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1. INTRODUCTION

The aim of this paper is to survey recent study of class p-wA(s,t) operators
where 0 < p < 1and 0 < s,t,s+t < 1. These results are proved in [7, 8, 21, 22,
23, 25].

Let T" € B(H) be a bounded linear operator on a Hilbert space H and let
T = U|T| be polar decomposition with ker U = ker |T'|. T is called hyponormal if

TT* <T*T.
Aluthge [2] studied p-hyponormal operator
[T = (TT*) < (T"T)" =|T[* (0<p<1)

which is a generalization of hyponormal operator. Aluthge defined Aluthge trans-
form

T(1/2,1/2) = |T["*U|T|'?
and proved that if 7" is p-hyponormal operator with 0 < p < 1/2, then
T(1/2,1/2) [ < |7 < |T(1/2,1/2)*

by using Furuta’s inequality [14].

Ito, Yamazaki, Yanagida, Furuta [17, 15, 28], Yoshino [29] defined generalized
Aluthge transform T'(s,t) = |T|*U|T|" for 0 < s,t and studied class wA(s,t)
operator definded by
2t
s+t R

T (s, 1) < [T, |T|* < |T(s,1)

and it is known that p-hyponormal, log-hyponormal operators are class wA(s,t)
for all s,t > 0.
Prasad and Tanahashi [22] defined class p-wA(s, t) operator as
2pt
s+t

IT(s,8)7| 750 < T2, [T < |T(s,1)

for 0 < p < 1,0 < s,t. This is a generalization of wA(s,t) operator and class
p-wA(s,t) operators have many interesting properties.
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2. RESuULTS

Next theorem [8] shows that class of p-wA(s,t) operators are decreasing with
0 < p <1 and increasing with 0 < s,¢ < 1. The proof is essentially due to C.
Yang and J. Yuan ([30] Proposition 3.4). We showed this theorem at 2016 RIMS
conference [9], so we omit the proof.

Theorem 2.1. If0 < p; < p2 < 1,0 < 89 < 51,0 < ty < ty, then a class
pa-wA(sg, ty) operator is class pr-wA(sy,t1).

Next proposition is a direct result of Theorem 2.6 of [22].

Proposition 2.2. Let T € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,t,s+t<1. Then

(T(s, 8)|+ > |T|*
and

T2 > T (s, )| .
Hence
(2.1) (T (s, )35 > | TP > |T(s, )" 5

for any p € (0, min{s, t}].
Next theorem is Theorem 2.2 of [8].

Theorem 2.3. Let T € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,it,s+t < 1. If Te = pex for x € H with pcw € Cand 0 < p. Then
|T|x = pz,Ur = 2, Uz = e "z and T*z = pe 'z
Proof. We may assume s 4+t =1 by Theorem 2.1. Since
T(s,)|T)*x = |T|*Tx = p”|T|*x
we have
T(s,)"|T|°x = pe ™|T|*x
by Theorem 4 of [5], because T'(s,t) is rp-hyponormal for all » € (0, min{s, t}].
Hence
T(s,t)*|T "2 = T(s,t) T (s, )Tz = p*|T|*x
This implies
(T(s, )Tz = pITIx.
Similarly,
T(s,t)"[| Tz = p|T|*x
Then
P TPa, TP x) = (T (s, )" T, |T|*z)
> (T |V, T )
> (|T(s, )" | T, |T| )
= (T2, |T|"=).
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Since |T'(s,t)|*? — |T*? > 0 and
((IT(s. )" = |T|*") T, | T|"x) = 0,
we have
TP|T 1" = [T (s, )P |T "z = p*"|T |
Hence |T'||T|*z = p|T|*x and |T'|* (|T| — p) x = 0. This implies
(IT) — p) x € ker |T'|* = ker |T'| = ker U.

Hence
0=U(|T| - p)z = pe’x — pUr,
and so
Uz = e’z
Also,

(U = eyl = U]~ (0, ) — (e, U") + o]
T 2| — (2, Uz) — e (U, ) + ||
< |[lz)|* = f|=[|* = 0.
Thus Utz = e %z and T*x = |T|U*z = pe .
[l

The following theorem is Theorem 2.5 of [§8]. The proof is similar to Theorem
2.3, so we omit.

Theorem 2.4. Let T' € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,t, s+t < 1. Let (T —pe)x, — 0 for z, € H with ||z,| = 1 and pe’® € C,0 < p.
Then (|T| — p)x,, (U — €?)x,, (U — €?)*z,, (T — pe?)*z,, — 0.

We say that A € o(T) belongs to the (Xia’s) residual spectrum oX(T') of T if
(T'— A\)H # H and there exists a positive number ¢ > 0 such that
(T — Nz|| > cl|z|| for z€H.
By the definition, (T is a disjoint union of o,(T) and o (T).

Lemma 2.5. Let T = U|T| € B(H) be the polar decomposition of T' with ker U =
ker |T'| and let T, = U|T|* with 0 < . Then

0€ 0,(T) <= 0¢€ 0,(T,),

0€aX(T) <= 0¢€cX(T,),

0€o(T) <= 0¢€a(Ty).

Proof. Let 0 € 0,(T"). Then there exist unit vectors x,, such that Tz,, — 0. Then
Tz, = U*U|T|x,, = U*Tz,, — 0. Hence Tpz,, = U|T|*x, — 0 and 0 € 0,(T,).
The converse is similar. Let 0 € o(T"). Then |T| is invertible and U is unitary.

Hence T, = U|T|* is invertible and 0 & o(7,). The converse is similar. Since
o(T) is a disjoint union of 0,(T) and ¢ (T), the proof is completed. O

The following theorem is Theorem 2.5 of [21].



Theorem 2.6. If T = U|T| € B(H) is class p-wA(s,t) with 0 < p < 1 and
0<s,t,s+t<1andif T, =U|T|* with s+t < «a, then

(2.2) 0o(Ty) = {r*e” | re" € o, (T)},
(2.3) X (Ta) = {r°¢” | re € X (T)},
(2.4) o(T,) = {r*e” | re € o(T)}.

Proof. Let T'= U|T| be class p-wA(s,t) with 0 < p <1and 0 <s,t, s+t < 1.
Let A = re' € 0,(T) \ {0} with 0 < 7. Then there exists a sequence {x,} of
unit vectors such that (T —re)z,, — 0. Hence (T —re)*z, — 0, (|T| —r)z, —
0,(U — €z, — 0 and (U — €)*z,, — 0 by Theorem 2.4. Hence )\, := r" €
0;a(Th) C 04(T,). Conversely, let p = r'e® € o,(T,) \ {0} with 0 < 7/. Then
there exists a sequence unit vectors {z,} such that (T, — r'e?)z, — 0. Since T,
is p-wA(s/a,t/a) and 0 < s/a +t/a < 1, we have that p = r'e® € 0;,(T,) by
Theorem 2.4. Hence 4y, = (r')/?€? € 0;,(T) C 0,(T). Therefore

(2.5) 0a(T) \ {0} = {r*e® | re'’ € 0,(T)} \ {0}.
Hence we have (2.2) by Lemma 2.5.

Next we show (2.3). Let A = re?? € oX(T) \ {0} with 0 < r. We claim
Ao = 1% € o(T},).

Assume that A\, = r®e” & o(T,). Let J be a closed interval [1,a] (or [a, 1])
and let f be an operator valued continuous function f(z):=T, — r®e” (z € J).
Then f(1) is semi-Fredholm operator with the Fredholm index

ind(f(1)) = dim(ker(T — re?)) — dim(ker(T — re)*) < —1,

and f(«) is invertible (so, it is Fredholm with index 0).

We claim that there exists a real number zy € J such that f(x() is not semi-
Fredholm. Assume that there exists no such x € J. Since F(J) = {f(z)|z € J}
is connected in the set of all semi-Fredholm operators of H and every operator
in F(J) has the same Fredholm index, we have that f(1) and f(a) have same
Fredholm index. But this is a contradiction.

Since there exists xg € J such that f(zg) is not semi-Fredholm, we have

rioe? e U(Txo) \ Ui( (Two) = Ua<Txo)~

Since s +t < zy and 0 < r, we have A = re’ € o,(T) by (2.2). But it is a
contradiction. Hence \, = %" € o(T,).

We claim A\, = r% & 0,(T,). Assume \, = r®" € 0,(T,). Then A = re? €
0.(T) by (2.2). But it is a contradiction. Hence

{roe’” | re’” € o (T)\ {0}} € o7 (T0) \ {0}
Similarly we have
{(r")/oe | r'e” € oX(To) \ {0}} € o (T) \ {0}.

Hence (2.3) holds by Lemma 2.5. Since o(T) is a disjoint union of ¢,(7) and
X (T), the proof of (2.4) is completed. 0

The following theorem is proved in [21].
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Theorem 2.7. Let T € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,t, s+t <1. Then T is normaloid

I = r(T) = max{]A| : X € o(T)}
and isoloid (isolated point of spectrum is a point spectrum,).
Proof. Since T'(s, ) is £5-hyponormal and satisfies
2pp
s+t

(2.6) [T (s, )% > [T > |T(s, )"

for all p € (0, min{s, ¢}] by Proposition 2.2, we have
o(T(5,1)) = o(ITFUITIY) = o(UITIH) = {r*+e | re® € o(T)}
by Lemma 6 of [26] and Theorem 2.6. Since T'(s,t) is normaloid, we have
2pp 2p
=T (s I = |T (s, )

=7 (T(s,0)) % = (r(T)*) % = p(T),

117 (s, 1)

5+t

and
2pp
T = [ITNPP = Tl < T (s, )] =] = r(T)**
by (2.6). Hence ||T|| < r(T') and therefore ||T|| = (7). Thus 7" is normaloid.

Next we prove T is isoloid. Let re be an isolated point of o(7') with 0 < 7.
Since

o(T(s, 1)) = o(|TIUIT|") = o(UIT|"™)
by Lemma 6 of [26] and
O_(U|T|s+t) _ {T8+t€i0 | rew c U(T)}

by Theorem 2.6, we have r**'e is an isolated point of o(7T'(s,t)). We remark
T(s,t) is £-hyponormal for any p € (0, min{s, ¢}] by Proposition 2.2.

Assume Te“9 = 0. Since T'(s, t) is £-hyponormal, we have Ey(s,t) = ker T'(s, ?)
where Ey(s,t) is the Riesz 1dempotent of T'(s,t) for 0 € isoo(T'(s,t)) by Theorem
5 of [10]. Hence there exists non-zero vector x € H such that T(s7 t)x = 0. Hence
Tx =0 by (2.6).

Assume 7€ # 0. Then

B, sigio(s,t) = ker(T (s, ) — r*Te®) = ker((T(s, t) — r**e?)%)

where E,tq0(s,t) is the Riesz idempotent of T(s, t) for r**e?? € isoo(T'(s,t)) by
Theorem 5 of [10]. Hence there exists non-zero vector = € ker(T(s,t) — r*ttei?)
such that T'(s,t)*z = r*Tle "z and |T(s,t)|x = |T'(s,t)*|z = r*"z by Theorem
5 of [10]. Then we have

0= ((IT(s,1)
> ((IT(s.0)"

) 2,3) 2 (TP = 1) 1)

2pp
s+ — erp) z,7) =0



by (2.6). Hence ((|T**? — r*?)z,x) = 0. Since 0 < p < min{s, ¢} is arbitrary,
we have ((|T'|?? — rPP) z,z) = 0 by the same arguement. Then

(TP = ey |® = (TP = 1) 2, )

= ((\T\Qpp — 7"2pp) x,x)y = 2rPP((|T|P — rPP) z,z) = 0.
Hence (|T|?? — r?) x = 0 and this implies |T'|x = rz. Then U*Uz = U*U|T|r 'z =
|T|r 'z = z. Since r*tte %2 = T(s,t)*x = |T'U*|T|*xz = |T|'U*r*z, we have
IT|'U*z = rle "z = |T|'e “z. Hence (U* —e ")z € ker |T|" = ker |T| = ker U.
Hence U (U* — )z = 0 and UU*z = ¢ “Uz. Then
Ure =UUU*z = e U Ur = e s

because U*Ux = z. Then

| (U= e®)z|* = ((U—e€?)a, (U—e?) )
(U—=e")" (U —é") z,z)
(UUz—e™(U—-e)a—e? (U —e ) o —a,x)
(—e 2, (U —e?) 2) =0.

Hence Uz = €z. Thus Tz = U|T|z = re’’z and T is isoloid.
O

Theorem 2.8. Let T' € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,t,s+t<1ando(T)={A}. Then T = \.

Proof. Let A = 0. Since T is normaloid by Theorem 2.7, we have || T|| = r(T") = 0.
Hence "= 0. Let A # 0. Then S := T/\ is class p-wA(s,t) and o(S) = {1}.
Hence ||S|| = r(S) = 1 by Theorem 2.7. Since S~ is class p-wA(t, s) by [22], we
have ||S7!| = r(S™!) =1 by Theorem 2.7. This implies S = 1. Hence T = \.

U

The following theorem is proved in [25].

Theorem 2.9. Let T € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,tys+t < 1. If T(s,t) is quasinormal, then T is quasinormal. Also, if T'(s,t) is
normal, then T is normal.

Proof. Since T is a class p-wA(s, t) operator,

=z

(2.7) T (s, 8)|5% > | TP > |T(s,1)*

for all 7 € (0, min{s,¢t}]. Then Douglas’s theorem [11] implies that

van |T(s, )|+ D ran |T|"? D ran |T'(s, t)*|++.

Hence
[ran |T'(s,t)|] D [ran|T'|] D [ran|T'(s,t)*|] = [ran T (s, )]

o1



92

where [M] denotes the norm closure of M C H. Since ker |T| C ker(|T|*U|T|") =
ker T'(s,t), we have

ran |T|] = (ker |T|)* > (ker T(s, t))*
= (ker |T'(s, t)|)" = [ran |T(s,t)|].
Hence
[ran |T(s,t)|] = [ran |T|].
Let T'(s,t) = W|T(s,t)| be the polar decomposition of T'(s,t). Then
E:=W'W=U"U
= the orthogonal projection onto [ran |T'|]
> the orthogonal projection onto [ranT(s,t)] = WW* =: F.

at (X0
s = (o)

on H = [ranT'(s,t)] @ ker T'(s,¢)*. Then X is injective and has a dense range.
Since W C [ranT(s, )], we have

o (Y.

Put

0 0

Since T'(s,t) is quasinormal, W commutes with |T(s, )| and

T (s, 8)| 5 = W*W|T(s, t)|5+ = W*|T(s, )|+ W

> WHT)ZPW > W T (s, ) |4 W = |T(s, )|+

Hence
T (s, )| 7% = W*|T(s, )|+ W
= W*|T (s, )[4 W = W*|T|**W
and
27‘p TP TP
(2.8) <% $_w@wL_WWWWMN
= WW*T(s, )| WW* = WW*|T[2PW W™,
. 10 . . 2rp 9

Since WIWV* = 0 0) (2.8) implies that |T'(s,t)|>+ and |T|*"? are of the forms

2rp XQTP 0 . X2rp 0
(29) |T(S7t) st = < 0 Y2rp> 2 |T|2 b= < 0 Z2rp>

where Y, Z > 0. Since X is injective and has a dense range and [ran |T'(s,t)|] =
[ran |T'|], we have

ranY] = [ran Z] = [ran |T|| © [ranT'(s,t)] = ker T'(s,t)" © ker T".
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Since W commutes with |T'(s,t)| and |T'(s,t) =+, we have

(o) 6= (@ ) (6 )

(WlX W2Y> _ (XW1 XWQ)

and

0 0 0 0
So W1 X = XW; and WhY = XWs, and hence [ran W;] and [ran W] are reducing
subspaces of X. Since W*W|T'(s,t)| = |T(s,t)|, we have W*W|T'(s,t)
|T(s,1) . Then

1
s+t =

(Wl*WlX W;WQY) _ <X o)
WW X WiWLY 0 Y)"
Hence WiW; =1, WsW,Y =Y and
Xk =wrw Xt = wrxhw,
YF = WiW,YE = Wi Xk,

forallk=1,2,--. Put U = (gﬂ g”) Then T(s, ) = |T|*U|T|* = W|T(s, )|
21 Uz
implies
X® 0 Up U\ (XY 0 (W Wy (X5t 0
0 A U21 U22 0 Zt B 0 0 0 Ys+t
and
XU XY X UpZt\ (Wi X5t WLy st
Z5Un Xt ZUxpZt) 0 0 ’
Then
XSUllXt - W1X8+t - X5W1Xt,
X5U19Z" = WoYsT = X5H,
and

X5(Uy — W)X =0,
Xs(Ungt - XtWQ) — 0

Since X is injective and has a dense range, we have Uy;; = W, and U2 =
X'Wsy. Hence Uf;Uy; = WiW, = 1. Since U*U is the orthogonal projection onto
[ran [T'|] D [ranT'(s,t)] and

U1*2U11 + U2*2U21 U1*2U12 + U2*2U22 O 1

on H = [ranT'(s,t)] & ker T'(s,t)*, we have Uy = 0, U,U;; = 0 and

1 0 10
U = <
vty (O Unglg + U;2U22> - (0 ].> ’

Since U132t = X'W,, we have
7% > 27U URZE = Wy X2 W, = Y,
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,
Since 0 < 7p < 1, we have

Z¥P > (Z'Us UL 2N T
_ (WQ*XQtWQ)% _ Y2Tp 2 ZQrp
by Lowner-Heinz’s inequality and (2.9). Hence
(ZtUl*2U12zt)% _ Z2rp —_ Y'Qrp7
so Z =Y and
T (s, t)| = |T|**".

Since

7% = ZtUl*QUngt < ZtUl*QUlzZt + ZtU2*2U22Zt

=7t (UfyUra + UsyUss) Zt < 7%,

we have Z'Us,Usp Z' = 0 and Z'Uj, = 0. This implies that [ran Us,] C ker Z. On
the other hand U* = U*UU™* implies

Uy, 0\ (1 0 Uy 0
Uy Us UlUiz + U U ) \Upy Uy

Uy 0
- ((UEUH + [1}52U22)Uf2 (UiyUra + U2*2U22)U2*2> '
Hence Uy, = (U,Urz + UsyUso ) Uy, and
ran Uy, C [ran (U;,Ura + UsyUss)]
= [ranU*U] O [ranT(s, t)]
= [ran|T|] O [ranT'(s,t)] = [ran Z].

Hence
ran U}, C ker Z N [ran Z] = {0}.

Un U W, U
Hence Uyy = 0. Then U = < 61 012> = ( Ol 62> and

ranU C [ranT(s,t)] C [ran|T|] = rankE.

Hence EU = U. Since W commutes with |T(s,t)| = |[T]**" and |T'|, we have
(TP(W = U)T} = WITJ = [TFUITI = WIT(s,1)] - T(s,1) = 0.

Hence E(W —U)E = EWE — EUE = 0. Since E = U*U = W*W and

[ran W] C [ranT'(s,t)] C [ran |T|] = ran £,
we have EW = W. Then

U=UUU=UE =FEUFE
=EWE=WE=WW'W =W.

Thus U = W. Since W commutes with |T'(s,t)|, we have U commutes with |T|.
Therfore T is quasinormal.



If T'(s,t) is normal, then T is quasinormal by the preceeding arguments. Hence
T(s,t) =U|T|**" and T'(s,t)* = |T)***U*. Thus

TPEH = |T(s, 8)]* = |T(s, )2 = |T*[*C+.
This implies that |T'| = |T%| and therefore T is normal. O
The following theorem is Theorem 7.1 of [23].

Theorem 2.10. Let T' € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,t,s+t<1. Then

2min{sp,tp}

H|T(s,t)|T — | [prinsptp}

2min{sp,tp} 2min{sp,tp}

e O e (A OOV
< min{sp.tp} / / p2minlerio} = drdp.
s o(T)

Moreover, if meas (o(T)) = 0, then T is normal.

IN

Proof. Assume that 0 <t <s. Since T is class p-wA(s,t), we have

T (s, 1) > [T > |T(s,t)"|+
by Proposition 2.2. Hence
|1, - ] < iz 0% - 7,01

tp / / i1 dnde.
m(s+1) cr(T(s,t))

where pe? € o(T(s,t)) by Theorem 5 of [5]. Since
o(T(s, 1)) = o(|TIUIT|") = o(UIT|"*) = {r**'e|re? € o(T)}
by Lemma 6 of [26] and Theorem 2.6, we have

2tp _ 2tp—1
psttdpdf = — r drdd
5 + t o(T(s,t)) n o(T)

by taking re? = psTtem € o(T). The proof of the case 0 < s <t is similar.
If meas(o(T')) = 0, then |T'(s,t)| = |(T(s,t))*| and T is normal by Theorem
2.9. Il

Next, we investigate subscalarity of class p-wA(s,t) operator. Let X be a
complex Banach space and 4 C C be an open subset. Let O(U,X) denote
the Fréchet space of all analytic X-valued functions on ¢ with the topology of
uniform convergence on compact subsets of Y. Also, Let £(U,X') denote the
Fréchet space of all infinitely differentiable X-valued functions on U with the
topology of uniform convergence of all derivatives on compact subsets of U. We
say that T satisfy Bishop’s property (53) if

(T —2)fu(2) > 0in OU, X) = f.(2) = 0in OU, X)
for every open set Y C C and f,(z) € OU,X). E. Albrecht and J. Eschmeier

[1] proved that T € B(X) satisfies Beshop’s property () if and only if T is
subdecomposable, i.e., T is a restriction of a decomposable operator.
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We say that T satisfy Eschmeier-Putinar-Bishop’s property (5). if
(T —2)fu(2) 2 0in EU, X) = fu(2) = 0in EU, X)

for every open set Y C C and f,(2) € E(U, X). J. Eschmeier and M. Putinar [12]
proved that T € B(X) satisfies Eschmeier-Putinar-Bishop’s property (§). if and
only if T" is subscalar, i.e., T is a restriction of a scalar operator.

The following theorem is Theorem 2.4 of [25].

Theorem 2.11. If T € B(H) is class p-wA(s,t) with 0 < p < 1 and 0 <
s,t,s +t < 1, then T satisfies Bishop’s property (8) and Eschmeier-Putinar-
Bishop’s property (3).. Hence T has single valued extension property and T is
subscalar.

Proof. We may assume s + ¢ = 1 by Theorem 2.1. Then T(s,t) is %—
hyponormal by Proposition 2.2. Hence T'(s, t) satisfies Bishop’s property (3) and
Eschmeier-Putinar-Bishop’s property (). by [4, 18]. Then T satisfies Bishop’s
property (/3), Eschmeier-Putinar-Bishop’s property (3). by Theorem 2.1 of [3]
and T is subscalar. O

The following theorem is Theorem 5.1 of [23].

Theorem 2.12. Let T € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,t, s+t < 1. Then the following assertions hold.

(i) Weyl’s theorem holds for T

(i) 0w (f(T)) = f(ow(f(T))) for every f € H(a(T)).
(iii) Weyl’s theorem holds for f(T) for every f € H(o(T)).

To prove Theorem 2.12, we prepare the following result.

Lemma 2.13. Let T € B(H) be class p-wA(s,t) with 0 < p < 1 and 0 <
s,tys+t <1. If T is Fredholm, then ind(T) < 0.

Proof. Take a positive number 1 < « such that a(s+t) = 1. Since T is Fredholm,
|T|** is also Fredholm and ind(|7'|**) = 0. Then

ind(7T) = ind(|71*°T) = ind(T (as, at)|T|**) = ind(T'(as, at)).

Since T'(as, at) is pp-hyponormal for any p € (0, min{as, at}] by Proposition 2.2,
we have ind(7T' (s, at)) < 0 by Theorem 4 of [5]. Thus ind(7T") < 0. O

Proof of Theorem 2.12. (i) Let A € o(T)\0,(T), then T'— X is Fredholm, ind (7" —
A) =0and 0 < dimker(7T'—\) < oco. If A is an interior point of o(7"), there exists
an open subset G such that A € G C o(T') \ 0,(T"). Then dimker(T" — u) > 0 for
all p € G and T does not have the single valued extension property by Theorem
9 of [13]. But this is impossible by Theorem 2.11. Hence A € do(T). Then
A € isoo(T') by Theorem XI 6.8 of [6]. Thus A € myo(T).

Let A € mo(7T'). Take a positive number 1 < « such that a(s +t) = 1.
Since (1) = o(T(as,at)), we have A € isoo(T(as,at)). Since T(as,at) is
pp-hyponormal for any p € (0, min{as, at}] by Proposition 2.2, we have E, =
Ey(as, at) and dim(Ey\H) = dim(ker(T — \)) < oo by Theorem 3.6 of [23]. Thus
A€ a(T)\ 0,(T) by Proposition XI 6.9 of [6].



(ii) Since 0, (f(T)) C f(0w(T)) is always true for any operator by Theorem 2(b)
of [16], we prove that f(0,(T)) C 0, (f(T)). We may assume that f € H(o(T))
is not constant. Let A\ ¢ o,(f(7)) and

) =A=(z=X)- (2= M)g(2)

where {\; : i = 1,---  k} are the zeros of f(z) — A in G (listed according to
multiplicity) and ¢(z) # 0 for each z € G. Then

J(T) = A=(T =) (T = \)g(T).

Since A & 0,(f(T)) and o.(f(T)) C ou,(f(T)), we have A & o.(f(T)) =
f(0e(T)). Hence T'— A; is Fredholm for all j =1,--- , k. Then

0=ind (f(T) - A) = ind (¢(T)) + 3_ind (T - \,)

=1

=> ind (T—);) <0
j=1
by Lemma 2.13. Hence ind (T'— \;) =0 for all j = 1,--- k. This implies that
T — \; is Weyl and \; & 0,(T). Thus A & f(0,(T)).
(iii) Since T is isoloid by Theorem 2.7, we have

a(f(T) \ 7oo(f(T)) = f((T) \ moo(T))
from [20]. On the other hand, we have

f@(T)\700(T)) = flow(T)) = ou(f(T))
by (ii). Thus Weyl’s theorem holds for f(7'). O

Two operators S € B(H),T € B(K) is called quasisimilar if there exist injec-
tive operators X € B(H,K),Y € B(K,H) with dense rages such that SX = XT
and Y.S = TY. This equivalence relation of quasisimilarity was introduced by
Sz.-Nagy and Foias and has received considerable attention. In general, qua-
sisimilarity need not preserve the spectrum and essential spectrum. However,
quasisimilarity preserves spectra in special classes of operators. For instance, if
T and S are quasisimilar hyponormal operators then o(7") = ¢(S) by Corollary
3 of [24] and ¢.(T) = 0.(S) by Theorem 2.4 of [27].

The following theorem is Corollary 1 of [7].

Theorem 2.14. Let S € B(H) and T € B(K) be quasisimilar class p-wA(s,t)
operators with 0 < p < 1 and 0 < s,t,s +t < 1. Then o(S) = o(T) and
0e(S) = 0.(T).

Proof. Since S and T satisfies Bishop’s property () by Theorem 2.11, we have
0(S) =0o(T) and 0.(S) = 0.(T) by Theorem 3.7.15 of [19].
O

The following theorem is Theorem 6 of [7]. The proof is complicated, so we
omit.

o7



Theorem 2.15. Let S € B(H) and T* € B(K) be class p-wA(s,t) operators
with 0 < p <1and0 < s,t,s+t <1 and ker S C ker S*, kerT* C kerT. Let
SX = XT for some operator X € B(K,H). Then S*X = XT*, [ran X| reduces
S, (ker X)* reduces T, and S|yan x7, T |er )+ are unitarily equivalent normal op-
erators.

Questions
(1) If T is class p-wA(s,t) and M is T-invariant, then 7’|y is p-wA(s, t)?
(2) If T' is class p-wA(s,t) and T'|p is normal, then M reduces 77
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