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1 Introduction

In this article we consider the extension of the following observation. Let \sigma

be an operator mean.

1. If  A\sigma B\geq A\nabla B for any  A,  B\in B(H)^{++} , then  \sigma=\nabla.

2. If  A\sigma B\leq A!B for any  A,  B\in B(H)^{++} , then  \sigma=!.

 \Rightarrow

Let  \lambda\in[0,1] and  \psi be a non‐negative continuous function on  [0, \infty ).

1. If  \psi(A)\sigma\psi(B)\geq\psi(A\nabla_{\lambda}B) for any  A,  B\in B(H)^{++} , then  \sigma=\nabla_{\lambda} ?

2. If  \psi(A)\sigma\psi(B)\leq\psi(A!_{\lambda}B) for any  A,  B\in B(H)^{++} , then  \sigma=!_{\lambda} ?

The reason for considering these operator mean inequalities is based on try‐
ing to evaluate the relative entropy in quantum information theory. Furuichi
introduced the following relative entropy in 2012.

Definition 1.1 ([3]). For a continuous and strictly monotone function  \psi on
 (0, \infty) and two probability distributions  \{p_{1}, p_{n}\},  \{q_{1}, q_{n}\} with  p_{j},  q_{j}>
 0 for all  j=1,  n the Tsallis quasilinear relative entropy is defined by

 D_{r}^{\psi}(p_{1},  \ldots,p_{n}||q_{1}, \ldots, q_{n}):=-\ln_{r}\psi^{-1}
(_{\dot{j}}\sum_{=1}^{n}p_{j}\psi(\frac{q_{j}}{p_{j}}))
where   \ln_{r}(x)=\frac{x^{1-r}-1}{1-r}r\in[0,1 ),   \log(x)=\lim_{rarrow 1}\ln_{r}(x) .
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When  \psi(x)=\ln_{r}(x) ,

Tsallis relative entropy  D_{r}^{\ln_{r}}=- \sum_{j=1}^{n}p_{j}(\ln_{r}(\frac{q_{j}}{p_{j}}))
When  \psi(x)=x^{1-s} and  r=1,

Rényi relative entropy  D_{1}^{x^{1-s}}= \frac{1}{s-1}\log(\sum_{j=1}^{n}p_{\dot{j}}^{s}q_{j}^{1-s})
We quantize this relative entropy by setting positive operators (matrices)

 A and  B like the following

 A=  \{\begin{array}{lll}
p_{1}      
   \ddots   
      p_{n}
\end{array}\} ,  B=  \{\begin{array}{lll}
q_{1}      
   \ddots   
      q_{n}
\end{array}\}
and

 \psi(A^{-1/2}BA^{-1/2})=  \{\begin{array}{lll}
\psi(\frac{q_{1}}{p_{1}})      
   \ddots   
      \psi(\frac{q_{n}}{p_{n}})
\end{array}\} ,

then we can get like the following formulation

 D_{r}^{\psi}(A||B)=-\ln_{r}\psi^{-1}(TrA^{1/2}\psi(A^{-1/2}BA^{-1/2})A^{1/2})
It is not easy to evaluate the whole of this formulated  D_{r}^{\psi}(A||B) directly.

So in this paper, we characterize only the part  A^{1/2}\psi(A^{-1/2}BA^{-1/2})A^{1/2}
in  D_{r}^{\psi}(A||B) using the operator inequality. Furthermore, We give the char‐
acterization of operator convex from the operator mean.

Ando and Hiai gave a following characterization of an operator monotone
decreasing function by means of certain operator inequalities in ([1]). The
main result of this article is based on the following Ando‐Hiai results. To get
this result, for a non‐negative continuous function  \psi on  (0, \infty) and  \lambda\in(0,1) ,
we consider the set  \Gamma_{\lambda}(\psi) of operator means  \sigma such that the inequality

 \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B)

holds for all  A,  B\in B(H)^{++}.
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Theorem ([1]). Let  \psi be a continuous non‐decreasing function on  [0, \infty )
such that  \psi(0)=0 and  \psi(1)=1 . If a symmetric operator mean  \sigma satisfies

 \psi(A\nabla B)\leq\psi(A)\sigma\psi(B)

for any  A,  B\in B(H)^{++} , then  \sigma=\nabla.

In this article, we only gives the rough proof for each propositions in
Section 3,4,5. The details of each proof are given in ([12]).

2 Fundamental definitions and notations

A self‐adjoint operator  A acting on a Hilbert space  H is said to be positive
if {Ax,  x\rangle\geq 0 for all  x\in H , we denote this by  A\geq 0 . Let  B(H)^{+} be the
set of all positive operator on  H , and let  B(H)^{++} be the set of all positive
invertible operator on  H . Let  f be a continuous real‐valued function on
 (0, \infty) .  f is called  n‐monotone if positive invertible operators  A,  B\in M_{n}(C)
with  A\leq B , then  f(A)\leq f(B) .  f is called operator monotone if for any
 n\in Nf is  n‐monotone. Similarly,  f is called  n‐convex if   f(\lambda A+(1-\lambda)B)\leq
 \lambda f(A)+(1-\lambda)f(B) for positive invertible operators  A,  B\in M_{n}(C) and
for any  \lambda\in[0,1].  f is called operator convex if for any  n\in Nf is n‐
convex. As for typical examples of them, power function  t^{s} on  (0, \infty) is
operator monotone if and only if  s\in[0,1] , operator convex if and only if
 s\in[-1,0]\cup[1,2] . Other examples are

 \log t is operator monotone on  (0, \infty) .

 t\log t is operator convex on  [0, \infty ) with  0 log0  =0.

 e^{t} is neither 2‐monotone nor 2‐convex on  ( ‐00,  \infty) .

Kubo and Ando developed an axiomatic theory concerning operator con‐
nections and operator means for pairs of positive operators ([8]).

Definition 2.1. A binary operation  \sigma defined by;

 \sigma :  (A, B)\in B(H)^{+}\cross B(H)^{+}\mapsto A\sigma B\in B(H)^{+}

is called an operator connection, if the following properties are fulfilled.

(i)  A\leq B and  C\leq D imply  A\sigma C\leq B\sigma D ;

(ii)  C(A\sigma B)C\leq(CAC)\sigma(CBC) for all  C\in B(H)^{+} ;

(iii)  A_{n}\searrow A and  B_{n}\searrow B imply  (A_{n}\sigma B_{n})\searrow(A\sigma B) .
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A operator mean is an operator connection with normalization condition.

(iv)  1\sigma 1=1.

They showed that there exists an affine order isomorphism from the
class of operator connections onto the class of positive operator monotone
functions by

 \sigma\mapsto f_{\sigma}(t)=1\sigma(t1) (t>0) ,

 f\mapsto A\sigma_{f}B=A^{1/2}f(A^{-1/2}BA^{-1/2})A^{1/2}
for  A,  B\in B(H)^{++}.

Remark 2.2. It is well‐known that if  f :  (0, \infty)arrow(0, \infty) is operator
monotone, then the transpose  f'(t)=tf( \frac{1}{t}) , the adjoint  f^{*}(t)= \frac{1}{f(\frac{1}{t})} , the

dual  f^{\perp}(t)= \frac{t}{f(t)} are also operator monotone. Indeed, let  \sigma be an operator

connection corresponding to operator monotone  f . Note that  xarrow x^{-1} is
operator convex and  xarrow-x^{-1} operator monotone, then the dual  f^{\perp}(t)=
  \frac{t}{f(t)} and the adjoint  f^{*}(t)= \frac{1}{f(\frac{1}{t})} are also operator monotone. Moreover,

 f'(t)=tf( \frac{1}{t}) is the corresponding function of the operator connection  \sigma'

 (A\sigma'B=B\sigma A) (  [8 , Lemma 4.1]). Thus  f' is also operator monotone.

Furthermore, it is also known that  f is operator monotone decreasing if
and only if it is operator convex and numerically non‐increasing.

3  \lambda‐weighted and operator convexity

Since  1\leq 1\sigma t\leq t for all  t\geq 1 , we have

  \frac{d(1\sigma t)}{dt}|_{t=1}\leq\lim_{tarrow 1+}\frac{t-1}{t-1}=1.
Thus, we have   \frac{d(1\sigma t)}{dt}|_{t=1}\in[0,1] (Cf. [2]).

Definition 3.1. Let  \lambda\in[0,1] . An operator mean  \sigma is called  \lambda ‐weighted if

  \frac{d(1\sigma t)}{dt}|_{t=1}=\lambda
and  \sigma is called non‐trivial if the weighted of  \sigma is in  (0,1) .
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Remark 3.2. If  \sigma is  \lambda‐weighted, then  !_{\lambda}\leq\sigma<\nabla_{\lambda} ([8]). It is enough to
consider the case which  \sigma is symmetric  (i.e.  \lambda=\frac{1}{2})- . This goes as following
relation,

  \frac{2x}{1+x}\leq\frac{1+t}{2}\{\frac{x}{x+t}+\frac{x}{xt+1}\}\leq\frac{1+x}
{2}
for  x,  t>0.

In the rest of the paper, we consider a continuous function  \psi satisfying

 \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B) (3.1)

for all  A,  B\in B(H)^{++} and for a certain operator mean  \sigma.

The following proposition is the characterization of function  \psi which
satisfies (3.1).

Proposition 3.3. Let  \psi be a non‐negative continuous function on  (0, \infty) .
Then the following are equivalent:

(1)  \psi is operator convex;

(2)  \psi(A\nabla_{\lambda}B)\leq\psi(A)\nabla_{\lambda}\psi(B) for all  A,  B\in B(H)^{++} and for all  \lambda\in

 (0,1) ;

(3)  \psi(A\nabla_{\lambda}B)\leq\psi(A)\nabla_{\lambda}\psi(B) for all  A,  B\in B(H)^{++} and for some  \lambda\in

 (0,1) ;

(4)  \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B) for all  A,  B\in B(H)^{++} and for some  \lambda\in

 (0,1) and for some non‐trivial operator mean  \sigma.

(1)  \Leftrightarrow(2)\Leftrightarrow(3)\Rightarrow(4) are trivial from the definition of operator convex.
(4)  \Rightarrow(1) goes as follows. Consider the sequences  A_{0}  :=A,  B_{0}  :=B,
 A_{n}  :=(A_{n-1}\nabla_{1-\lambda}B_{n-1})\nabla_{\lambda}(A_{n-1}\nabla_{\lambda}
B_{n-1}),  B_{n}  :=A+B-A_{n} for  n\geq 1.

By the assumption and simple calculation,  \psi is operator convex.
From the above result, it is natural to assume that  \psi which satisfies (3.1)

is operator convex.

Proposition 3.4. For  \lambda\in(0,1) , let  \psi be a non‐negative, non‐constant,
continuous function on  (0, \infty) and let  \sigma be a non‐trivial operator mean.
Suppose that

 \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B)

for all  A,  B\in B(H)^{++} . Then,  \sigma is  \lambda ‐weighted.

To show above argument, we consider the following lemma.
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Lemma 3.5. For  \lambda\in[0,1] , let  \psi be a non‐negative continuous function on
 (0, \infty) with a non‐zero derivative at 1 and let  \sigma be a non‐trivial operator
mean. Suppose that

 \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B)

for all  A,  B\in B(H)^{++} . Then,  \sigma is  \lambda ‐weighted.

From this lemma, we only consider the case that  \psi has a zero derivative
at 1 to show Proposition 3.4. We may assume that  \psi(1)=1 by scalar

multiple. Put  \phi(t)  :=\psi(t+1)-1 and  \gamma  := \frac{d(1\sigma t)}{t}|_{t=1} . By showing that  \phi

and  \nabla_{\gamma} satisfy the assumption of Lemma 3.5, Proposition 3.4 is proved.

In conclusion, the following corollary is obtained.

Corollary 3.6. For  \lambda\in(0,1) , let  \psi be a non‐constant, non‐negative, con‐
tinuous function on  (0, \infty) and let  \Gamma_{\lambda}(\psi) be the set of all non‐trivial operator
means  \sigma such that inequality (3.1) holds for all  A,  B\in B(H)^{++} . Then,  \psi
is an operator convex function if and only if

 \{\sigma|!_{\lambda}\leq\sigma\leq\nabla_{\lambda}\}\supseteq\Gamma_{\lambda}
(\psi)\supseteq\{\nabla_{\lambda}\}.

In the following corollary, a characterization of operator concave is also

given by using that   \frac{1}{\phi(t)} is non‐constant operator convex with a non‐zero

derivative at 1.

Corollary 3.7. For  \lambda\in(0,1) , let  \phi be a positive operator concave function
on  (0, \infty) with non‐zero derivative at 1 and  \phi(1)=1 and let  \sigma be a non‐

trivial operator mean. Then, the following are equivalent:

(1)  \sigma is  \lambda ‐weighted;

(2)  \phi(A)\sigma\phi(B)\leq\phi(A\nabla_{\lambda}B) for all  A,  B\in B(H)^{++} ;

(3)  \phi^{*}(A!_{\lambda}B)\leq\phi^{*}(A)\sigma^{*}\phi^{*}(B) for all  A,  B\in B(H)^{++} , where  \phi^{*}(x)=
 (\phi(x^{-1})^{-1}.

4 Characterization of operator convex functions

The following is a weighted version of ([1, Theorem 2.1]).

Proposition 4.1. For  \lambda\in(0,1) , let  \psi be a non‐negative continuous func‐
tion on  (0, \infty) . Then, the following conditions are equivalent:
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(1)  \psi is operator monotone decreasing;

(2)  \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B) for all  A,  B\in B(H)^{++} and for all  \lambda ‐weighted
operator means  \sigma ;

(3)  \psi(A\nabla_{\lambda}B)\leq\psi(A)\#\lambda\psi(B) for all  A,  B\in B(H)^{++} ;

(4)  \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B) for all  A,  B\in B(H)^{++} and for some  \lambda ‐
weighted operator mean  \sigma\neq\nabla_{\lambda},

where  A\#\lambda B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\lambda}
A^{\frac{1}{2}}.
Combining the above results, our main theorem is obtained:

Theorem 4.2 (Main result). For  \lambda\in(0,1) , let  \psi be a non‐constant, non‐
negative, continuous function on  (0, \infty) and let  \Gamma_{\lambda}(\psi) be the set of all non‐
trivial operator means  \sigma such that the inequality

 \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B)

holds for all  A,  B\in B(H)^{++}.
Then, the following holds:

(1).  \psi is a decreasing operator convex function if and only if

 \Gamma_{\lambda}(\psi)=\{\sigma|!_{\lambda}\leq\sigma\leq\nabla_{\lambda}\}.

(2).  \psi is an operator convex function which is not a decreasing function if
and only if

 \Gamma_{\lambda}(\psi)=\{\nabla_{\lambda}\}.

By this characterization, when an operator mean  \sigma\in\Gamma_{\lambda}(\psi) is given we
can determine whether  \psi is decreasing or non‐decreasing operator convex.

It is known that a non‐negative operator convex function  \psi on  [0, \infty )
with  \psi(0)=0 and  \psi(1)=1 is strictly increasing. Therefore, the following
is a direct result of the preceding theorem.

Corollary 4.3. Let  \lambda\in(0,1) , and let  \sigma be a non‐trivial operator mean.
Suppose that  \psi is a non‐negative operator convex function on  [0, \infty ), with
 \psi(0)=0 and  \psi(1)=1 . Then, the following are equivalent:

1.  \sigma=\nabla_{\lambda} ;

2.  \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B) for all  A,  B\in B(H)^{++}.

Remark 4.4. In Theorem 4.2, the first statement implies the second one
and can be proven using Corollary 4.3 and the arguments as in the proof of
[1, Theorem 2.1]. Thus, these three statements (two statements in Theorem
4.2 and Corollary 4.3) are equivalent.
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5 2‐convex functions

If  \psi is a non‐negative 2‐convex function on  [0, \infty ) with  \psi(0)=0 , then
 \psi is a  C^{2} ‐function on  (0, \infty) , by ([7]) (Cf. [5, Theorem 2.4.2]). Recall
that  \psi is said to be 2‐convex if for all  A,  B\in M_{2}(C)^{++} and  \lambda\in[0,1]
 \psi(\lambda A+(1-\lambda)B)\leq\lambda\psi(A)+(1-\lambda)\psi(B) . Moreover,  \psi is non‐constant,
strictly monotone increasing on  (0, \infty) . Indeed, by ([11, Theorem 2.2]) there
exists a monotone function  f on  (0, \infty) , such that  \psi(t)=tf(t) . Then, for
any  0<x_{1}<x_{2} , we have

 \psi(x_{1})=x_{1}f(x_{1})\leq x_{1}f(x_{2})

 <x_{2}f(x_{2})=\psi(x_{2}) .

Using this, we present an extension of Corollary 4.3.

Proposition 5.1. Let  \lambda\in(0,1) , and let  \sigma be a non‐trivial operator mean.
Suppose that  \psi is a non‐negative operator 2‐convex function on  [0, \infty ), with
 \psi(0)=0 and  \psi(1)=1 . Then, the following are equivalent:

1.  \sigma=\nabla_{\lambda} ;

2.  \psi(A\nabla_{\lambda}B)\leq\psi(A)\sigma\psi(B) for all positive definite  2\cross 2 matrices  A,  B.

Similarly, we have the following characterization of the  A‐weighted har‐
monic mean.

Proposition 5.2. Let  \psi be a non‐negative continuous function on  [0, \infty )
with  \psi(1)=1 and   \lim_{xarrow\infty}\psi(x)=+\infty , and assume that  \lambda\in(0,1) . If a
non‐trivial operator mean  \sigma satisfies

 \psi(A!_{\lambda}B)\geq\psi(A)\sigma\psi(B)

for all positive definite  2\cross 2 matrices  A,  B , then  \sigma=!_{\lambda}.

6 Questions

In this article, we gave a characterization of operator means which satisfy
(3.1) for a non‐constant, non‐negative, continuous function  \psi on  (0, \infty) .
We also need to consider a characterization for more general case (Question
1). We also gave a characterization of operator convex when operator means
which satisfy (3.1) were given. For this characterization as well, more general
characterization should be given (Question 2). Furthermore, we need to
consider the evaluation of relative entropy using operator mean described in
introduction.
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Questions

1. Fix a non‐negative continuous function  \psi with some conditions, sup‐
pose that

 \psi(A)\sigma\psi(B)\geq\psi(A\sigma B)

then  \sigma=?

2. Fix an operator mean  \sigma , suppose that

 \psi(A)\sigma\psi(B)\geq\psi(A\sigma B)

then  \psi=?

References

[1] T. Ando, F. Hiai, Operator log‐convex functions and operator means.
Math. Ann. 350 (2011), no. 3, 611630.

[2] J. I. Fujii, Operator means and Range inclusion, Linear Algebra Appl.
170 (1992), 137‐146.

[3] S. Furuichi, N. Minculete, F. Mitroi, Some inequalities on generalized
entropies. J. Inequal. Appl. 2012, 2012:226, 16 pp.

[4] F. Hansen and G. K. Pedersen, Jensen’s inequality for operator and
Löwner’s theorem, Math. Ann. 258 (1982) 229‐241.

[5] F. Hiai, Matrix analysis: matrix monotone functions, matrix means, and
Majorization, Interdiscip. Inform. Sci.  vo116 (2010), no. 2, 139‐248.

[6] F. Hiai and D. Petz, Introduction to matrix analysis and applications,
Universitext, Springer, New Delhi, 2014.

[7] F. Kraus, Über Konvexe Mathtrixfunctiouen, Math. Z. 41(1936) 18‐42.

[8] F. Kubo, T. Ando, Means of positive linear operators. Math. Ann. 246
(1979/80), no. 3, 205224.

[9] K. Löwner, Über monotone matrixfunktionen, Math. Z. 38 (1934) 177‐
216.

[10] C. P. Niculescu and L. ‐E. Persson, Convex functions and their appli‐
cations. A contemporary approach, CMS Books in Mathematics vol. 23.
Springer, New York, 2006.

121



122

[11] H. Osaka, J. Tomiyama, Double piling structure of matrix monotone
functions and of matrix convex functions. Linear Algebra Appl. 431
(2009), no. 10, 18251832.

[12] H. Osaka, Y. Tsurumi, S. Wada, Characterization of operator convex
functions by certain operator inequalities, to appear in Mathematical
Inequalities & Applications.

Graduate school of science and engineering
Ritsumeikan University
Shiga 525‐8577
JAPAN

ra0006hk@ed.ritsumei.ac.jp

立命館大学大学院 理工学研究科 鶴見幸大

122


