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ある作用素平均族のべき単調性
Power monotonicity for a class of operator means
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1 Introduction.

The theory of operator means is established by Kubo and Ando [4]: An operator mean
A  mB for positive invertible operators  A,  B is defined by a positive normalized operator

monotone function  f on  (0, \infty) by

 A  mB=A^{\frac{1}{2}}f(A^{-}21BA^{-\frac{1}{2}})A^{1}2.
Here the normalization is  f(1)=1 . One of the result of the Kubo‐Ando theory is to give

the bijection between the operator means and the positive normalized operator monotone

functions on  (0, \infty) as above. In this bijection,  f is often called the representing function
of an operator mean  f(x)=1mx.

Related to this, we gave a path of positive function on  (0, \infty) in [2];

 F_{r}(x)= \frac{3r-1}{3r+1}\frac{x^{\frac{3r+1}{2}}-1}{x^{\frac{3r-1}{2}}-1}.
It is monotone increasing for  r\in \mathbb{R} , which is the result of Takahasi, Tsukada, Tana‐

hashi and Ogiwara [5]. For  r\in[-1,1] , they are positive normalized operator monotone
functions. Moreover they are symmetric:

 Am_{f}B=Bm_{f}A , that is,  f(x)=xf( \frac{1}{x}) .
Typical means are listed below as numerical ones:

Transformed by  s= \frac{3r-1}{2} , it is equivalent to the following path:

  \tilde{F}_{s}(x)=\frac{s}{s+1}\frac{x^{s+1}-1}{x^{s}-1},
which is also discussed in [3].
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Recently Wada [6] introduced the power monotonicity of representing functions  f and
showed the relation to the Ando‐Hial inequality [7, 1]:  f is called PMI (resp., PMD) if  f
satisfies

 f(x^{p})\leqq f(x)^{p} (resp.,  f(x^{p})\geqq f(x)^{p} ) for all  p>1.

In this note, we show the power monotonicity for  F_{r} . Incidentally we see the role of the

terminal means in these inequalities.

2 Main result.

Theorem 1. The function  F_{r} is PMI for  r\geqq 0 and PMD for  r\leqq 0.

For  \tilde{F}_{s} , this result is equivalent to:

Theorem F. The function  \tilde{F}_{s} is PMI for  s \geqq-\frac{1}{2} and PMD for  s \leqq-\frac{1}{2}.

In fact, we show Theorem 1’ since  \tilde{F}_{s} has simple parameters. To show this, we need

two lemmas due to Takahasi‐Tsukada‐Tanahashi‐Hagiwara [5]. For completeness, we give
each proof. First, we see the following property:

Lemma 2. The function  J(t)=\{   \frac{e^{t}}{\frac {}{}e^{t}-1,21}-\frac{1}{t}  (t\neq 0)
is monotone increasing.

 (t=0)

It is easy to see that

For  x>1,  G_{x}(s)=\{   \log\frac{x^{s}-1}{s}  (s\neq 0)
is monotone increasing.

 \log(\log x)  (s=0)
 (*)

Combining these, we have:

Corollary 3. For  x>1,  G_{x}'(s) is monotone increasing.

Incidentally, these results show the known property:  \tilde{F}_{\mathcal{S}} is monotone increasing for  s,

which is the required result in [5]. In fact, by  \log\tilde{F}_{s}(x)=G_{x}(s+1)-G_{x}(s) ,

  \frac{\partial\log\tilde{F}_{s}(x)}{\partial s}=G_{x}'(s+1)-G_{x}'(s)\geqq 0.
Thus  \log\tilde{F}_{s} is monotone increasing for  s when  x>1 . As for the case  0<x<1 , we have

  \tilde{F}_{s}(x)=\frac{s}{s+1}\frac{x^{s+1}-1}{x^{s}-1}=\frac{s}{s+1}
\frac{(\frac{1}{x})^{s+1}-1}{(\frac{1}{x})^{s}-1}\cross x,
which also shows the monotonicity for  s . Thus it holds for all  x>0.
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Remark. The representing function  S_{\alpha}(x) of the Stolarsky mean is defined by

 s_{\alpha}(t)=( \frac{t^{\alpha}-1}{\alpha(t-1)})^{\frac{1}{\alpha-1}}
S.Wada [6, Prop.3.2] showed that  s_{\alpha} is PMD on  [-2, -1] and PMI on [−1, 2]. Putting

  \alpha=\frac{s+1}{s},  t=x^{s} , we have

  \tilde{S}_{s}(x)=(\frac{s}{s+1}\frac{x^{s+1}-1}{x^{s}-1})^{s},
which is closely related to our path  \tilde{F}_{s} . In fact, for  s>0 , we have  \tilde{F}_{s} is PMD (resp., PMI)
on  \mathcal{I} if and only if  \tilde{S}_{s} is PMD (resp., PMI) on  \mathcal{I} . For the negative case, these concepts are
exchanged. Then we show Wada’s result directly implies that  F_{r} is PMD for   r\in  (- \frac{1}{3},0)
and that it is PMI for  r \in(0, \frac{1}{9})\cup(1, \infty) . Thus Wada’s result does not imply all our
results in the above theorem.

In fact, consider the PMD case:

 -2< \alpha=\frac{s+1}{s}<-1\Leftrightarrow-\frac{1}{2}<s=\frac{3r-1}{2}<-
\frac{1}{3}\Leftrightarrow 0<r<\frac{1}{9},
which shows  F_{r} is PMI for  r \in(0, \frac{1}{9}) by  s<0.

Next consider the PMI case, which is divided into the negative case and the positive

one: For  (-1<)s<0 , we have

 -1< \alpha=\frac{s+1}{s}<0\Leftrightarrow-1<s=\frac{3r-1}{2}<-\frac{1}{2}
\Leftrightarrow-\frac{1}{3}<r<0,
which shows  F_{r} is PMD for   r\in  (--  \frac{1}{3},0) . Lastly, for  s>0 we have

 0< \alpha=\frac{s+1}{s}<2\Leftrightarrow s>1\Leftrightarrow r>1,
which shows  F_{r} is PMI for  r\in(1, \infty) .

3 Relation to the terminal means

Restricting ourselves to the case  p=n , integers and  |r| \geqq\frac{1}{3} . Then, we show the

following partial result of Theorem 1 via the arithmetic or harmonic means:

Theorem 4. For any integer  n and  r \geqq\frac{1}{3},

 F_{r}(x^{n})-F_{r}(x)^{n} \geqq F_{r}(x)((\frac{x+1}{2})^{n-1}-F_{r}(x)^{n-1})
\geqq 0.
For  r \leqq-\frac{1}{3},

 F_{r}(x)^{n}-F_{r}(x^{n}) \geqq F_{r}(x)(F_{r}(x)^{n-1}-(\frac{2x}{1+x})^{n-1})
\geqq 0.
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To see this, we give a lemma:

Lemma 5. A function  g_{n}(r)= \frac{\Sigma_{\ell=0^{x}}^{n-1}z\underline{\ell(}3r\underline{+1)}}
{\Sigma_{k=0}^{n-1}x\approx\underline{k(}3r\underline{-1)}}=\frac{E_{r}(x^{n})}
{F_{r}(x)} is monotone increasing.

4 Concluding remark

Very recently, Yamazaki extend Theorem 4 to the following:

Theorem (Yamazaki). For  p,  q\in[-1,1] , the represenming function

 F_{p,q}(x)=( \frac{p}{p+q}\frac{x^{p+q}-1}{x^{p}-1})^{\frac{1}{q}}
is PMI for  2p+q\geqq 0 , and PMD for  2p+q\leqq 0.

This theorem is shown by the following integral representation:

 F_{p,q}(x)=( \int_{0}^{1}(1-t+tx^{p})^{\frac{q}{p}}dt)^{\frac{1}{q}} Consider:

Acknowledgement. This study is partially supported by the Ministry of Education,

Science, Sports and Culture, Grant‐in‐Aid for Scientific Research (C), JSPS KAKENHI
Grant Number JP  16K05253.

References
[1] T.Ando and F.Hiai,  {\rm Log} majorization and complementary Golden‐Thompson type inequal‐

ity, Linear Algebra Appl., 197(1994), 113‐131.

[2] J.I.Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math.,
1(1998), 301‐306.

[3] F.Hiai and H.Kosaki, Means for matrices and comparison of their norms, Indiana Univ.
Math. J., 48 (1999), 899‐936.

[4] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205‐224.

[5] S.‐E.Takahasi, M.Tsukada, K.Tanahashi and T.Ogiwara, An inverse type of Jensen’s in‐
equality, Math. Japon., 50(1999), 85‐92.

[6] S.Wada, Some ways of constructing Furuta‐type inequalities, Linear Algebra Appl.,
457(2014), 276‐286.

[7] S.Wada, When does Ando‐Hiai inequality hold?, Linear Algebra Appl.,  540(201S),  234-
 243.

Department of Educational collaboration
Osaka Kyoiku University
Osaka 582‐8582

JAPAN

Email address: fujii@cc.osaka‐kyoiku.ac.jp

126


