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Estimations of the weighted power mean

by the Heron mean

前橋工科大学 伊藤 公智(Masatoshi Ito)
(Maebashi Institute of Technology)

Abstract

As the means generalizing the arithmetic and the geometric ones, the power
mean and the Heron mean are known. For positive real numbers a and  b , the

weighted power mean  P_{t,q}(a, b) and the weighted Heron mean  K_{t,q}(a, b) for   t\in

 [0,1] and  q\in \mathbb{R} are defined by  P_{t,q}(a, b)=\{(1-t)a^{q}+tb^{q}\}^{\frac{1}{q}} and  K_{t,q}(a, b)=
 (1-q)a^{1-t}b^{t}+q\{(1-t)a+tb\} , respectively.

In this report, as a generalization of Wu and Debnath’s result on non‐weighted

means (the case  t= \frac{1}{2} ), we get estimations of the weighted power mean by the
weighted Heron mean. We also obtain the results for bounded linear operators on
a Hilbert space, and some determinant and trace inequalities of matrices by using
our main results.

1 Introduction

This report is based on [5]. As means of two positive real numbers  a and  b , the
following are well known.

 A(a, b)= \frac{a+b}{2} (arithmetic mean),  G(a, b)=\sqrt{ab} (geometric mean),

 H(a, b)= \frac{2ab}{a+b} (harmonic mean),  LM(a, b)= \frac{a-b}{\log a-\log b} (logarithmic mean).

We also know some generalizations of these means. For example, for  q\in \mathbb{R},

 P_{q}(a, b)=\begin{array}{ll}
(\frac{a^{q}+b^{q}}{2})^{\frac{1}{q}}   if q\neq 0, (power mean),
\sqrt{ab}   if q=0,
\end{array}

 J_{q}(a, b)=\begin{array}{ll}
\frac{q}{q+1}\frac{a^{q+1}-b^{q+1}}{a^{q}-b^{q}}   if q\neq 0, -1,
\frac{a-b}{\log a-\log b}   if q=0, (power difference mean),
\frac{ab(\log a-\log b)}{a-b}   if q=-1,
\end{array}
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 L_{q}(a, b)= \frac{a^{q+1}+b^{q+1}}{a^{q}+b^{q}} (Lehmer mean),

 K_{q}(a, b)=(1-q) \sqrt{ab}+q\frac{a+b}{2} (Heron mean).

These means are symmetric, that is,  A(a, b)=A(b, a),  G(a, b)=G(b, a) and so on.
We note that  J_{q}(a, a) \equiv\lim_{barrow a}J_{q}(a, b)=a . It is well known that

 H(a, b)\leq G(a, b)\leq LM(a, b)\leq A(a, b) ,

 A(a, b)=P_{1}(a, b)=J_{1}(a, b)=L_{0}(a, b)=K_{1}(a, b) ,

 LM(a, b)=J_{0}(a, b) ,

 G(a, b)=P_{0}(a, b)=J_{\frac{-1}{2}}(a, b)=L_{\frac{-1}{2}}(a, b)=K_{0}(a, b) ,

 H(a, b)=P_{-1}(a, b)=J_{-2}(a, b)=L_{-1}(a, b) ,

and also  P_{q}(a, b),  J_{q}(a, b),  L_{q}(a, b) and  K_{q}(a, b) are monotone increasing on  q\in \mathbb{R}.

It is well known that some of the above means have their weighted version as follows:
For  t\in[0,1] and  q\in \mathbb{R},

 A_{t}(a, b)=(1-t)a+tb (arithmetic mean),

 G_{t}(a, b)=a^{1-t}b^{t} (geometric mean),

 H_{t}(a, b)=\{(1-t)a^{-1}+tb^{-1}\}^{-1} (harmonic mean),

 P_{t,q}(a, b)=\{\begin{array}{ll}
\{(1-t)a^{q}+tb^{q}\}^{\frac{1}{q}}   if q\neq 0,
a^{1-t}b^{t}   if q=0,
\end{array} (power mean),

 K_{t,q}(a, b)=(1-q)a^{1-t}b^{t}+q\{(1-t)a+tb\} (Heron mean).

If the weight  t is equal to   \frac{1}{2} , then the weighted means coincide with the original

(non‐weighted) ones as  A(a, b)=A_{\frac{1}{2}}(a, b) and  P_{q}(a, b)=P_{\frac{1}{2},q}(a, b) . The weighted means
have the properties that  A_{t}(a, b)=A_{1-t}(b, a),  G_{t}(a, b)=G_{1-t}(b, a) and so on.

Similarly to the non‐weighted means, the weighted means have the properties that

 H_{t}(a, b)\leq G_{t}(a, b)\leq A_{t}(a, b) ,

 A_{t}(a, b)=P_{t,1}(a, b)=K_{t,1}(a, b) ,

 G_{t}(a, b)=P_{t,0}(a, b)=K_{t,0}(a, b) ,

 H_{t}(a, b)=P_{t,-1}(a, b) ,

and also  P_{t,q}(a, b) and  K_{t,q}(a, b) are monotone increasing on  q\in \mathbb{R} . The inequality

 G_{t}(a, b)\leq A_{t}(a, b) is sometimes called Young’s inequality.
Many researchers investigate estimations of these means. For example, recently, we

have obtained the results on estimations of several means by the Heron mean. The

results for the power difference mean are in [13, 3], and the results for the Lehmer mean
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are in [4]. For the power mean, Janous [6], Wu and Debnath [12] obtained the following
Theorem 1.  A.

Theorem 1.  A([6,12]) . Let  a,  b>0 with  a\neq b.

(i) If  0<r< \frac{1}{2} or  1<r , then  K_{(\frac{1}{2})^{\frac{1}{r}-1}}(a, b)<P_{r}(a, b)<K_{r}(a, b) .

(ii) If   \frac{1}{2}<r<1 . Then  K_{r}(a, b)<P_{r}(a, b)<K_{(\frac{1}{2})^{\frac{1}{r}-1}}(a, b) .

(iii) If  r<0 . Then  K_{r}(a, b)<P_{r}(a, b)<K_{0}(a, b)=G(a, b) .

The given parameters of  K_{\alpha}(a, b) in each case are best possible.

We remark that Janous [6] has shown Theorem 1.  A for  0<r<1 as the results
on estimations of the generalized Heronian mean   \frac{a+w\sqrt{ab}+b}{w+2} for  w\geq 0 , and also Wu and

Debnath [  l2]gotTheorem l
 .Aasther

esults o
 nu

pper a
 ndl

ower bounds o  f\frac{P_{r}(a,b)-G(a,b}{hewe\dot{{\imath}}ghteA(a,b)-\cdot(a,b)}
Inth\dot{{\imath}}sreport,  asanextension o fTheorem l  .A,weobta\dot{{\imath}}nestimat\dot{{\imath}}onsoftd
power mean by the weighed Heron mean. We also obtain the results for bounded linear

operators on a Hilbert space. Moreover, related to the results in [1, 7], we get some
determinant and trace inequalities of matrices.

2 Main results

In this section, we obtain estimations of the weighted power mean of two positive
real numbers by the weighted Heron mean. In what follows, we define that

  \beta(t, r)=\frac{tr}{1-t}\{\frac{t(1-2r)}{t-r}\}^{\frac{1}{r}-2} and   \hat{\beta}(t, r)=\min\{\beta(t, r), 1\} (2.1)

for  t\in(0,1) and  r\in \mathbb{R} with  r\neq 0,   \frac{1}{2},  t . We need two lemmas in order to prove our main
results. We omit these proofs.

Lemma 2.1. Let  t\in(0,1) and  r\in \mathbb{R} with  r\neq 0,   \frac{1}{2} . Let  \beta(t, r) as in (2.1).

(i) If  0<r<t< \frac{1}{2} , then  r<\beta(t, r) holds.

(ii) If  r<0<t< \frac{1}{2} , then  \beta(t, r)<r holds.

(iii) If   \frac{1}{2}<t<r<1 , then  \beta(t, r)<r holds.

(iv) If   \frac{1}{2}<t<1<r , then  r<\beta(t, r) holds.
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Lemma 2.2. Let  t,  r\in(0,1) with  r \neq\frac{1}{2}.

(i) If  t\leq r\leq 1-t , then  t^{\frac{1}{r}-1}<r<(1-t)^{\frac{1}{r}-1} holds.

(ii) If  1-t\leq r\leq t , then  (1-t)^{\frac{1}{r}-1}<r<t^{\frac{1}{r}-1} holds.

Now we state our main results.

Theorem 2.3. Let  t,  r\in(0,1) . Let  \beta(t, r) and  \hat{\beta}(t, r) as in (2.1). For all  a,  b>0 with
 a\neq b , we have the following.

(i) If  t\leq r\leq 1-t , then  K_{t,t^{\frac{1}{r}-1}}(a, b)<P_{t,r}(a, b)<K_{t,(1-t)^{\frac{1}{r}-1}}(a, b) .

(ii) If  1-t\leq r\leq t , then  K_{t,(1-t)^{\frac{1}{r}-1}}(a, b)<P_{t,r}(a, b)<K_{t,t^{\frac{1}{r}-1}}(a, b) .

(iii) If  r<t\leq 1-t , then  K_{t,t^{\frac{1}{r}-1}}(a, b)<P_{t,r}(a, b)<K_{t,\hat{\beta}(t,r)}(a, b) .

(iv) If  r<1-t\leq t , then  K_{t,(1-t)^{\frac{1}{r}-1}}(a, b)<P_{t,r}(a, b)<K_{t,\hat{\beta}(1-t,r)}(a, b) .

(v) If  t\leq 1-t<r , then  K_{t,\beta(1-t,r)}(a, b)<P_{t,r}(a, b)<K_{t,(1-t)^{\frac{1}{r}-1}}(a, b) .

(vi) If  1-t\leq t<r , then  K_{t,\beta(t,r)}(a, b)<P_{t,r}(a, b)<K_{t,t^{\frac{1}{r}-1}}(a, b) .

The given parameters of  K_{t,\alpha}(a, b) in each case are best possible on  \alpha except the parts

 \alpha=\beta(\cdot, r) and  \alpha=\hat{\beta}(\cdot, r) .

Theorem 2.4. Let  \beta(t, r) as in (2.1). For all  a,  b>0 with  a\neq b , we have the following.

(i) If  t \in(0, \frac{1}{2}] and  r>1 , then  K_{t,(1-t)^{\frac{1}{r}-1}}(a, b)<P_{t,r}(a, b)<K_{t,\beta(1-t,r)}(a, b) .

(ii) If   t\in  [ \frac{1}{2},1) and  r>1 , then  K_{t,t^{\frac{1}{r}-1}}(a, b)<P_{t,r}(a, b)<K_{t,\beta(t,r)}(a, b) .

(iii) If  t \in(0, \frac{1}{2} ] and  r<0 , then  K_{t,\beta(t,r)}(a, b)<P_{t,r}(a, b)<K_{t,0}(a, b)=G_{t}(a, b) .

(iv) If   t\in  [ \frac{1}{2},1) and  r<0 , then  K_{t,\beta(1-t,r)}(a, b)<P_{t,r}(a, b)<K_{t,0}(a, b)=G_{t}(a, b) .

The given parameters of  K_{t,\alpha}(a, b) in each case are best possible on  \alpha except the parts

 \alpha=\beta(\cdot, r) .

Theorems 2.3 and 2.4 imply Theorem 1.  A by putting  t= \frac{1}{2} . We remark that the
best possibility of the parts   \alpha=\beta(\frac{1}{2}, r)=r is also shown by scrutinizing the proofs
of Theorems 2.3 and 2.4. The following Figure 1 shows the domains of parameters in
Theorems 2.3 and 2.4.

130



131

Proofs of Theorems 2.3 and 2.4. Here, we only prove (i) and (iii) in Theorem 2.3. The
rest are shown by the similar way. We remark that, since  K_{t,\alpha}(a, b)=K_{1-t,\alpha}(b, a) and

 P_{t,r}(a, b)=P_{1-t,r}(b, a) hold for  a,  b>0 , (ii), (iv) and (vi) are immediately obtained by
(i), (iii) and (v), respectively.

We have only to consider the case  (a, b)=(1, x) with  x\neq 1 by easy replacement. Let

 f_{t}(x)=P_{t,r}(1, x)-K_{t,\alpha}(1, x)
(2.2)

 =\{(1-t)+tx^{r}\}^{\frac{1}{r}}-(1-\alpha)x^{t}-\alpha\{(1-t)+tx\}.

Now we discuss upper and lower bounds of  \alpha to hold the inequalities  K_{t,\alpha}(1, x)<
 P_{t,r}(1, x) and  P_{t,r}(1, x)<K_{t,\alpha}(1, x) , that is,  f_{t}(x)>0 and  f_{t}(x)<0 for all  x>0.

Let

 g_{t}(x)=\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}x^{r-t}-(1-\alpha)-\alpha x^{1-t},
 h_{t}(x)=t(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-2}x^{2r-1}

(2.3)
 +(r-t)\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}x^{r-1}-\alpha(1-t) and

 k_{t}(x)=t(r-1+t)x^{r}-(1-t)(r-t) .

Then we have

 f_{t}'(x)=tx^{t-1}g_{t}(x) ,

 g_{t}'(x)=x^{-t}h_{t}(x) and (2.4)

 h_{t}'(x)=(1-t)(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-3}x^{r-2}k_{t}(x)
since

 f_{t}'(x)=tx^{r-1}\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}-(1-\alpha)tx^{t-1}-\alpha t

 =tx^{t-1}[\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}x^{r-t}-(1-\alpha)-\alpha x^{1-t}] ,
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 g_{t}'(x)=t(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-2}x^{2r-1-t}
 +(r-t)\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}x^{r-t-1}-\alpha(1-t)x^{-t}

 =x^{-t}[t(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-2}x^{2r-1}
 +(r-t)\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}x^{r-1}-\alpha(1-t)]

and

 h_{t}'(x)=t^{2}(1-r)(1-2r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-3}x^{3r-2}
 +t(1-r)(2r-1)\{(1-t)+tx^{r}\}^{\frac{1}{r}-2}x^{2r-2}
 +t(r-t)(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-2}x^{2r-2}
 +(r-t)(r-1)\{(1-t)+tx^{r}\}^{\frac{1}{r}-1}x^{r-2}

 =(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-3}x^{r-2}
 \cross[(1-2r)t^{2}x^{2r}+(3r-1-t)\{(1-t)+tx^{r}\}tx^{r}-(r-t)\{(1-t)+tx^{r}\}
^{2}]

 =(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-3}x^{r-2}
 \cross[tx^{r}-\{(1-t)+tx^{r}\}][(1-2r)tx^{r}+(r-t)\{(1-t)+tx^{r}\}]

 =(1-t)(1-r)\{(1-t)+tx^{r}\}^{\frac{1}{r}-3}x^{r-2}[t(r-1+t)x^{r}-(1-t)(r-t)].

Proof of (i). We may except the case  r=t= \frac{1}{2} since  P_{\frac{1}{2},\frac{1}{2}}(1, x)=K_{\frac{1}{2},\frac{1}{2}}(1, x) holds.
Firstly, we consider the case  \alpha\leq r.

(i‐a) The case  \alpha\leq r and  0<x<1 . If  t\leq r\leq 1-t holds, then  h_{t}'(x)<0 holds for
 0<x\leq 1 , that is,

 h_{t}(x) is decreasing for  0<x\leq 1 (2.5)

by (2.3) and (2.4). Since  h_{t}(1)=(r-\alpha)(1-t)\geq 0,  (2.5) implies that  g_{t}'(x)=x^{-t}h_{t}(x)>0
holds for  0<x<1 , that is,

 g_{t}(x) is increasing for  0<x\leq 1.

Since  g_{t}(1)=0,  f_{t}'(x)=tx^{t-1}g_{t}(x)<0 holds for  0<x<1 , that is,

 f_{t}(x) is decreasing for  0<x\leq 1.

Therefore, since  f_{t}(1)=0 , we have

 f_{t}(x)>0 , that is,  K_{t,\alpha}(1, x)<P_{t,r}(1, x) for  0<x<1 . (2.6)

(i‐b) The case  \alpha\leq r and  x>1 . Noting that  K_{t,\alpha}(1, x)=xK_{1-t,\alpha}(1, x^{-1}) and
 P_{t,r}(1, x)=xP_{1-t,r}(1, x^{-1}) , we consider  f_{t_{1}}(y) for  y=x^{-1}\in(0,1) and  t_{1}=1-t.

If  1-t_{1}\leq r\leq t_{1} holds, then  h_{t_{1}}'(y)>0 holds for  0<y\leq 1 , that is,

 h_{t_{1}}(y) is increasing for  0<y\leq 1
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by (2.3) and (2.4). If  \alpha<r , then there exists a  \delta_{1}\in(0,1) such that  h_{t_{1}}(\delta_{1})=0 since

 h_{t_{1}}(y)=\{(1-t_{1})y^{-r}+t_{1}\}^{\frac{1-r}{r}}[t_{1}(1-r)\{(1-t_{1})y^{
-r}+t_{1}\}^{-1}+(r-t_{1})]-\alpha(1-t_{1})
 arrow-\infty (yarrow+0)

and  h_{t_{1}}(1)=(r-\alpha)(1-t_{1})>0 . This ensures that  g_{t_{1}}'(y)<0 for  0<y<\delta_{1} and

 g_{t_{1}}'(y)>0 for  \delta_{1}<y<1 hold, that is,

 g_{t_{1}}(y) is decreasing for  0<y<\delta_{1} and increasing for  \delta_{1}<y<1.

Then there exists a  \delta_{2}\in(0, \delta_{1}) such that  g_{t_{1}}(\delta_{2})=0 since   yarrow+01\dot{{\imath}}mg_{t_{1}}(y)=\infty holds and

 g_{t_{1}}(1)=0 assures that  g_{t_{1}}(\delta_{1})<0 . So  f_{t_{1}}'(y)>0 holds for  0<y<\delta_{2} and  f_{t_{1}}'(y)<0
holds for  \delta_{2}<y<1 hold, that is,

 f_{t_{1}}(y) is increasing for  0<y<\delta_{2} and decreasing for  \delta_{2}<y<1.

If  \alpha\leq(1-t_{1})^{\frac{1}{r}-1} , then  f_{t_{1}}(0)\geq 0 , so that  f_{t_{1}}(y)>0 holds for  0<y<1 since  f_{t_{1}}(1)=0.
If  \alpha=r , then  f_{t_{1}}(y)<0 for  0<y<1 by the similar argument. We remark that

 (1-t_{1})^{\frac{1}{r}-1}<r=\alpha for  1-t_{1}\leq r\leq t_{1} by (ii) in Lemma 2.2.
Therefore we have  K_{t_{1},\alpha}(1, y)<P_{t_{1},r}(1, y) for  0<y<1 if  \alpha\leq(1-t_{1})^{\frac{1}{r}-1} , that is,

 K_{t,\alpha}(1, x)<P_{t,r}(1, x) for  x>1 holds if  \alpha\leq t^{\frac{1}{r}-1} . (2.7)

Hence, by (2.6) and (2.7), we get  K_{t,\alpha}(1, x)<P_{t,r}(1, x) for all  x>0 with  x\neq 1 if
 \alpha\leq t^{\frac{1}{r}-1} . This argument also proves the best possibility of  \alpha since  K_{t,\alpha}(1, x)<P_{t,r}(1, x)
or  P_{t,r}(1, x)<K_{t,\alpha}(1, x) does not always hold for  x>0 with  x\neq 1 if  t^{\frac{1}{r}-1}<\alpha\leq r.

Next we consider the case   r\leq\alpha . By the similar way to (i‐b), we obtain that  f_{t}(x)<0,
that is,  P_{t,r}(1, x)<K_{t,\alpha}(1, x) holds for all  0<x<1 if  \alpha\geq(1-t)^{\frac{1}{r}-1} By applying the

similar way to (i‐a) for  f_{t_{1}}(y) as in (i‐b), we obtain that  f_{t_{1}}(y)<0 holds for  0<y<1,

that is,  P_{t,r}(1, x)<K_{t,\alpha}(1, x) holds for all  x>1 . Hence we get  P_{t,r}(1, x)<K_{t,\alpha}(1, x)
holds for all  x>0 with  x\neq 1 if  \alpha\geq(1-t)^{\frac{1}{r}-1} . We also get the best possibility of  \alpha,

that is,  P_{t,r}(1, x)<K_{t,\alpha}(1, x) or  P_{t,r}(1, x)<K_{t,\alpha}(1, x) does not always hold for  x>0 if

 r\leq\alpha<(1-t)^{\frac{1}{r}-1}.

Proof of (iii). Firstly, we consider the case  \alpha<r . Let   \delta_{0}=(\frac{(1-t)(t-r)}{t(1-t-r)})^{\frac{1}{r}} We
remark that  0<\delta_{0}\leq 1 (resp.  \delta_{0}\geq 1 ) holds for  t,  r\in(0,1) and  r<t\leq 1-t (resp.
 r<1-t\leq t) .

(iii‐a) The case  \alpha<r and  0<x<1 . If  r<t\leq 1-t holds, then  h_{t}'(x)>0 holds for
 0<x<\delta_{0} and  h_{t}'(x)<0 holds for  \delta_{0}<x<1 , that is,

 h_{t}(x) is increasing for  0<x<\delta_{0} and decreasing for  \delta_{0}<x<1
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by (2.3) and (2.4). Then there exists a  \delta_{1}\in(0, \delta_{0}) such that  h_{t}(\delta_{1})=0 since 1 \dot{{\imath}}mh_{t}(x)xarrow+0=
 -\infty and  h_{t}(1)=(r-\alpha)(1-t)\geq 0 . This ensures that  g_{t}'(x)<0 for  0<x<\delta_{1} and

 g_{t}'(x)>0 for  \delta_{1}<x<1 , that is,

 g_{t}(x) is decreasing for  0<x<\delta_{1} and increasing for  \delta_{1}<x<1.

Then there exists a  \delta_{2}\in(0, \delta_{1}) such that  g_{t}(\delta_{2})=0 since   xarrow+01\dot{{\imath}}mg_{t}(x)=\infty and  g_{t}(1)=0.

So  f_{t}'(x)>0 holds for  0<x<\delta_{2} and  f_{t}'(x)<0 holds for  \delta_{2}<x<1 hold, that is,

 f_{t}(x) is increasing for  0<x<\delta_{2} and decreasing for  \delta_{2}<x<1.

If  \alpha\leq(1-t)^{\frac{1}{r}-1} , then  f_{t}(0)>0 , so that  f_{t}(x)>0 holds for  0<x<1 since  f_{t}(1)=0.
Therefore we have

 K_{t,\alpha}(1, x)<P_{t,r}(1, x) for  0<x<1 if  \alpha\leq(1-t)^{\frac{1}{r}-1}.

(iii‐b) The case  \alpha<r and  x>1 . Similarly to (i‐b), we consider  f_{t_{1}}(y) for   y=x^{-1}\in
 (0,1) and  t_{1}=1-t . Noting that  r<t\leq 1-t if and only if  r<1-t_{1}\leq t_{1} , by the
similar way to (i‐b), we have that  K_{t_{1},\alpha}(1, y)<P_{t_{1},r}(1, y) for  0<y<1 if  \alpha\leq(1-t_{1})^{\frac{1}{r}-1},
that is,

 K_{t,\alpha}(1, x)<P_{t,r}(1, x) for  x>1 if  \alpha\leq t^{\frac{1}{r}-1}.

Hence, by (iii‐a) and (iii‐b), we get  K_{t,\alpha}(1, x)\leq P_{t,r}(1, x) for all  x>0 with  x\neq 1 if
 \alpha\leq t^{\frac{1}{r}-1} since  t^{\frac{1}{r}-1}\leq(1-t)^{\frac{1}{r}-1} holds. We remark that  t^{\frac{1}{r}-1}<  ( \frac{1}{2})^{\frac{1}{r}-1}<r holds for  r,   t\in

 (0,  \frac{1}{2}) . This argument also proves the best possibility of  \alpha since  K_{t,\alpha}(1, x)<P_{t,r}(1, x) or

 P_{t,r}(1, x)<K_{t,\alpha}(1, x) does not always hold for  x>0 with  x\neq 1 if  t^{\frac{1}{r}-1}<\alpha<r.

Next, we consider the case   r\leq\alpha . If  \alpha\geq 1 , then we obviously get that  P_{t,r}(1, x)<
 K_{t,\alpha}(1, x) holds for all  x>0 with  x\neq 1 since  K_{t,1}(1, x)=A_{t}(1, x) . We remark that

 r<\beta(t, r) holds for  0<r<t< \frac{1}{2} by (i) in Lemma 2.1.
(iii‐c) The case   r\leq\beta(t, r)\leq\alpha and  0<x<1 . If  r<t\leq 1-t holds, then  h_{t}'(x)>0

holds for  0<x<\delta_{0} and  h_{t}'(x)<0 holds for  \delta_{0}<x<1 , that is,

 h_{t}(x) is increasing for  0<x<\delta_{0} and decreasing for  \delta_{0}<x<1.

by (2.3) and (2.4). Noting that  h(\delta_{0})\leq 0 if and only if  \alpha\geq\beta(t, r) , we get that  g_{t}'(x)\leq 0
for  0<x<1 , that is,

 g_{t}(x) is decreasing for  0<x<1.

Since  g_{t}(1)=0,  f_{t}'(x)>0 holds for  0<x<1 , that is,

 f_{t}(x) is increasing for  0<x<1.

Therefore, since  f_{t}(1)=0 , we have

 f_{t}(x)<0 , that is,  P_{t,r}(1, x)<K_{t,\alpha}(1, x) for  0<x<1 if  \alpha\geq\beta(t, r) .
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(iii‐d) The case   r\leq a and  x>1 . We consider  f_{t_{1}}(y) for  y=x^{-1}\in(0,1) and
 t_{1}=1-t . Noting that  r\leq t\leq 1-t if and only if  r\leq 1-t_{1}\leq t_{1} , by the similar way

to (i‐a), we have that  P_{t_{1},r}(1, y)<K_{t_{1},\alpha}(1, y) for  0<y<1 , that is,

 P_{t,r}(1, x)<K_{t,\alpha}(1, x) for  x>1.

Hence, by (iii‐c) and (iii‐d), we get  P_{t,r}(1, x)<K_{t,\alpha}(1, x) for all  x>0 with  x\neq 1 if
 \alpha\geq\hat{\beta}(t, r) .  \square 

3 Operator inequalities

In this section, we get operator inequalities by the results in the previous section.
Here, an operator means a bounded linear operator on a Hilbert space  \mathcal{H} . An operator

 T is said to be positive (denoted by  T\geq 0 ) if (Tx,  x )  \geq 0 for all  x\in \mathcal{H} , and also an
operator  T is said to be strictly positive (denoted by  T>0 ) if  T is positive and invertible.
A real‐valued function  f defined on  J\subset \mathbb{R} is said to be operator monotone if

 A\leq B implies  f(A)\leq f(B)

for selfadjoint operators  A and  B whose spectra  \sigma(A),  \sigma(B)\subset J , where  A\leq B means
 B-A\geq 0.

The general theory on operator means are established by Kubo and Ando [10], and
they obtained in [10] that there exists a one‐to‐one correspondence between an operator
mean  \mathfrak{M} and an operator monotone function  f\geq 0 on  [0, \infty ) with  f(1)=1 as follows:

  \mathfrak{M}(A, B)=A^{\frac{1}{2}}f(A\frac{-1}{2}BA^{\frac{-1}{2}})A^{\frac{1}
{2}} (3.1)

if  A>0 and  B\geq 0 . We remark that  f is called the representing function of  \mathfrak{M} , and
also it is permitted to consider binary operations given by (3.1) even if  f is a general
real‐valued function.

By (3.1), we can introduce the following weighted operator means for two strictly
positive operators  A and  B . For  t\in[0,1] and  q\in \mathbb{R},

 \mathfrak{A}_{t}(A, B)=(1-t)A+tB (arithmetic mean),

  \mathfrak{G}_{t}(A, B)=A^{\frac{1}{2}}(A\frac{-1}{2}BA^{\frac{-1}{2}})^{t}
A^{\frac{1}{2}} (geometric mean),

 \mathfrak{H}_{t}(A, B)=\{(1-t)A^{-1}+tB^{-1}\}^{-1} (harmonic mean),

 \mathfrak{P}_{t,q}(A, B)=\{\begin{array}{ll}
A^{\frac{1}{2}}\{(1-t)I+t(A^{-}\overline{2}' BA^{\frac{-1}{2}})^{q}\}^{\frac{1}
{q}}A^{\frac{1}{2}}   if q\neq 0,
A^{\frac{1}{2}}(A\frac{-1}{2}BA^{\frac{-1}{2}})^{t}A^{\frac{1}{2}}   if q=0,
\end{array} (power mean),

  \mathfrak{K}_{t,q}(A, B)=(1-q)A^{\frac{1}{2}}(A\frac{-1}{2}BA^{\frac{-1}{2}})^
{t}A^{\frac{1}{2}}+q\{(1-t)A+tB\} (Heron mean).

It is known that  \mathfrak{P}_{t,q}(A, B) is an operator mean if  -1\leq q\leq 1 , and also  \mathfrak{K}_{t,q}(A, B) is an

operator mean if  0\leq q\leq 1 . We remark that their representing functions are  A_{t}(1, x) ,
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 G_{t}(1, x) and so on, and also notations  A\nabla_{t}B,  A\#_{t}B,  A!_{t}B and  A\#_{t,q}B are often

used instead of  \mathfrak{A}_{t}(A, B),  \mathfrak{G}_{t}(A, B),  \mathfrak{H}_{t}(A, B) and  \mathfrak{P}_{t,q}(A, B) , respectively. (See [11], for
example.)

By Theorem 2.3, we have estimations of the weighted operator power mean by the
Heron mean. Theorem 2.4 ensures the similar result, but we omit it.

Theorem 3.1. Let  t,  r\in(0,1) . Let  \beta(t, r) and  \hat{\beta}(t, r) as in (2.1). For all  A,  B>0 , we
have the following.

(i) If  t\leq r\leq 1-t , then  \mathfrak{K}_{t,t^{\frac{1}{r}-1}}(A, B)\leq \mathfrak{P}_{t,r}(A, B)\leq 
\mathfrak{K}_{t,(1-t)^{\frac{1}{r}-1}}(A, B) .

(ii) If  1-t\leq r\leq t , then  \mathfrak{K}_{t,(1-t)^{\frac{1}{r}-1}}(A, B)\leq \mathfrak{P}_{t,r}(A, B)\leq 
\mathfrak{K}_{t,t^{\frac{1}{r}-1}}(A, B) .

(iii) If  r<t\leq 1-t , then  \mathfrak{K}_{t,t^{\frac{1}{r}-1}}(A, B)\leq \mathfrak{P}_{t,r}(A, B)\leq 
\mathfrak{K}_{t,\hat{\beta}(t,r)}(A, B) .

(iv) If  r<1-t\leq t , then  \mathfrak{K}_{t,(1-t)^{\frac{1}{r}-1}}(A, B)\leq \mathfrak{P}_{t,r}(A, B)\leq 
\mathfrak{K}_{t,\hat{\beta}(1-t,r)}(A, B) .

(v) If  t\leq 1-t<r , then  \mathfrak{K}_{t,\beta(1-t,r)}(A, B)\leq \mathfrak{P}_{t,r}(A, B)\leq 
\mathfrak{K}_{t,(1-t)^{\frac{1}{r}-1}}(A, B) .

(vi) If  1-t\leq t<r , then  \mathfrak{K}_{t,\beta(t,r)}(A, B)\leq \mathfrak{P}_{t,r}(A, B)\leq \mathfrak{K}
_{t,t^{\frac{1}{r}-1}}(A, B) .

The given parameters of  \mathfrak{K}_{t,\alpha}(A, B) in each case are best possible on  \alpha except the parts

 \alpha=\beta(\cdot, r) and  \alpha=\hat{\beta}(\cdot, r) .

Proof. Put  a=1 and replace  b by  A \frac{-1}{2}BA^{\frac{-1}{2}} Then we have Theorem 3.1 by applying
the standard operational calculus in Theorem 2.3.  \square 

4 Determinant and trace inequalities

In this section, we get some determinant and trace inequalities of matrices. Let  P_{n}(\mathbb{C})
be the set of  n\cross n positive definite matrices on  \mathbb{C}.

Kittaneh and Manasrah researched improved and reversed Young’s inequalities in

[8, 9]. As a generalization of their results in [8, 9], for  a,  b>0 with  a\neq b , Alzer, da
Fonseca and Kovačec [1] obtained the inequality

 ( \frac{\nu}{\mu})^{\lambda}\leq\frac{A_{\nu}(a,b)^{\lambda}-G_{\nu}(a,b)
^{\lambda}}{A_{\mu}(a,b)^{\lambda}-G_{\mu}(a,b)^{\lambda}}\leq(\frac{1-\nu}{1-
\mu})^{\lambda} (4.1)

where  \lambda\geq 1 and  0<\nu\leq\mu<1 . Moreover, Khosravi [7] obtained a generalization of
(4.1) of the case  \lambda=1 , that is,

  \frac{\nu}{\mu}\leq\frac{A_{\nu}(a,b)-P_{\nu,r}(a,b)}{A_{\mu}(a,b)-P_{\mu,r}
(a,b)}\leq\frac{1-\nu}{1-\mu} , (4.2)
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where  0<\nu\leq\mu<1 and  r\in \mathbb{R} with  r\neq 1.
By using (4.2), Khosravi [7] obtained a generalization of the determinant inequality

in [1] as follows: Let  A,  B\in P_{n}(\mathbb{C}) . Then

 ( \frac{\nu}{\mu})^{p}[\det\{\mathfrak{A}_{\mu}(A, B)-\mathfrak{P}_{\mu,r}(A, 
B)\}]^{\frac{p}{n}}\leq[\det \mathfrak{A}_{\nu}(A, B)]^{\frac{p}{n}}-[\det 
\mathfrak{P}_{\nu,r}(A, B)]^{\frac{p}{n}} (4.3)

holds for  0<\nu\leq\mu<1,  -1\leq r<1 and  p\geq 1 . We get determinant inequalities related

to (4.3) by using Theorem 2.3.

Theorem 4.1. Let  A,  B\in P_{n}(\mathbb{C}),  r\in(0,1) and  p\geq 1 . Let  \hat{\beta}(t, r) as in (2.1).

(i) If  t \in(0, \frac{1}{2}] and  t\leq r , then

 (1-(1-t)^{\frac{1}{r}-1})^{p}[\det\{\mathfrak{A}_{t}(A, B)-\otimes_{t}(A, B)\}]
^{\frac{p}{n}}\leq[\det \mathfrak{A}_{t}(A, B)]^{\frac{p}{n}}-[\det \mathfrak{P}
_{t,r}(A, B)]^{\frac{p}{n}}

(ii) If  t \in(0, \frac{1}{2}] and  r<t , then

 (1-\hat{\beta}(t, r))^{p}[\det\{\mathfrak{A}_{t}(A, B)-\otimes_{t}(A, B)\}]
^{\frac{p}{n}}\leq[\det \mathfrak{A}_{t}(A, B)]^{\frac{p}{n}}-[\det \mathfrak{P}
_{t,r}(A, B)]^{\frac{p}{n}}

(iii) If   t\in  ( \frac{1}{2},1) and  1-t\leq r , then

 (1-t^{\frac{1}{r}-1})^{p}[\det\{\mathfrak{A}_{t}(A, B)-\mathfrak{G}_{t}(A, B)\}
]^{\frac{p}{n}}\leq[\det \mathfrak{A}_{t}(A, B)]^{\frac{p}{n}}-[\det 
\mathfrak{P}_{t,r}(A, B)]^{\frac{p}{n}}

(iv) If   t\in  ( \frac{1}{2},1) and  r<1-t , then

 (1-\hat{\beta}(1-t, r))^{p}[\det\{\mathfrak{A}_{t}(A, B)-\mathfrak{G}_{t}(A, B)
\}]^{\frac{p}{n}}\leq[\det \mathfrak{A}_{t}(A, B)]^{\frac{p}{n}}-[\det \mathfrak
{P}_{t,r}(A, B)]^{\frac{p}{n}}

Theorem 4.2. Let  A,  B\in P_{n}(\mathbb{C}),  r\in(0,1) and  p\geq 1 . Let  \beta(t, r) as in (2.1).

(i) If  t \in(0, \frac{1}{2}] and  1-t\leq r , then

 \beta(1-t, r)^{p}[\det\{\mathfrak{A}_{t}(A, B)-\otimes_{t}(A, B)\}]^{\frac{p}
{n}}\leq[\det \mathfrak{P}_{t,r}(A, B)]^{\frac{p}{n}}-[\det \mathfrak{G}_{t}(A, 
B)]^{\frac{p}{n}}

(ii) If  t \in(0, \frac{1}{2}] and  r<1-t , then

 t( \frac{1}{r}-1)p[\det\{\mathfrak{A}_{t}(A, B)-\mathfrak{G}_{t}(A, B)\}]
^{\frac{p}{n}}\leq[\det \mathfrak{P}_{t,r}(A, B)]^{\frac{p}{n}}-[\det\otimes_{t}
(A, B)]^{\frac{p}{n}}

(iii) If   t\in  ( \frac{1}{2},1) and  t\leq r , then

 \beta(t, r)^{p}[\det\{\mathfrak{A}_{t}(A, B)-\otimes_{t}(A, B)\}]^{\frac{p}{n}}
\leq[\det \mathfrak{P}_{t,r}(A, B)]^{\frac{p}{n}}-[\det\otimes_{t}(A, B)]^{\frac
{p}{n}}
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(iv) If   t\in  ( \frac{1}{2},1) and  r<t , then

 (1-t)^{(\frac{1}{r}-1)p}[\det\{\mathfrak{A}_{t}(A, B)-\otimes_{t}(A, B)\}]
^{\frac{p}{n}}\leq[\det \mathfrak{P}_{t,r}(A, B)]^{\frac{p}{n}}-[\det\otimes_{t}
(A, B)]^{\frac{p}{n}}.

We omit these proofs. We remark that we use the following Lemma 4.  A , a general‐
ization of Minkowski’s product inequality (see [2]) in order to prove Theorems 4.1 and
4.2.

Lemma 4.  A ([7]). Let  a_{i},  b_{i}>0 for  i=1,2 , . . . ,  n . Then

 ( \prod_{i=1}^{n}a_{i})^{\frac{p}{n}}+(\prod_{i=1}^{n}b_{i})^{\frac{p}{n}}\leq(
\prod_{i=1}^{n}(a_{i}+b_{i}))^{\frac{p}{n}}
holds for  p\geq 1.

On the other hand, by using (4.2) for  \lambda=1 , Alzer, da Fonseca and Kovačec [1]
obtained the trace inequality as follows: Let  A,  B\in P_{n}(\mathbb{C}) . Then

  \frac{\nu}{\mu} {tr  \mathfrak{A}_{\mu}(A, B)-(trA)^{1-\mu}(trB)^{\mu} }  \leq tr\mathfrak{A}_{\nu}(A, B)-trA^{1-\nu}B^{\nu} (4.4)

holds for  0<\nu\leq\mu<1 . We also get trace inequalities related to (4.4) by using Theorem
2.3.

Theorem 4.3. Let  A,  B\in P_{n}(\mathbb{C}),  r\in(0,1) and  p\geq 1 . Let  \beta(t, r) as in (2.1).

(i) If  t \in(0, \frac{1}{2}] and  1-t\leq r , then

 \beta(1-t, r)\{tr\mathfrak{A}_{t}(A, B)-(trA)^{1-t}(trB)^{t}\}\leq  \{tr \mathfrak{A}_{t}(A^{r}, B^{r})\}^{\frac{1}{r}} —tr  A^{1-t}B^{t}.

(ii) If  t \in(0, \frac{1}{2}] and  r<1-t , then

  t^{\frac{1}{r}-1}\{tr\mathfrak{A}_{t}(A, B)-(trA)^{1-t}(trB)^{t}\}\leq  \{tr \mathfrak{A}_{t}(A^{r}, B^{r})\}^{\frac{1}{r}} —tr  A^{1-t}B^{t}.

(iii) If   t\in  ( \frac{1}{2},1) and  t\leq r , then

 \beta(t, r) {tr  \mathfrak{A}_{t}(A, B)-(trA)^{1-t}(trB)^{t} }  \leq  \{tr \mathfrak{A}_{t}(A^{r}, B^{r})\}^{\frac{1}{r}} —tr  A^{1-t}B^{t}.

(iv) If   t\in  ( \frac{1}{2},1) and  r<t , then

 (1-t)^{\frac{1}{r}-1} {tr  \mathfrak{A}_{t}(A, B)-(trA)^{1-t}(trB)^{t} }  \leq  \{tr \mathfrak{A}_{t}(A^{r}, B^{r})\}^{\frac{1}{r}} —tr  A^{1-t}B^{t}.

We omit this proof. We remark that we use fundamental properties of the singular
values, Hölder’s inequality and the inequality   \sum_{i=1}^{n}a_{i}^{p}\leq(\sum_{i=1}^{n}a_{i})^{p} for  a_{i}>0(i=
 1 , . . . ,  n) and  p\geq 1 in order to prove Theorem 4.3.
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