mathcal{H}) .

They assumed the following property:

(1)  \sigma(T)\cap(-\sigma(T))=\emptyset.

Theorem 1.9 Let  T be 2‐normal and satisfy (1). Then

 z-T :  W^{2}(D, \mathcal{H})arrow L^{2}(D, \mathcal{H}) is one‐to‐one for every  z\in \mathbb{C}.

 \bullet In this case,  T is automatically invertible.

2 Our results (2‐normal operator)

Single‐valued extension property

 \bullet We say that an operator  T has the single‐valued extension property at  \lambda (SVEP at  \lambda )
if for every open set  U containing  \lambda the only analytic function  f :  Uarrow \mathcal{H} which satisfies

the equation

 (T-\lambda)f(\lambda)=0

is the constant function  f\equiv 0 on  U.

 \bullet  T has SVEP if  T has SVEP at every point  \lambda\in \mathbb{C}.

 \bullet A normal operator  S has SVEP and

 \bullet  S has SVEP  \Rightarrow p(S) has SVEP for any polynomial  p(\cdot)

 \bullet  p(S) has SVEP for some polynomial  p(\cdot)\Rightarrow S has SVEP

Therefore we have following result.

Theorem 2.1  T is  n ‐normal  \Rightarrow  T has SVEP.

For  T , we set the following property:

(2)  \sigma(T)\cap(-\sigma(T))\subset\{0\}.

 \bullet (2) is OK for NOT invertible operators.
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Lemma 2.1 Let  T satisfy (2).  z is an isolated point of  \sigma(T)\Rightarrow z^{2} is an isolated point
of  \sigma(T^{2}) .

Proof. If  z=0 , then the proof is easy. If  z\neq 0 , then it follows from  T^{2}-z^{2}=(T+z)(T-z)
and (2), because  -z\not\in\sigma(T) .

Theorem 2.2 Let  T be 2‐normal and satisfy (2). Then  \sigma(T)=\sigma_{a}(T) .

Proof. Let  z\in\sigma_{r}(T) . Then  \exists_{X}\neq 0 ;  T^{*}x=\overline{z}x . Since  T^{*2}x=\overline{z}^{2}x and  T^{*2} : normal. . .
 T^{2}x=z^{2}x From this, it is clear that  z\in\sigma_{p}(T) by (2).

Theorem 2.3 Let  T be 2‐normal and satisfy (2).
(1)  Tx=z\cdot x,  Ty=w\cdot y.  z\neq w  \Rightarrow  \{x,  y\rangle=0.
(2) Let  \{x_{n}\},  \{y_{n}\} be the sequences of unit vectors in  \mathcal{H} such that  (T-z)x_{n}arrow 0 and

 (T-w)y_{n}arrow 0(narrow\infty) .  z \neq w\Rightarrow\lim_{narrow\infty}\{x_{n}, y_{n}\}=0.

Proof. If  z^{2}=w^{2} , then  z=w or  z=-w . Hence, it is easy.

Since  T^{2} is normal, it’s easy. So, we have the following corollary.

Corollary 2.4 Let  T be 2‐normal and satisfy (2).
 z,  w\in\sigma_{p}(T) is  z\neq w  \Rightarrow  ker(T-z)\perp ker(T-w) .

Theorem 2.5 Let  T be 2‐normal and satisfy (2).
 0\neq z\in\sigma_{p}(T)  \Rightarrow ker(T-z)=ker(T^{2}-z^{2})=ker(T^{*2}-\overline{z}^{2})=ker(T^{*}-
\overline{z})
and hence  ker(T-z) is a reducing subspace for  T.

Next we study Weyl’s theorem. For  T , the Weyl spectrum  \omega(T) is defined by

  \omega(T)=\bigcap_{K\in \mathcal{C}(\mathcal{H})}\sigma(T+K) ,

where  C(\mathcal{H}) is the set of all compact operators on  \mathcal{H} . Let  \pi_{00}(T) denote the set of all

isolated eigenvalues of finite multiplicity of  T . We say that Weyl’s theorem holds for  T if

 \omega(T)=\sigma(T)-\pi_{00}(T) . J.V. Baxley showed the following result.

Theorem 2.6 (Baxley) Let  T satisfy the following condition

C‐l: “If  \{z_{n}\} is an infinite sequence of distinct points of the set of eigenvalues of

finite multiplicity ofT and  \{x_{n}\} is any sequence of corresponding normalized eigenvectors,

then the sequence  \{x_{n}\} does not converge. “ Then

 \sigma(T)-\pi_{00}(T)\subset\omega(T) .

If  T is a 2‐normal operator satisfying (2), then  T satisfies the condition C‐l by Corollary
2.4. Hence we have the following result by Theorem 2.6.
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Theorem 2.7  T is a 2‐normal operator satisfying (2)  \Rightarrow\sigma(T)-\pi_{00}(T)\subset\omega(T) .

For the converse inclusion, we show the following result.

Theorem 2.8  T is a 2‐normal operator satisfying (2)  \Rightarrow\omega(T)\subset\sigma(T)-(\pi_{00}(T)-\{0\}) .
If  T satisfies (1), then  T is invertible and  0\not\in\sigma(T) . Hence we have the following result
by Theorems 2.7 and 2.8.

Theorem 2.9  T is 2‐normal operator satisfying (1)  \Rightarrow\omega(T)=\sigma(T)-\pi_{00}(T) .
That is, Weyl’s theorem holds for  T.

 \bullet Let  z be an isolated point of  \sigma(T) . Then let

 E_{T}( \{z\}):=\frac{1}{2\pi\dot{i}}\int_{\partial D}(\lambda-T)^{-1}d\lambda,
where  D is a nice closed disk centered at  z and

 H_{0}(T-z) :=\{x\in \mathcal{H}|1\dot{{\imath}}mnarrow\infty\Vert(T-z)^{n}
x\Vert^{\frac{1}{n}}=0\}.
Theorem 2.10 Let  T be a 2‐normal operator satisfying (2) and  z be an isolated point of
 \sigma(T) .

(1) If  z=0 , then  H_{0}(T)=ker(T^{2}) .

(2) If  z\neq 0 , then  H_{0}(T-z)=ker(T-z) and  E_{T}(\{z\}) is self‐adjoint.

Theorem 2.11 Let  T be 2‐normal and satisfy

(3)  m(\sigma(T)\cap(-\sigma(T)))=0,
where  m is the planer Lebesgue measure. Then

 z-T :  W^{2}(D, \mathcal{H})arrow L^{2}(D, \mathcal{H}) is one‐to‐one for  \forall z\in \mathbb{C}.

 \bullet (3) is weaker than (2);  \sigma(T)\cap(-\sigma(T)) )  \subset\{0\}.

3  n‐normal operator

In this section, we show spectral properties of  n‐normal operators. Recall that, for

 n\in \mathbb{N},  T is said to be  n‐normal if  T^{*}T^{n}=T^{n}T^{*} . First we extend Proposition 2.19 of [1]
as follows:

Theorem 3.1 The following statements are equivalent:

(1)  T-t :  n‐normal for all  t\geq 0.
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(2)  T is normal.
(3)  T-z is  n ‐normal for all  z\in \mathbb{C}.

Proof. Proof follows from equation of Theorem 1.3.

 (-1)^{n-1}(T^{*}T-TT^{*})=- \sum_{k=1}^{n-2}(-1)^{k}-(\begin{array}{l}
m
k
\end{array})t^{n-1}t^{k}(T^{*}T^{n-k}-T^{n-k}T^{*}) .

For an  n‐normal operator  T\in B(\mathcal{H}) , we set the following property:

(4)   \sigma(T)\cap(\bigcup_{j=1}^{n-1}e^{\frac{2j\pi}{n}i}\sigma(T))\subset\{0\}.
Then we continue with the following lemma.

Lemma 3.2 Let  T satisfy (4).  z is an isolated point of  \sigma(T)

 \Rightarrow z^{n} is isolated point of  \sigma(T^{n}) .

If  T is  n‐normal, then  T^{n} is normal by Theorem 1.2. Hence, by Lemma 3.2, we have the

following results. The proofs are similar to the proofs of Theorem 2.2,Theorem 2.3,The‐

orem 2.4, Theorem 2.6 and Corollary 2.5. So the proofs are omitted.

Theorem 3.3 Let  T be  n ‐normal and satisfy (3). Then  T is isoloid.

Theorem 3.4 Let  T be  n ‐normal and satisfy (4). Then  \sigma(T)=\sigma_{a}(T) .

Theorem 3.5 Let  T be  n ‐normal and satisfy (3).
(1)  Tx=z\cdot x and  Ty=w\cdot y,  z\neq w\Rightarrow\{x,  y\rangle=0.
(2)  \{x_{n}\},  \{y_{n}\} is the sequences of unit vectors in  \mathcal{H} such that  (T-z)x_{n}arrow 0 and

 (T-w)y_{n} arrow 0(narrow\infty)z\neq w\Rightarrow\lim_{narrow\infty}\{x_{n},  y_{n}\rangle=0.

Corollary 3.6 Let  T be  n ‐normal and satisfy (3).  z\neq w\Rightarrow ker(T-z)\perp ker(T-w) .

Theorem 3.7 Let  T be  n ‐normal and satisfy (3)
 z is non‐zero eigenvalue of  T  \Rightarrow

 ker(T-z)=ker(T^{n}-z^{n})=ker(T^{*n}-\overline{z}^{n})=ker(T^{*}-\overline{z}) .

. .  ker(T-z) is reducing subspace for  T.

Theorem 3.8  T is an  n ‐normal operator satisfying (3)  \Rightarrow

 \sigma(T)-\pi_{00}(T)\subset\omega(T)\subset\sigma(T)-(\pi_{00}(T)-\{0\})

Moreover,  Tinvertible  \Rightarrow\sigma(T)-\pi_{00}(T)=\omega(T) , that is, Weyl’s theorem holds for  T.
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 T is scalar order   m\Leftrightarrow  \exists_{\Phi} :  C_{0}^{m}(\mathbb{C})arrow B(\mathcal{H});\Phi(z)=T.

 T is subscalar order  m\Leftrightarrow T_{\mathcal{M}}\sim S : scalar order  m on  \mathcal{M}.

Theorem 3.9 Let  T be  n ‐normal.  \sigma(T) is contained in an angle  < \frac{2\pi}{n} with vertex

in the origin, i. e.,  \exists\theta_{1}\in[0,2\pi ) ;

  \sigma(T)\subset W=\{re^{i\theta} : 0<r, \theta_{1}<\theta<\theta_{1}+
\frac{2\pi}{n}\}\Rightarrow T is subscalar of order 2.

Proof is too long! Please see [3].

Corollary 3.10 Under same hypothesis of Theorem 3.9,

 \sigma(T)^{\circ}\neq\emptyset\Rightarrow T has non‐trivial invariant subspace.

 z\in\sigma(T),  n\in \mathbb{N} and  \zeta  := \exp(\frac{2\pi\dot{i}}{n}) . We say that  T has property (n) at  z if

 \zeta^{k}\cdot z\not\in\sigma(T) for  k=1 , ,  n-1.

Theorem 3.11  T is  n ‐normal. Then (i)  H_{0}(T)=H_{0}(T^{n})=ker(T^{n})=ker(T^{*n}) .
(ii‐l)  z\neq 0\Rightarrow H_{0}(T-z)=ker(T-z) .
(ii‐2)  z\neq 0 and  T has property (n) at  z  \Rightarrow H_{0}(T-z)=ker(T-z)=ker((T-z)^{*}) .

Proof is too long! Please see [3].

4  (n, m)‐normal operator

We begin with the definition of  (n, m) ‐normal operators.

Definition 4.1 For  n,  m\in \mathbb{N},  T is said to be  (n, m) ‐normal if

 T^{*m}T^{n}=T^{n}T^{*m}.

From the definition, it is clear that  T is  (n, m) ‐normal if and only if  T is  (m, n) ‐normal.

Let  T\in B(\mathcal{H}) be  (n, m) ‐normal. Then the followings hold clearly:

Theorem 4.1 Let  T be  (n, m) ‐normal. Then

(1)  T^{*} is  (m, n) ‐normal.
(2)  \exists\tau^{-1}\Rightarrow T^{-1} is  (n, m) ‐normal.
(3)  S\in B(\mathcal{H}) is  S\sim T\Rightarrow S is  (n, m) ‐normal.
(4)  \mathcal{M} is closed subspace of  \mathcal{H} which reduces  T.

 \Rightarrow T_{1\mathcal{M}} is  (n, m) ‐normal on  \mathcal{M}.
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Lemma 4.2 (1)  T is  (n, m)-normal  \Rightarrow  T^{k} is normal, where  k is the least common
multiple of  n and  m.

(2)  T^{n} is normal  \Rightarrow T is  (n, m) ‐normal for every  m.

Proof. (1) Let  k=n\cdot j and   k=m\cdot\ell . If  T is  (n, m)‐normal, then

 \sim\ell\sim j
 T^{*k}T^{k}=T^{*m}\cdots T^{*m}\cdot T^{n}\cdots T^{n}=T^{n}\cdots T^{n}\cdot 
T^{*m}\cdots T^{*m}=T^{k}T^{*k}.

Hence  T^{k} is normal.

(2) Since  T^{n} is normal and  T^{m}\cdot T^{n}=T^{n}\cdot T^{m} , it follows from Fuglede‐Putnam’s theorem
that  T^{*m}\cdot T^{n}=T^{n}\cdot T^{*m} . Hence,  T is  (n, m) ‐normal.

Theorem 4.3  T is quasi‐nilpotent and  (n, m)-normal  \Rightarrow T is nilpotent.

Proof. Since  \sigma(T)=\{0\} , we have  \sigma(T^{k})=\{0\} for every  k\in \mathbb{N}.

Let  k be the least common multiple of  n and  m.

Then, by Lemma 4.2,  T^{k} is normal. Hence  T^{k}=0.

Theorem 4.4 Let  T and  S be commuting  (n, m) ‐normal operators  \Rightarrow

 TS is  (k, j) ‐normal for every  j\in \mathbb{N} and the least common multiple  k of  n and  m.

Proof. Since  k is the least common multiple of  n and  m , by Lemma 4.2,  (TS)^{k} is normal.

Since  (TS)^{k} commutes with  (TS)^{j} for every  j\in \mathbb{N} . By Fuglede‐Putnam’s theorem, it
holds

 (TS)^{*j}(TS)^{k}=(TS)^{k}(TS)^{*j}.

Hence  TS is  (k, j) ‐normal for every  j\in \mathbb{N}.

Theorem 4.5 Let  T be  (n, m) ‐normal and  (n+1, m) ‐normal.

Either  T or  T^{*} is injective  \Rightarrow T is  m ‐normal.

Proof. Let  T be injective. Since  T is  (n, m) ‐normal and  (n+1, m) ‐normal, it holds

 T^{n+1}T^{*m}=T^{*m}T^{n+1}=(T^{*m}T^{n})T=T^{n}T^{*m}T.

 T^{n}(TT^{*m}-T^{*m}T)=0 . Since  T is injective,

. .  TT^{*m}=T^{*m}T and  T^{*}T^{m}=T^{m}T^{*}  T:m‐normal.

Theorem 4.6 For  T , let  F=T^{n}+T^{*m} and  G=T^{n}-T^{*m} . Then
 T is  (n, m)-normal  \Leftrightarrow F commutes with  G.
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Proof. By  FG=T^{2n}-T^{n}T^{*m}+T^{*m}T^{n}-T^{*2m} and  GF=T^{2n}+T^{n}T^{*m}-T^{*m}T^{n}-T^{*2m},
hence  FG=GF if and only if  T^{*m}T^{n}=T^{n}T^{*m} . It completes the proof.

Theorem 4.7 For  T , let  A=T^{n}T^{*m},  F=T^{n}+T^{*m} and  G=T^{n}-T^{*m} . Then

 T(n, m) ‐normal  \Rightarrow A commutes with  F and  G.

Proof. Since  T is  (n, m) ‐normal, we have

 AF=T^{n}T^{*m}(T^{n}+T^{*m})=T^{n}T^{n}T^{*m}+T^{*m}T^{n}T^{*m}=FA.

Similarly we have  AG=GA.

Theorem 4.8 Let  T be an invertible  (n, m) ‐normal operator. Then  T and  T^{-1} have a

common nontrivial closed invariant subspace.

Proof. Let  k be the least common multiple of  n and  m . Then by Lemma 4.2, . .  T^{k} :
normal. Hence  T^{-k} : also normal.

. .  T^{k} and  T^{-k} have NO hypercyclic vector.  T and  T^{-1} have NO hypercyclic vector.
 T and  T^{-1} have a common nontrivial closed invariant subspace.

 \bullet  T is polaroid  \Leftrightarrow If  z is an isolated point of  \sigma(T) , then  z is a simple pole.

Theorem 4.9 Let  T be  (n, m) ‐normal. Then

(1)  T is isoloid and polaroid.
Let  z be an isolated point of  \sigma(T) . Then

(2‐1) if  z=0 , then  H_{0}(T)=E_{T}(\{0\})=ker(T^{nm})=ker(T^{*nm}) .
(2‐2) if  z\neq 0 , then  H_{0}(T-z)=E_{T}(\{z\})=ker(T-z) .

Since normal operator is decomposable and has SVEP, we have following results.

Theorem 4.10 Let  T be  (n, m) ‐normal. Then

(1)  T is decomposable.
(2)  f is analytic on  \sigma(T) and not constant on each domain

 \Rightarrow Weyl’s theorem holds for  f(T) .

Finally, we show results of the direct sum and the tensor product. The proof is easy.

Theorem 4.11 Let  T,  S be  (n, m) ‐normal. Then  T\oplus S and  T\otimes S is  (n, m) ‐normal on

 \mathcal{H}\oplus \mathcal{H} and  \mathcal{H}\overline{\otimes}\mathcal{H} , respectively.
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