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GENERAL ITERATIVE ALGORITHMS FOR NONEXPANSIVE

MAPPINGS IN BANACH SPACES

JONG SOO JUNG

DEPARTMENT OF MATHEMATICS, DONG‐A UNIVERSITY

ABSTRACT. In this paper, we introduce two general iterative algorithms (one implicit
algorithm and other explicit algorithm) for nonexpansive mappings in a reflexive Banach
space with a uniformly Gâteaux differentiable norm. Strong convergence theorems for the
sequences generated by the proposed algorithms are established.

1. INTRODUCTION

Let E be a real Banach space with the norm  \Vert .  \Vert , and let  E^{*} be the dual space of  E.

Let  J denote the normalized duality mapping from  E into  2^{E^{*}} defined by

 J(x)=\{f\in E^{*} : \langle x, f\}=\Vert x\Vert\Vert f\Vert, \Vert f\Vert=\Vert
x\Vert\}, \forall x\in E,

where  \langle\cdot,  \cdot } denotes the generalized duality pair between  E and  E^{*} . Let  C be a nonempty
closed convex subset of  E . For the mapping  T:Carrow C , we denote the fixed point set of  T

by Fix (T) , that is, Fix  (T)=\{x\in C : Tx=x\} . Recaıl that the mapping  T:Carrow C is
said to be nonexpansive if

 \Vert Tx-Ty\Vert\leq\Vert x-y\Vert, \forall x, y\in C.

In a Banach space  E having a single‐valued normalized duality mapping  J , we say that
an operator  A is strongly positive on  E if there exists a  \overline{\gamma}>0 with the property

{  Ax ,  J(x)\rangle\geq\overline{\gamma}\Vert x\Vert^{2} (1.1)
and

  \Vert aI-bA\Vert=\sup|\{(aI-bA)x, J(x)\rangle|, a\in[0,1], b\in[-1.1],
 \Vert x\Vert\leq 1

for all  x\in E , where  I is the identity mapping. If  E  :=H is a real Hilbert space, then the
inequality (1.1) reduce to

 \langle Ax,  x\rangle\geq\overline{\gamma}\Vert x\Vert^{2},  \forall x\in H.

One classical way to study nonexpansive mappings it to use contractions to approximate
a nonexpansive mapping. More precisely, take  t\in(0,1) and define a contraction  T_{t}:Earrow E
by

 T_{t}x=tu+(1-t)Tx, \forall x\in E,
where  u\in E is an arbitrarily chosen point. Banach’s contraction mapping principle guar‐
antees that  T_{t} has unique a fixed point  x_{t} in  E , which uniquely solves the following fixed
point equation:

 x_{t}=tu+(1-t)Tx_{t},
(Such a path  \{x_{t}\} is said to be an approximating fixed point of  T since it posesesses the
property that if  \{x_{t}\} is bounded, then   \lim_{tarrow 0}\Vert Tx_{t}-x_{t}\Vert=0). It is unclear, in general, what
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is the behavior of  x_{t} as  tarrow 0 , even if  T has a fixed point. However, in the case of  T having
a fixed point, Browder [3] proved that if  E is a Hilbert space, then  x_{t} converges strongly
to a fixed point of  T . Reich [11] extended Browder’s result to the setting of Banach spaces
and proved that if  E is a uniformly smooth Banach space, then  \{x_{t}\} converges strongly to
a fixed point of  T and the limit defines the (umique) sunny nonexpansive retraction from  E

onto Fix(T) . Xu [17] proved Reich’s results hold in reflexive Banach space having a weakly
continuous duality mapping.

In a real Hilbert space  H , in 2000, Moudafi [10] introduced the following viscosity ap‐
proximation methods for nonexpansive mapping  T on  C in an implicit way and an explicit
way, respectively:

 x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})Tx_{n}, n\geq 0,
and

 x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})Tx_{n}, n\geq 0 , (1.2)

where  \{\alpha_{n}\} is a sequence in  (0,1) ; and  f :  Carrow C is a contractive mapping (i.e., there
exists a constant  k\in(0,1) such that  \Vert f(x)-f(y)\Vert\leq k\Vert x-y\Vert,  \forall x,  y\in H).

In 2006, Marino and Xu [9] considered the following general iterative algorithm for non‐
expansive mapping  T on  H in an implicit way:

 x_{t}=t \gamma f(x_{t})+(I-tA)Tx_{t}, \forall t\in(0, \min\{1, \Vert A\Vert^{-
1}\}) , (1.3)

where  A:Harrow H is a strongly positive linear bounded operator with a coefficient  \overline{\gamma}>0 ;
 f :  Harrow H is a contractive mapping; and  \gamma>0 . In 2011, Wangkeeree et al. [14]
extended the result of Marino and Xu [9] to a reflexive Banach space having a weakly
continuous duality mapping. The results of Marino and Xu [9] and Wangkeeree et al. [14]
improved upon the corresponding results of Browder [3], Moudafi [10], Reich [11] and Xu
[17] to a general approximating fixed point  \{x_{t}\} defined by (1.3). Combining the Moudafi’s
method (1.2) with Xu’s method [16], Marino and Xu [9] also considered the following general
iterative algorithm for a nonexpansive mapping  T in an explicit way:

 x_{n+1}=\alpha_{n}\gamma f(x_{n})+(I-\alpha_{n}A)Tx_{n}, \forall n\geq 0 , (1.4)

where  f is a contractive mapping on  H ; and  \gamma>0 . They proved that if the sequence
 \{\alpha_{n}\} in  (0,1) satisfies appropriate conditions, then the sequence  \{x_{n}\} generated by (1.4)
converges strongly to the unique solution of a certain variational inequality related to  A.

In this paper, as a continuation of study in this direction, we present new general iterative
algorithms for the nonexpansive mapping in a reflexive Banach space with a uniformly
Gâteaux differentiable norm. First, we introduce a general implicit iterative algorithm.
Consequently, by discretizing the continuous implicit method, we provide a general explicit
iterative aıgorithm for finding a fixed point of the nonexpansive mapping. Under some
control conditions, we establish the strong convergence of the proposed explicit algorithm
to a fixed point of the mapping, which solves a ceratin variational inequality.

1. PRELIMINARIES AND LEMMAS

Let  E be a real Banach space with norm  \Vert\cdot\Vert and let  E^{*} be its dual.
A Banach space  E is called strictly convex if its unit sphere  U=\{x\in E : \Vert x\Vert=1\} does

not contain any linear segment. For every  \varepsilon with  0\leq\varepsilon\leq 2 , the modulus  \delta(\varepsilon) of convexity
of  E is defined by

  \delta(\varepsilon)=\inf\{1-\Vert\frac{x+y}{2}\Vert : \Vert x\Vert\leq 1, 
\Vert y\Vert\leq 1, \Vert x-y\Vert\geq\varepsilon\}.
 E is said to be uniformly convex if  \delta(\varepsilon)>0 for every  \varepsilon>0 . If  E is uniformly convex, then
 E is reflexive and strictly convex.
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The norm of  E is said to be Gâteaux differentiable (and  E is said to be smooth) if

  \lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t} (2.1)

exists for each  x,  y in its unit sphere  U=\{x\in E : \Vert x\Vert=1\} . It is said to be uniformly
Gâteaux differentiable if for each  y\in U , this limit is attained uniformly for  x\in U . Finally,
the norm is said to be uniformly Fréchet differentiable (and  E is said to be uniformly
smooth) if the limit in (2.1) is attained uniformly for  (x, y)\in U\cross U . Since the dual  E^{*}

of  E is uniformly convex if and only if the norm of  E is uniformly Fréchet differentiable,
every Banach space with a umiformly convex dual is reflexive and has a uniformly Gâteaux
differentiable norm. The converse implication is false. A discussion of these and related
concepts may be found in [5].

Let  J be the normalized duaıity mapping from  E into  2^{E^{*}} It is welı‐known that  J is
single valued if and only if  E is smooth, and that if  E has a uniformly Gâteaux differentiable
norm,  J is uniformly continuous on bounded subsets of  E from the strong topology of  E

to the weak
 *

topology of  E^{*} . For these facts, see [5, 13].
Let LIM be a linear continuous functional on  \ell\infty . According to time and circumstances,

we use  LIM_{n}(a_{n}) instead of  LIM(a) for every   a=\{a_{n}\}\in\ell\infty . LIM is called a Banach
limit if  \Vert LIM\Vert=LIM(1)=1 and  LIM_{n}(a_{n+1})=LIM_{n}(a_{n}) for every  a=\{a_{n}\}\in\ell\infty.

Recall that a closed convex subset  C of  E is said to have the fixed point property for
nonexpansive self‐mappings (FPP for short) if every nonexpansive mapping  T :  Carrow C

has a fixed point, that is, there is a point  p\in C such that  Tp=p . It is well‐known that
every bounded closed convex subset of a uniformly smooth Banach space has the FPP ([7,
p. 45]).

The mapping  T:Carrow C is said to be pseudocontractive if there exists  j(x-y)\in J(x-y)
such that

 \{Tx-Ty, j(x-y)\rangle\leq\Vert x-y\Vert^{2}, \forall x, y\in C,
and  T is said to be strongly pseudocontractive it there exists a constant  k\in(0,1) and
 j(x-y)\in J(x-y) such that

 \{Tx-Ty, j(x-y)\rangle\leq k\Vert x-y\Vert^{2}, \forall x, y\in C.
We need the following lemmas for the proof of our main results.

Lemma 2.1. ([5]) Let  E be a Banach space, let  C be a nonempty closed convex subset of
 E , and let  T:Carrow C be a continuous strongly pseudocontractive mapping. Then  T has a
fixed point in  C.

Lemma 2.2 ([4]) Assume that  A is a strongly positive linear bounded operator on a smooth
Banach space  E with coefficient  \overline{\gamma}>0 and  0<\rho<\Vert A\Vert^{-1} . Then  \Vert I-pA\Vert\leq 1-\rho\overline{\gamma}.

Lemma 2.3 ([15]) Let  \{s_{n}\} be a sequence of nonnegative real numbers satisfying

 s_{n+1}\leq(1-\lambda_{n})s_{n}+\lambda_{n}\delta_{n}+\omega_{n}, \forall n\geq
1,

where  \{\lambda_{n}\},  \{\delta_{n}\} and  \omega_{m} satisfy the following conditions:

(i)  \{\lambda_{n}\}\subset[0,1] and   \sum_{n=1}^{\infty}\lambda_{n}=\infty or, equivalently,   \prod_{n={\imath}}^{\infty}(1-\lambda_{n})=0 ;
(ii) ıim   \sup_{narrow\infty}\delta_{n}\leq 0 or   \sum_{n=1}^{\infty}\lambda_{n}|\delta_{n}|<\infty ;

(iii)  \omega_{n}\geq 0 and   \sum_{n=1}^{\infty}\omega_{n}<\infty.
Then   \lim_{narrow\infty}s_{n}=0.

Lemma 2.4. Let  \{x_{n}\} and  \{y_{n}\} be bounded sequences in a Banach space  E such that

 x_{n+1}=\lambda_{n}x_{n}+(1-\lambda_{n})y_{n}, \forall n\geq 0,

where  \{\lambda_{n}\} is a sequence in  [0,1] such that

 0<1 i_{M}\inf_{narrow\infty}\lambda_{n}\leq\lim_{narrow}\sup_{\infty}
\lambda_{n}<1.
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Assume that

 1 \dot{{\imath}}m\sup_{narrow\infty}(\Vert y_{n+1}-y_{n}\Vert-\Vert x_{n+1}-
x_{n}\Vert)\leq 0.
Then   \lim_{narrow\infty}\Vert y_{n}-x_{n}\Vert=0.

Lemma 2.5. ([1, 2]) Let  C be a closed convex of a reflexive and strictly convex Banach
space E. Then  C^{o}= \{x\in C:\Vert x\Vert=\inf\{\Vert y\Vert : y\in C\}\} is a singleton.

Lemma 2.6. Let  E be a smooth Banach space. Then there holds

 \Vert x+y\Vert^{2}\leq\Vert x\Vert^{2}+2\{y, J(x+y)\rangle , \forall x, y\in E.

2. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:
 \bullet  E is a real smooth Banach space;
 \bullet  C is a nonempty closed subspace of  E ;
 \bullet  A:Carrow C is a strongly positive linear bounded operator with a constant  \overline{\gamma}>0 ;
 \bullet  h :  Carrow C is a continuous bounded strongly pseudocontractive mapping with a

 eP^{seudocontract\dot{{\imath}}vecoeffic\dot{{\imath}}entk\in(0,1_{\frac{)}
{\gamma}};}Theconstant  \gamma>0 satisfies 0  < \gamma<\frac{}{k} ;
 \bullet  T:Carrow C is a nonexpansive mapping with Fix  (T)\neq\emptyset.

In this section, first, we introduce the folıowing general iterative algorithm that generates
a net  \{x_{t}\},   t\in (  0, min{ı,  \Vert A\Vert^{-1}\} ) in an implicit way:

 x_{t}=t\gamma h(x_{t})+(I-tA)Tx_{t} , (3.1)

Now, for  t \in(0, \min\{1, \Vert A\Vert^{-1}\}) , consider the mapping  G_{t} :  Carrow C defined by

 G_{t}(x):=t\gamma h(x)+(I-tA)Tx, x\in C.

Then  G_{t} is a continuous strongly pseudocontractive mapping with a pseudocontractive
coefficient  1-t(\overline{\gamma}-\gamma k)\in(0,1) . Indeed, from Lemma 2.2 we have for each  x,  y\in C,

 \{G_{t}x-G_{t}y, J(x-y)\rangle
 =t\gamma\{h(x)-h(y),  J(x-y)\rangle+\langle(I-tA) (Tx—Ty),   J(x-y)\rangle

 \leq t\gamma k\Vert x-y\Vert^{2}+\Vert I-tA\Vert\Vert Tx-Ty \Vert\Vert x-y\Vert
 \leq t\gamma k\Vert x-y\Vert^{2}+(1-t\overline{\gamma})\Vert x-y\Vert^{2}
 =(1-t(\overline{\gamma}-\gamma k))\Vert x-y\Vert^{2}.

Thus, by Lemma 2.1,  G_{t} has a unique fixed point, denotcd by  x_{t} , which uniquely solves the
fixed point equation (3.1).

We summarize the basic properties of  \{x_{t}\}.

Proposition 3.1. Let  \{x_{t}\} be defined via (3.1). Then the following hold:

(a)  x_{t} is a unique path  t\mapsto x_{t}\in C,  t \in(0, \min\{1, \Vert A\Vert^{-1}\}) .
(b) If  v is a fixed point of  T , then for each  t \in(0, \min\{1, \Vert A\Vert^{-1}\})

 \{(A-\gamma h)x_{t}, J(x_{t}-v)\rangle\leq\{A(I-T)x_{t}, J(x_{t}-v)\rangle.

(c) If  T has a fixed point in  C , then the path  \{x_{t}\} is bounded and  \Vert x_{t}-Tx_{t}\Vertarrow 0 as
 tarrow 0.
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Using Proposition 3.1, we establish strong convergence of  \{x_{t}\}.

Theorem 3.2. Let  E be  a a reflexive Banach space with a uniformly Gâteaux differentiable
norm. Assume that every weakly compact convex subset of  E has the FPP for nonexpansive
mappings. Let  \{x_{t}\} be defined via (3.1). Then, as  tarrow 0,  \{x_{t}\} converges strongly to a fixed
point  p of  T , which is the unique solution in Fix (T) of the variational inequality

 \{(A-\gamma h)p, J(p-q)\rangle\leq 0, \forall q\in Fix(T) . (3.2)

Next, we substitute the fixed point property assumption, mentioned in Theorem 3.2, by
assuming that the space  E is strict convex.

Theorem 3.3. Let  E be  a a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm. Let  \{x_{t}\} be defined via (3.1). Then, as  tarrow 0,  \{x_{t}\} converges
strongly to a fixed point  p of  T , which is the unique solution in Fix (T) of the variational
inequality (3.2).

Now, we propose the following general iterative algorithm which generates a sequence in
an explicit way:

 \{\begin{array}{l}
x_{1}=x\in C
x_{n+1}=\alpha_{n}\gamma h(x_{n})+(I-\alpha_{n}A)Tx_{n}, n\geq 1,
\end{array} (3.3)

where  \{\alpha_{n}\} is a sequence in  (0,1) .
Using Theorem 3.2 and Theorem 3.3, we obtain strong convergence of the sequence  \{x_{n}\}

generated by (3.3).

Theorem 3.4. Let  \{x_{n}\} be a sequence generated by the explicit algorithm (3.3). Let  \{\alpha_{n}\}
satisfy the following conditions:

(C1)   \lim_{narrow\infty}\alpha_{n}=0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty ;
(C2)  |\alpha_{n+1}-\alpha_{n}|\leq o(\alpha_{n+1})+\sigma_{n},   \sum_{n=1}^{\infty}\sigma_{n}<\infty.

If one of the following assumptions holds:

(H1)  E is a reflexive Banach space with a uniformly Gâteaux differentiable norm, and
every weakly compact convex subset of  E has the FPP for nonexpansive mappings;

(H2)  E is a reflexive and strictly convex Banach space with a uniformly Gâteaux differ‐
entiable norm,

then  \{x_{n}\} converges strongly to a fixed point  p of  T , which is the unique solution in Fix(T)
of the variational inequality (3.2).

Corollary 3.5. Let  E be a uniformly smooth Banach space. Let  \{x_{n}\} be a sequence
generated by the explicit algorithm (3.3). Let  \{\alpha_{n}\} satisfy the conditions (C1) and (C2) in
Theorem 3.4. Then  \{x_{n}\} converges strongly to a fixed point  p of  T , which is the unique
solution in Fix(T) of the variational inequality (3.2).

Removing the condition  |\alpha_{n+1}-\alpha_{n}|\leq o(\alpha_{n+1})+\sigma_{n},   \sum_{n=1}^{\infty}\sigma_{n}<\infty on the sequence
 \{\alpha_{n}\} in Theorem 3.4, we have the following result.

Theorem 3.6. Let  \{x_{n}\} be a sequence generated by the following explicit algorithm :

 \{\begin{array}{ll}
x_{1}=x\in C   
x_{n+1}=\alpha_{n}\gamma h(x_{n})+\beta_{n}x_{n}+((1-\beta_{n})I-\alpha_{n}A)Tx_
{n},   n\geq 1,
\end{array} (3.4)

where  \{\alpha_{n}\} and  \{\beta_{n}\} are sequences in  (0,1) , which satisfy the following conditions:

(C1)  {\imath} im_{narrow\infty}\alpha_{n}=0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty ;
(C2)  0< \lim\inf_{narrow\infty}\beta_{n}\leq\lim\sup_{narrow\infty}\beta_{n}<1.

If one of the following assumptions holds:
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(H1)  E is a reflexive Banach space with a uniformly Gâteaux differentiable norm, and
every weakly compact convex subset of  E has the FPP for nonexpansive mappings;

(H2)  E is a reflexive and strictly convex Banach space with a uniformly Gâteaux differ‐
entiable norm,

then  \{x_{n}\} converges strongly to a fixed point  p of  T , which is the unique solution in Fix (T)
of the variational inequality (3.2).

Proof. By conditions (C1) and (C2), we may assume, without loss of generality, that   \frac{\alpha_{n}}{1-\beta_{n}}<
 \Vert A\Vert^{-1} for all  n\geq 1 . By Lemma 2.2, we have  \Vert(1-\beta_{n})I-\alpha_{n}A\Vert\leq(1-\beta_{n}-\alpha_{n}
\overline{\gamma}) .

Step 1. We show that  \{x_{n}\},  \{h(x_{n})\},  \{Tx_{n}\} and  \{ATx_{n}\} are bounded. Indeed, pick any
 p\in Fix(T) to obtain

 \Vert x_{n+}{\imath}-p\Vert\leq\alpha_{n}\gamma k\Vert x_{n}-p\Vert+\alpha_{n}
\Vert\gamma h(p)-Ap\Vert+\beta_{n}\Vert x_{n}-p\Vert+(1-\beta_{n}-\alpha_{n}
\overline{\gamma})\Vert x_{n}-p\Vert

It follows from induction that   \Vert x_{n}-p\Vert\leq\max\{\Vert x_{1}-p\Vert, \frac{\Vert\gamma h(p)-
Ap\Vert}{\overline{\gamma}-\gamma k}\},  \forall n\geq 1 . Hence  \{x_{n}\}

is bounded. Moreover, since  h is a bounded mapping,  \{h(x_{n})\} is bounded. Also,  \{Tx_{n}\}
and  \{ATx_{n}\} are bounded.

Step 2. We show that   \lim_{narrow\infty}\Vert x_{n+1}-x_{n}\Vert=0 . To this end, define a sequence  \{z_{n}\} by
 z_{n}=(x_{n+1}-\beta_{n}x_{n})/(1-\beta_{n}) so that

 x_{n+1}=\beta_{n}x_{n}+(1-\beta_{n})z_{n} . (3.5)
We now observe that

 z_{n+1}-z_{n}

 = \frac{\alpha_{n+1}}{1-\beta_{n+1}}(\gamma h(x_{n+1})-ATx_{n+1})+Tx_{n+1}-
Tx_{n}+\frac{\alpha_{n}}{1-\beta_{n}}(ATx_{n})-\gamma h(x_{n})) . (3.6)

It follows from (3.6) that

 \Vert z_{n+1}-z_{n}\Vert-\Vert x_{n+1}-x_{n}\Vert

  \leq\frac{\alpha_{n+1}}{1-\beta_{n+1}}(\Vert\gamma h(x_{n+1})\Vert+\Vert 
ATx_{n+1}\Vert)+\frac{\alpha_{n}}{1-\beta_{n}}(\Vert\gamma h(x_{n})\Vert+\Vert 
ATx_{n}\Vert) . (3.7)

By conditions (C1), (C2) and (3.7), we obtain that

  \lim_{narrow}\sup_{\infty}(\Vert z_{n+1}-z_{n}\Vert-\Vert x_{n+1}-x_{n}\Vert)
\leq 0.
Hence by Lemma 2.4, we have

  \lim_{narrow\infty}\Vert z_{n}-x_{n}\Vert=0 . (3.8)

It then folıows from condition (C2), (3.5) and (3.8) that

 n arrow\infty 1\dot{{\imath}}m\Vert x_{n+1}-x_{n}\Vert=\lim_{narrow\infty}(1-
\beta_{n})\Vert z_{n}-x_{n}\Vert=0.
Step 3. We show that   \lim_{narrow\infty}\Vert x_{n}-Tx_{n}\Vert=0 . In fact, from (3.4) it follows that

 \Vert Tx_{n}-x_{n}\Vert\leq\leq\Vert\alpha_{n}\gamma h(x_{n})-\alpha_{n}ATx_{n}
\Vert+\beta_{n}\Vert x_{n}-Tx_{n}\Vert+\Vert x_{n+1}-x_{n}\Vert

This implies that

 (1-\beta_{n})\Vert Tx_{n}-x_{n}\Vert\leq\alpha_{n}(\gamma\Vert h(x_{n})\Vert+
\Vert ATx_{n}\Vert)+\Vert x_{n+1}-x_{n}\Vert.

Thus, by conditions (C1) and (C2) and Step 2, we have   \lim_{narrow\infty}\Vert Tx_{n}-x_{n}\Vert=0.
Step 4. We show that   \lim\sup_{narrow\infty}\{\gamma h(p)-Ap,  J(x_{n}-p)\rangle\leq 0 , where  p= \lim_{tarrow 0}x_{t} and  x_{t}

is defined by (3.1). In fact, let  x_{t}=t\gamma h(x_{t})+(I-tA)Tx_{t} . Then, it follows from Theorem
3.2 or Theorem 3.3 that  \{x_{t}\} converges strongly to  p\in Fix(T) which is the unique solution
of the variational inequality (3.2). Noting that

 x_{t}-x_{n}=t(\gamma h(x_{t})-Ax_{t})+(Tx_{t}-Tx_{n})+(Tx_{n}-x_{n})+t^{2}
A(\gamma h(x_{t})-ATx_{t}) ,
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we have

 \Vert x_{t}-x_{n}\Vert^{2}\leq t\{\gamma h(x_{t})-Ax_{t}, J(x_{t}-x_{n})\}+
\Vert x_{t}-x_{n}\Vert^{2}
 +\Vert Tx_{n}-x_{n}\Vert\Vert x_{t}-x_{n}\Vert+t^{2}\Vert A(\gamma h(x_{t})-
ATx_{t})\Vert\Vert x_{t}-x_{n}\Vert,

which implies that

  \{\gamma h(x_{t})-Ax_{t}, J(x_{n}-x_{t}))\leq\frac{\Vert Tx_{n}-x_{n}\Vert}{t}
M+tL , (3.9)

where   M= \sup{  \Vert x_{t}-x_{n}\Vert :  n\geq 1 and  t \in(0, \min\{1, \Vert A\Vert^{-1}\}) } and  L= \sup\{\Vert A(\gamma h(x_{t})-
  ATx_{t})\Vert\Vert x_{t}-x_{n}\Vert :  n\geq 1 and  t \in(0, \min\{1, \Vert A\Vert^{-1}\}) }. Since  x_{n}-Tx_{n}arrow 0 by Step 3 ,
taking the upper limit as   narrow\infty in (3.9), we derive

 1 \dot{{\imath}}m\sup_{narrow\infty}\langle\gamma h(x_{t})-Ax_{t}, J(x_{n}-
x_{t})\}\leq tL , (3.10)

Taking the   \lim\sup as  tarrow 0 in (3.10) and noticing that the fact that the two limits are
interchangeable due to the fact that  J is uniformly continuous on bounded subsets of  E

from the strong topology of  E to the weak
 *

topology of  E^{*} , we obtain

 1 \dot{{\imath}}m\sup_{narrow\infty}\langle\gamma h(p)-Ap, J(x_{n}-p)\}\leq 0.
Step 5. We show that   \lim_{narrow\infty}x_{n}=p , where  p= \lim_{tarrow 0}x_{t}\in Fix(T),  x_{t} being defined by
(3.1), which is the unique solution of the variational inequality (3.2). Indeed, from (3.4),
observe that

 x_{n+1}-p=\alpha_{n}(\gamma h(x_{n})-Ap)+\beta_{n}(x_{n}-p)+((1-\beta_{n})I-
\alpha_{n}A)(Tx_{n}-p) .

By Lemma 2.2 and Lemma 2.6, we derive

 \Vert x_{n+1}-p\Vert^{2}\leq(1-\alpha_{n}\overline{\gamma})^{2}\Vert x_{n}-
p\Vert^{2}+\alpha_{n}\gamma k(\Vert x_{n}-p\Vert^{2}+\Vert x_{n+1}-p\Vert^{2})
 +2\alpha_{n}\{\gamma h(p) —Ap,  J(x_{n+1}-p)\rangle.

This implies that

  \Vert x_{n+1}-p\Vert^{2}\leq(1-\frac{2\alpha_{n}(\overline{\gamma}-\gamma k)}
{1-\alpha_{n}\gamma k})\Vert x_{n}-p\Vert^{2}+\frac{2\alpha_{n}
(\overline{\gamma}-\gamma k)}{1-\alpha_{n}\gamma k}\cdot\frac{\alpha_{n}
\overline{\gamma}^{2}}{2(\overline{\gamma}-\gamma k)}K
(3.11)

 + \frac{2\alpha_{n}(\overline{\gamma}-\gamma k)}{1-\alpha_{n}\gamma k}
\cdot\frac{1}{\overline{},\gamma-\gamma k}\langle\gamma h(p)-Ap, J(x_{n+1}-p)
\rangle,
where  K= \sup\{||x_{n}-p\Vert : n\geq 1\} . Put   \lambda_{n}=\frac{2\alpha_{n}(\overline{\gamma}-\gamma k)}{1-\alpha_{n}\gamma 
k} and

  \delta_{n}=\frac{\alpha_{n}\overline{\gamma}^{2}}{2(\overline{\gamma}-\gamma 
k)}L+\frac{1}{\overline{\gamma}-\gamma k}\{\gamma h(p)-Ap, J(x_{n+1}-p)\}.
Then it follows from the condition (C1) and Step 4 that   \lim_{narrow\infty}\lambda_{n}=0,   \sum_{n=1}^{\infty}\lambda_{n}=\infty,
and   \lim\sup_{narrow\infty}\delta_{n}\leq 0.  (3.11) reduces to

 \Vert x_{n+1}-p\Vert^{2}\leq(1-\lambda_{n})\Vert x_{n}-p\Vert^{2}+\lambda_{n}
\delta_{n} . (3.11)

Thus, applying Lemma 2.3 together with  \omega_{n}=0 to (3.11), we conclude that   \lim_{narrow\infty}x_{n}=p.
This completes the proof.  \square 

Remark Our results in this paper extend, improve and develop the corresponding results
in [9, 10, 11, 14] and the references therein.
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